首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of deleterious concentrations of ionic Cu on the growth of Chlorella pyrenoidosa has been studied. An earlier paper showed a distinct effect of the same concentrations on the photosynthesis of the alga. Several substances, e.g. Fe and citric acid counteract the effect of Cu. In media ordinarily used for growing unicellular algae the influence of Cu is relatively slight due to the extraordinarily large concentrations. of Fe. At a concentration of 6 μg/I Fe – near to that in nature –even one μg/I Cu significantly decreases the growth during the first 24 hours. Cu is adsorbed to the negative charges on micelles of Fe(OH)3 created in the alkaline medium. Citric acid is readily assimilated by Chlorella and thus counteracts the influence of Cu for only relatively short period. Cell concentration is of decisive importance for the deleterious influence of Cu on growth. The effect of a certain Cu concentration stops at a certain concentration of of the algae regardless of whether the experiment is started at this cell concentration or this concentration is attained during the experiment. This is due to the binding of Cu by the organic matter of cell walls and slime envelopes. H+ ions compete with Cu both when combining with the organic matter in the cell walls and when occupying the active sites of the cell membranes. The latter explains the fact that the influence of Cu is only slight at pH 5 compared with that at pH 8. At a Cu-concentration where no growth of algae can take place, the algae are by no means killed. After being transferred to an ordinary medium the algae start to grow again. The influence of Cu depends on the division stage of the algae. If the initial steps of cell division have taken place, the cell continues to divide.  相似文献   

2.
Both Chlorella pyrenoidosa and Chlorella vulgaris grow equally well at 20°C aerated with ordinary air or mixtures of air with 5 or 12 per cent CO2 (5 klux continuous light). Whereas C. vulgaris relatively rapidly adapts to a higher CO2 tension, adaptation takes about 24 hours for C. pyrenoidosa. In Chlorella vulgaris pH in the range 3.6–7.6 has no apparent influence on the rate of photosynthesis in experiments having a duration of two hours. This is true both for algae grown aerated by ordinary air and for algae grown with a mixture of 5 per cent CO2 in air. The adaptation time must be short. In Chlorella pyrenoidosa the same is found for algae in ordinary air, whereas an influence of pH is seen in some experiments where the aeration was by 5 per cent CO2 in air. As is to be expected, the rate of photosynthesis in C. pyrenoidosa during the first two hours is very much influenced by the concentration of free CO2. The highest rate is found at the CO2 concentration at which the algae had been growing previously. The influence on the rate of photosynthesis in C. vulgaris is very much less, although in principle the same. The investigation of the corresponding influence on the rate of respiration is complicated by considerable variation from one series to another. In C. vulgaris this is particularly of importance. In C. pyrenoidosa, the highest rate of respiration is generally found at the CO2-concentration at which the alga had been growing before the experiment. It seems probable that variations between similar series is due to the fact that the algae were grown in continuous light but with dilution with fresh culture medium when the optical density had reached a certain magnitude. Algae grown in this way are neither synchronized nor non-synchronized.Our thanks are due to the Danish State Research Foundation for financial support.  相似文献   

3.
160 crossbred (Duroc × Landrace ×Yorkshire) gilts averaged 21.25 kg body weight were used to study the effects of dietary copper (II) sulfate (CuSO4) and copper proteinate (Cu-Pr) on growth performance, plasma Cu concentration, ceruloplasmin activity, and erythrocyte Cu/Zn-superoxide dismutase (SOD) activity. All pigs were allotted to four treatments and fed with basal diets supplemented with 0 (control), 250 mg /kg Cu as CuSO4, and 50 and 100 mg/kg Cu as Cu-Pr. Growth performance was determined based on two growth phase (phase 1: days 0 to 15, phase 2: days 15 to 30). After 30 days of the treatment, 16 pig blood samples (four per treatment) were collected for indexes of copper status determination. The experimental results showed that compared with control, pigs fed with 250 mg Cu/kg as CuSO4 and 100 mg Cu/kg as Cu-Pr had higher average daily gain and average daily feed intake in the whole growth phase (d 0 to 30). In addition, 250 mg Cu/kg as CuSO4 and 100 mg/kg Cu as Cu-Pr enhanced plasma ceruloplasmin activity (P < 0.05), and 100 mg/kg Cu as Cu-Pr increased erythrocyte Cu/Zn-SOD activity (P < 0.01) compared with the control. There was no obvious treatment response on plasma Cu concentration in the present study.  相似文献   

4.
Cu tolerance and accumulation have been studied in Haumaniastrum katangense, a cuprophyte from Katanga (DR Congo), previously described as a copper hyperaccumulator. Nicotiana plumbaginifolia, a well-known non-tolerant and non-accumulator species, was used as a control. The germination rate of H. katangense was enhanced by copper and fungicide addition, suggesting that fungal pathogens, which restrain germination in normal conditions, are limiting. In hydroponic culture in the Hoagland medium, H. katangense did not grow well, in contrast to N. plumbaginifolia. Better growth was achieved by adding fungicide or higher copper concentrations. The maximal non-effective concentration (NEC) was 12 µM CuSO4 for H. katangense grown in hydroponics, i.e. 24 times greater than Cu concentration in the Hoagland medium. By comparison, copper concentrations greater than 0.5 µM had a negative effect on the growth of N. plumbaginifolia. EC50 (50% effective concentration) in hydroponics was 40 µM CuSO4 for H. katangense and 6 µM CuSO4 for N. plumbaginifolia. EC100 (100% effective concentration) was 100 µM CuSO4 for H. katangense and 15 µM CuSO4 for N. plumbaginifolia. In soil, growth was also stimulated by Cu addition up to 300 mg kg-1 CuSO4. Surplus copper was also required for cultivating H. katangense in sterile conditions, suggesting that Cu excess may be necessary for needs other than pathogen defence. Cu accumulation in the shoot has been measured for N. plumbaginifolia and H. katangense at their respective NEC. Cu allocation in the two species showed a similar response to increasing Cu concentrations, i.e. root/shoot concentration ratio well above 1. In conclusion, H. katangense is highly tolerant to copper and has elevated copper requirement even in the absence of biotic interactions. Its accumulation pattern is typical of an excluder species.  相似文献   

5.
It has been shown previously (Treeby et al., 1989) that phytosiderophores, released by roots of iron deficient grasses (Gramineae), mobilize from calcareous soils not only iron (Fe) but also zinc (Zn), manganese (Mn) and copper (Cu). Mobilization of Fe may therefore be impaired by other micronutrient cations. This has been studied in both, model experiments with Fe hydroxide and with a calcareous soil (15% CaCO3, pH 8.6) amended with micronutrients as sulfate salts.Mobilization of Fe from Fe hydroxide by phytosiderophores (epi-3-hydroxymugineic acid) was not affected by the addition of CaCl2, MgSO4 and MnSO4, slightly inhibited by ZnSO4 and strongly inhibited by CuSO4. In a calcareous soil amended with increasing levels of ZnSO4, MnSO4 and CuSO4, mobilization of Fe by phytosiderophores remained uneffected by Zn and Mn amendments but was progressively impaired by increasing levels of Cu amendment, correlated with corresponding enhancement of Cu mobilization.High concentrations of ZnSO4 and MnSO4 and relatively high concentrations of CuSO4 were required for inhibition of Fe mobilization by phytosiderophores. It is therefore concluded that in most calcareous soils phytosiderophores efficiently mobilize Fe, and that phytosiderophores play an important role in Fe acquisition by grasses grown on calcareous soils.  相似文献   

6.
The effect of CuSO4 and Cu(II)(Gly)2 has been compared with that of superoxide dismutase on the ferricytochrome c reduction and on the nitroblue tetrazolium reduction by an enzymic or chemical flux of superoxide anion radicals as well as on o-dianisidine photooxidation. Both CuSO4 and Cu(II)(Gly)2 have been found to inhibit ferricytochrome c reduction as well as the aerobic and anaerobic nitroblue tetrazolium reduction with approximately equal efficiency. Unlike superoxide dismutase they proved capable of inhibiting o-dianisdine photooxidation. The effect of copper either as CuSO4 or as Cu(II)(Cly)2 has been established as being due to its interference with the indirect assays for superoxide dismutase activity used. The reasons for this interference have been examined and it is concluded that copper can react with a component of the indirect assay system and depending on the method used it either mimics SOD or acts contrary to the enzyme.  相似文献   

7.
High copper concentration is toxic for living organisms including humans. Biosorption is a bioremediation technique that can remove copper and other pollutants from aqueous medium and soils, consequently cleaning the environment. The aim of this study was, therefore, to investigate the influence of different copper compounds (Cu(II) as CuCl2; Cu(II) as CuSO4; and Cu(I) as CuCl) on copper bioreduction and biosorption using four copper-resistant bacteria isolated from the rhizosphere of two plants (Avena sativa and Plantago lanceolata) in aqueous matrix. Copper resistance profile, bioreduction, and biosorption after 48 h of incubation were evaluated. The isolates displayed high copper resistance. However, isolate A1 did not grow very well in the CuCl2 and isolate T5 was less resistant to copper in aqueous solutions amended with CuCl (Cu(I)). The best copper source for copper bioreduction and biosorption was CuSO4 and the isolates removed as much as ten times more copper than in aqueous solutions amended with the other copper compounds. Moreover, Cu(I) did not succumb to biosorption, although the microbes were resistant to aqueous solutions of CuCl. In summary, Cu(II) from CuSO4 was furthermost susceptible to bioreduction and biosorption for all isolates. This is an indication that copper contamination of the environment from the use of CuSO4 as an agrochemical is amenable to bioremediation.  相似文献   

8.
The effects of copper/zinc-loaded montmorillonite (Cu/Zn-Mt) on growth performance, mineral retention, intestinal morphology, mucosa antioxidant capacity, and cytokine contents in weaned piglets were investigated in the present study. One hundred eight piglets weaned at 21?±?1 days of age (Duroc × Landrace× Yorkshire; average initial weight of 6.36 kg) were allotted to three treatments for 2 weeks. The three treatments were as follows: (1) control group: basal diet; (2) Cu/Zn-Mt group: basal diet?+?39 mg/kg Cu and 75 mg/kg Zn as Cu/Zn-Mt; (3) Cu?+?Zn?+?Mt group: basal diet?+?mixture of CuSO4, ZnSO4, and Mt (equal amount of Cu, Zn, and Mt to the Cu/Zn-Mt group). Each treatment had six pens of six piglets. The results showed that as compared with the control group and the Cu?+?Zn?+?Mt group, Cu/Zn-Mt supplementation increased (P?<?0.05) the average daily gain and the gain/feed ratio; Cu/Zn-Mt supplementation increased (P?<?0.05) the Cu and Zn concentrations in serum, jejunum, and ileum mucosa, villus height, the ratio of villus height to crypt depth, and the activities of SOD, GSH-Px, and IL-10 levels, and decreased the malondialdehyde concentrations in the jejunum and ileum, and intestinal IL-1β, IL-6, and TNF-α levels. Moreover, supplementation with the mixture of CuSO4, ZnSO4, and Mt had no effect on the growth performance, but increased the mucosa Cu and Zn concentrations, intestinal morphology, antioxidant capacity, and immune function in the duodenum, while it had no effect on the above indexes in the jejunum and ileum. The results indicated that Mt could be used as a controlled carrier for Cu and Zn, which made Cu/Zn-Mt have better biological activities in the intestine than the mixture of Cu, Zn, and Mt.  相似文献   

9.
10.
The freshwater green algae Closterium is sensitive to water quality, and hence has been suggested as ideal organisms for toxicity testing. In the present study, we evaluated the photosynthetic and biochemical responses of C. ehrenbergii to the common contaminants, coppers. The 72 h median effective concentrations (EC50) of CuSO4 and CuCl2 on the test organism were calculated to be 0.202 mg/L and 0.245 mg/L, respectively. Exposure to both coppers considerably decreased pigment levels and photosynthetic efficiency, while inducing the generation of reactive oxygen species (ROS) in cells with increased exposure time. Moreover, the coppers significantly increased the levels of lipid peroxidation and superoxide dismutase (SOD) activity, even at relatively lower concentrations. These suggest that copper contaminants may exert deleterious effects on the photosynthesis and cellular oxidative stress of C. ehrenbergii, representing its powerful potential in aquatic toxicity assessments.  相似文献   

11.
The effects on apparent photosynthesis in the green alga Scenedesmus quadricauda of four chelating substances, 8-hydroxyquinoline (= oxine), β-isopropyltropolone (=β-thujaplicin), sodium dimethyldithiocarbamate and 3-(β-hydroxyethyl)-C-pentamethylene-3-aza-dithiocarbamate have been investigated. The first three compounds mentioned had all an inhibitory effect on photosynthesis, measured as oxygen production with a manometric, a volumetric or a polarographic method. In combination with certain concentrations of CuSO4 bimodal dose response curves were observed, similar to those obtained on the growth of different microorganisms. Calculations of the amounts of different complexes that appeared in the nutrient solutions during the experiments are compared with the recorded degrees of inhibition. The results strongly indicate that the 1: 1-complexes between Cu2+ and the chelating substances are the most toxic agents at low concentrations of these compounds.  相似文献   

12.
The cells used in the present investigation had a phosphate content of about 20 per cent as compared with the status in normal cultures. The uptake of phosphate during a period of 4 hours was determined at a pH of 6,5, kept constant with the aid of a citrate buffer. In the absence of CO2, light increased the uptake of phosphate with saturation around 14,000 erg/cm2s. With 5 per cent CO2 in the air the relationship was more complicated, and the uptake of phosphate must he related to more than one process during active photosynthesis. The inhibiting effect of CO2 in air was noticeable already at low concentrations both in light and in darkness. With the system used, this supports earlier indications for internal recycling of orthophosphate, CO2 was inhibiting also in nitrogen in the light. Selenate in a concentration of 2 mM gave a slight and rather irregular inhibition.—Anaerobiosis had no effect in the light but gave a large decrease in the dark.—DNP (0.1 mM) was somewhat more active in the dark than in the light. The lower concentrations tested had no effect in either case.—Menadione (0.1 mM) inhibited strongly, and more in illuminated than in non-illuminated cells.  相似文献   

13.
Twenty eight 2–3 month old castrated male Black Bengal kids (Capra hircus) were used to determine the effects of dietary Cu concentration on lipid metabolism. These kids were randomly assigned to one of seven treatments in a ((2 × 3) + 1) factorial arrangement. Factors were two sources of Cu (CuSO4 versus Cu proteinate) fed at three dietary levels (10, 20 or 30 mg/kg) and the control group, where neither CuSO4 nor Cu proteinate were supplemented. Kids were fed a basal diet containing maize (19.5%), soybean (17.0%), deoiled rice bran (56.5%), molasses (4.0%), di-calcium phosphate and salt (1.0% each), and mineral and vitamin mixture (0.5% each) supplements, at 3.5% of BW to meet NRC requirements for protein, energy, macro minerals and micro minerals, excluding Cu. The basal diet (DM basis) contained 5.7 mg Cu/kg, 122.5 mg Fe/kg, 110 mg Zn/kg, 0.26 mg Mo/kg and 0.32% S. CuSO4 or Cu proteinate (Cu-P) was added to the basal diet at the rate of 10, 20 and 30 mg/kg. Kids were housed in a well-ventilated shed with facilities for individual feeding in aluminum plated metabolic cages in an open-sided barn. Blood samples were collected on Days 0, 30, 60 and 90 to determine serum cholesterol, high density lipoprotein (HDL), total lipid and phospholipids. Kids were slaughtered after metabolism trial and liver tissues were collected to determine the copper and zinc concentrations. Kids receiving Cu-P showed higher (P < 0.05) HDL, total lipid and phospholipid concentrations. Increase in dietary level of Cu significantly decreased (P < 0.05) serum cholesterol and increased serum HDL, total lipid and phospholipid concentrations. There was an increasing (P < 0.05) trend in liver Cu with the increased dietary level of Cu supplementation irrespective of source, but the increasing rate was greater with CuSO4 than Cu-P supplementation. Kids’ diet containing 30 mg/kg CuSO4 had 26% more liver Cu than those fed iso-amounts of Cu-P. Fecal Cu excretion was increased with the increasing dietary level of Cu, and excretion was reduced by the use of Cu-P in the diet. In conclusion, dietary supplementation of organic Cu in the form of copper proteinate had significant effects on lipid metabolism in goat kids. There was an increase in accumulation of Cu in the liver and excretion of Cu in feces with the increase of dietary level of Cu in the diet of Black Bengal kids.  相似文献   

14.
Copper Toxicity Tolerance in Aegilops and Haynaldia Seedlings   总被引:1,自引:0,他引:1  
The seedling response to high Cu concentrations (1 and 10 μM CuSO4 . 5 H2O) was studied in Aegilops triuncialis, Ae. geniculata, Ae. cylindrica and Haynaldia villosa. The negative effect of Cu on the root growth was recorded at both concentrations, while the shoot growth was inhibited at 10 μM. The most tolerant was Ae. triuncialis, followed by Ae. geniculata. Ae. cylindrica and H. villosa were more sensitive. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Neurodegenerative effects of MPP+, the main metabolite of MPTP include dopamine (DA) depletion and enhanced lipid peroxidation (LPO) in mice striata, both associated to free radicals overproduction. Since copper is related to several antioxidant enzymes, we tested its neuroprotective effect against MPP+-induced neurotoxicity (20 g/3 l). CuSO4 pretreatment was administrated by either acute (2.5 mg/kg, i.p) or chronic (350 or 700 mg/l doses through drinking water, for 30 days) schemes. Acute administration blocked MPP+-induced striatal LPO only when administered 16 or 24 hours before MPP+, and prevented the DA-depleting effect only at 24 hours. Chronic CuSO4 prevented the LPO increase, and blocked the DA depletion only at the higher dose used (700 mg/l). Neuroprotective effect of CuSO4 was dependent on the dose and the time of pretreatment, which suggest that this lag could be related with mechanisms of activation or synthesis of copper-dependent proteins responsible of cellular defense against MPP+.  相似文献   

16.
Copper (Cu) is an essential micronutrient required for normal growth and development of plants; however, at elevated concentrations in soil, copper is also generally considered to be one of the most toxic metals to plant cells due to its inhibitory effects against many physiological and biochemical processes. In spite of its potential physiological and economical significance, molecular mechanisms under Cu stress has so far been grossly overlooked in sorghum. To explore the molecular alterations that occur in response to copper stress, the present study was performed in ten-day-old Cu-exposed leaves of sorghum seedlings. The growth characteristics were markedly inhibited, and ionic alterations were prominently observed in the leaves when the seedlings were exposed to different concentrations (0, 100, and 150 µM) of CuSO4. Using two-dimensional gels with silver staining, 643 differentially expressed protein spots (≥1.5-fold) were identified as either significantly increased or reduced in abundance. Of these spots, a total of 24 protein spots (≥1.5-fold) from Cu-exposed sorghum leaves were successfully analyzed by MALDI-TOF-TOF mass spectrometry. Of the 24 differentially expressed proteins from Cu-exposed sorghum leaves, 13 proteins were up-regulated, and 11 proteins were down-regulated. The abundance of most identified protein species, which function in carbohydrate metabolism, stress defense and protein translation, was significantly enhanced, while that of another protein species involved in energy metabolism, photosynthesis and growth and development were severely reduced. The resulting differences in protein expression patterns together with related morpho-physiological processes suggested that these results could help to elucidate plant adaptation to Cu stress and provide insights into the molecular mechanisms of Cu responses in C4 plants.  相似文献   

17.
Sorption and desorption of copper by and from clay minerals   总被引:1,自引:0,他引:1  
Summary The sorption of Cu by different clay minerals from dilute CuSO4 solutions was studied as a function of pH. It was found that Cu sorption increased with increasing the equilibrium pH. The low sorption at low pH values was attributed to the competition effect of H+ ions and the release of octahedral Mg, Fe and Al from the 2: 1 minerals in acid solutions. The higher sorption of copper at higher pH values was related to the absence of H+ ions and to the increase in the pH-dependent negative charge in kaolinite and gibbsite.The desorption of copper using solutions of 1 N NaCl at different pH values indicated that kaolinite and montmorillonite released large amounts of their adsorbed Cu even at high pH values. Vermiculite, on the other hand, exhibited a strong retention of Cu against extraction with NaCl. Oven-drying had no significant effect on the desorption characteristics of the Cu-saturated clays.The Ca-Cu exchange isotherms on montmorillonite were studied at two different pH values. The isotherms indicated a preference of Ca at the lower pH (pH 3.5), with K = 0.931 and G = +41.0 cal./mole. At the higher pH (5.2) the isotherms indicated a preference of Cu with K = 1.282 and G = –141.0 cal./mole. The difference was attributed to the competition of H+ at low pH.  相似文献   

18.
We hypothesised that copper nanoparticles (NanoCu), because of their high physicochemical reactivity and bioavailability, could be used in much smaller quantities than bulk Cu, consequently reducing excretion of Cu into the environment. The objective of the study was to evaluate the effects of various levels of NanoCu on the development and growth of broiler chickens, in order to establish an optimum level of NanoCu dietary supplementation. Broiler chickens were randomly divided into five groups of 10 birds each. The control group received 7.5 mg Cu/kg feed (standard level) as CuSO4, while groups fed with complexes of NanoCu and starch received 25%, 50%, 75% and 100% of the standard level of Cu used in the control group. Chicken growth and excretion of Cu, Fe and Zn were measured during the growth period from d 7 to 42. At d 42, the slaughter characteristics, the content of Cu, Fe and Zn in the breast muscle and liver, and the oxidative status were analysed. The results indicate that using NanoCu can reduce the standard level of Cu from CuSO4 supplementation by 75% without jeopardising animal growth, and at the same time significantly decreasing Cu excretion into the environment.  相似文献   

19.
Pot experiments were carried out to examine the responses of growth, physiological properties, copper (Cu) absorption and translocation in two bamboo species, Phyllostachys auresulcata ‘Spectabilis’ and Pleioblastus chino ‘Hisauchii’ Two-year old plants with similar size were exposed to excess Cu treatments, in order to demonstrate their Cu tolerance and potential ability of phytoremediation under Cu-polluted soil as biofuel feedstock. Pots were irrigated with aqueous solutions of Cu in concentrations of 500, 1000 and 2000 mg CuSO4·5H2O kg?1, against the control (tap water). Plant growth, chlorophyll contents, photosynthesis rate, malondialdehyde (MDA) content, Cu concentrations in leave, stem and root, and Cu contents in shoot per pot were measured after transplanted plants were grown under excess Cu treatments for 60 days. Two bamboo species had different responses to tolerance and allocation of supplied Cu. As Cu treatments rose, the percentage of senescent shoot and MDA content increased, and the chlorophyll content and photosynthetic capacity decreased. Such changes in Hisauchii were more obvious than in Spectabilis. However, number of emerged shoots did not differ between the two species across four Cu treatments. In the efficiency of decontamination, Hisauchii was more effective than Spectabilis, since either the Cu concentrations in leaves, stems and roots or Cu contents in shoot per pot in Cu treatments from 500 to 2000 mg?kg?1 were higher in Hisauchii than in Spectabilis It is suggested that the potential capability of absorbing Cu might cause the different response to cu stress between the two bamboo species. Both bamboo species can be considered to exhibit enough potential to develop in Cu-polluted areas of China as bioenergy resources and phytoremediation plants.  相似文献   

20.
Abdel Latef AA 《Mycorrhiza》2011,21(6):495-503
The effect of arbuscular mycorrhizal (AM) fungi inoculation on pepper (Capsicum annuum L. cv. Zhongjiao 105) plant growth and on some physiological parameters in response to increasing soil Cu concentrations was studied. Treatments consisted of inoculation or not with Glomus mosseae and the addition of Cu to soil at the concentrations of 0 (control), 2 (low), 4 (medium), and 8 (high) mM CuSO4. AM fungal inoculation decreased Cu concentrations in plant organs and promoted biomass yields as well as the contents of chlorophyll, soluble sugar, total protein, and the concentrations of P, K, Ca, and Mg. Plants grown in high Cu concentration exhibited a Cu-induced proline accumulation and also an increase in total free amino acid contents; however, both were lower in mycorrhizal pepper. Cu-induced oxidative stress by increasing lipid peroxidation rates and the activity of superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase, and AM symbiosis enhanced these antioxidant enzyme activities and decreased oxidative damage to lipids. In conclusion G. mosseae was able to maintain an efficient symbiosis with pepper plants in contaminated Cu soils, improving plant growth under these conditions, which is likely to be due to reduced Cu accumulation in plant tissues, reduced oxidative stress and damage to lipids, or enhanced antioxidant capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号