首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytokinin oxidase/dehydrogenase (CKO; EC 1.5.99.12) irreversibly degrades the plant hormones cytokinins. A recombinant maize isoenzyme 1 (ZmCKO1) produced in the yeast Yarrowia lipolytica was subjected to enzymatic deglycosylation by endoglycosidase H. Spectrophotometric assays showed that both activity and thermostability of the enzyme decreased after the treatment at non-denaturing conditions indicating the biological importance of ZmCKO1 glycosylation. The released N-glycans were purified with graphitized carbon sorbent and analyzed by MALDI-TOF MS. The structure of the measured high-mannose type N-glycans was confirmed by tandem mass spectrometry (MS/MS) on a Q-TOF instrument with electrospray ionization. Further experiments were focused on direct analysis of sugar binding. Peptides and glycopeptides purified from tryptic digests of recombinant ZmCKO1 were separated by reversed-phase chromatography using a manual microgradient device; the latter were then subjected to offline-coupled analysis on a MALDI-TOF/TOF instrument. Glycopeptide sequencing by MALDI-TOF/TOF MS/MS demonstrated N-glycosylation at Asn52, 63, 134, 294, 323 and 338. The bound glycans contained 3-14 mannose residues. Interestingly, Asn134 was found only partially glycosylated. Asn338 was the sole site to carry large glycan chains exceeding 25 mannose residues. This observation demonstrates that contrary to a previous belief, the heterologous expression in Y. lipolytica may lead to locally hyperglycosylated proteins.  相似文献   

2.
The cationic peanut peroxidase is a complex enzyme consisting of a heme group, two calcium ions and three complex carbohydrate chains at positions Asn60, 144 and 185. Details of the heme and calcium ligation, necessary for oxidation, have recently been revealed from the three-dimensional structure of the peroxidase. However, the three glycans that may be important for the stability of the enzyme as well as its activity were not resolved. In order to determine the configuration of one of these glycans, PNGase A was used to cleave the glycan from the enzyme at Asn-144. This glycan was studied by two dimensional 1H-NMR spectroscopy to identify the sugar linkages. The results indicated a glycan structure comprising a Man alpha1-6(Xyl beta1-2)Man beta1-4GlcNAc beta1-4(Fuc alpha1-3)GlcNAc beta core but with an additional Man alpha1-3 appendage linked to Man3. The glycan also appeared to be heterogeneous as was noted from a single terminating galactose being linked to approximately 20-25% glycan.  相似文献   

3.
N-acetylglucosaminyltransferase V (GnT-V) catalyzes the addition of a beta1,6-linked GlcNAc to the alpha1,6 mannose of the trimannosyl core to form tri- and tetraantennary N-glycans and contains six putative N-linked sites. We used mass spectrometry techniques combined with exoglycosidase digestions of recombinant human GnT-V expressed in CHO cells, to identify its N-glycan structures and their sites of expression. Release of N-glycans by PNGase F treatment, followed by analysis of the permethylated glycans using MALDI-TOF MS, indicated a range of complex glycans from bi- to tetraantennary species. Mapping of the glycosylation sites was performed by enriching for trypsin-digested glycopeptides, followed by analysis of each fraction with Q-TOF MS. Predicted tryptic glycopeptides were identified by comparisons of theoretical masses of peptides with various glycan masses to the masses of the glycopeptides determined experimentally. Of the three putative glycosylation sites in the catalytic region, peptides containing sites Asn 334, 433, and 447 were identified as being N-glycosylated. Asn 334 is glycosylated with only a biantennary structure with one or two terminating sialic acids. Sites Asn 433 and 447 both contain structures that range from biantennary with two sialic acids to tetraantennary terminating with four sialic acids. The predominant glycan species found on both of these sites is a triantennary with three sialic acids. The appearance of only biantennary glycans at site Asn 433, coupled with the appearance of more highly branched structures at Asn 334 and 447, demonstrates that biantennary acceptors present at different sites on the same protein during biosynthesis can differ in their accessibility for branching by GnT-V.  相似文献   

4.
The human insulin receptor (IR) homodimer is heavily glycosylated and contains a total of 19 predicted N-linked glycosylation sites in each monomer. The recent crystal structure of the IR ectodomain shows electron density consistent with N-linked glycosylation at the majority of sites present in the construct. Here, we describe a refined structure of the IR ectodomain that incorporates all of the N-linked glycans and reveals the extent to which the attached glycans mask the surface of the IR dimer from interaction with antibodies or other potential therapeutic binding proteins. The usefulness of Fab complexation in the crystallization of heavily glycosylated proteins is also discussed. The compositions of the glycans on IR expressed in CHO-K1 cells and the glycosylation deficient Lec8 cell line were determined by protease digestion, glycopeptide purification, amino acid sequence analysis, and mass spectrometry. Collectively the data reveal: multiple species of complex glycan at residues 25, 255, 295, 418, 606, 624, 742, 755, and 893 (IR-B numbering); multiple species of high-mannose glycan at residues 111 and 514; a single species of complex glycan at residue 671; and a single species of high-mannose glycan at residue 215. Residue 16 exhibited a mixture of complex, hybrid, and high-mannose glycan species. Of the remaining five predicted N-linked sites, those at residues 397 and 906 were confirmed by amino acid sequencing to be glycosylated, while that at residue 78 and the atypical (NKC) site at residue 282 were not glycosylated. The peptide containing the final site at residue 337 was not recovered but is seen to be glycosylated in the electron density maps of the IR ectodomain. The model of the fully glycosylated IR reveals that the sites carrying high-mannose glycans lie at positions of relatively low steric accessibility.  相似文献   

5.
Phaseolin, the major storage protein of the common bean (Phaseolus vulgaris), is a glycoprotein which is synthesized during seed development and accumulates in protein storage vacuoles or protein bodies. The protein has three different N-linked oligosaccharide side chains: Man9(GlcNAc)2, Man7(GlcNAc)2, and Xyl-Man3(GlcNAc)2 (where Xyl represents xylose). The structures of these glycans were determined by 1H NMR spectroscopy. The Man9(GlcNAc)2 glycan has the typical structure found in plant and animal glycoproteins. The structures of the two other glycans are shown below. (Formula; see text) Phaseolin was separated by electrophoresis on denaturing gels into four size classes of polypeptides. The two abundant ones have two oligosaccharides each, whereas the less abundant ones have only one oligosaccharide each. Polypeptides with two glycans have Man7(GlcNAc)2 attached to Asn252 and Man9(GlcNAc)2 attached to Asn341. Polypeptides with only one glycan have Xyl-Man3(GlcNAc)2 attached to Asn252. Both these asparagine residues are in canonical glycosylation sites; the numbering starts with the N-terminal methionine of the signal peptide of phaseolin. The presence of the Man7(GlcNAc)2 and of Xyl-Man3(GlcNAc)2 at the same asparagine residue (position 252) of different polypeptides seems to be controlled by the glycosylation status of Asn341. When Asp341 is unoccupied, the glycan at Asn252 is complex. When Asn341 is occupied, the glycan at Asn252 is only modified to the extent that 2 mannosyl residues are removed. The processing of the glycans, after the removal of the glucose residues, involves enzymes in the Golgi apparatus as well as in the protein bodies. Formation of the Xyl-Man3(GlcNAc)2 glycan is a multistep process that involves the Golgi apparatus-mediated removal of 6 mannose residues and the addition of 2 N-acetylglucosamine residues and 1 xylose. The terminal N-acetylglucosamine residues are later removed in the protein bodies. The conversion of Man9(GlcNAc)2 to Man7(GlcNAc)2 is a late processing event which occurs in the protein bodies. Experiments in which [3H]glucosamine-labeled phaseolin obtained from the endoplasmic reticulum (i.e. precursor phaseolin) is incubated with jack bean alpha-mannosidase show that the high mannose glycan on Asn252, but not the one on Asn341, is susceptible to enzyme degradation. Incubation of [3H] glucosamine-labeled phaseolin obtained from the Golgi apparatus with jack bean beta-N-acetylglucosaminidase results in the removal of the terminal N-acetylglucosamine residues from the complex chain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Plematl A  Demelbauer UM  Josic D  Rizzi A 《Proteomics》2005,5(15):4025-4033
The glycan structures of the major and more than ten minor populated isoforms of antithrombin (AT) were determined after separation of the isoforms by IEF using IPG strips. The bands excised from the gel were reduced, derivatized by iodoacetamide and submitted to tryptic digestion. The digest was analyzed by RP-HPLC-ESI-MS equipped with a quadrupole ion-trap mass analyzer. MS/MS experiments allowed establishing the monosaccharide compositions in the glycopeptides. For the major isoform of alpha-AT four identical biantennary glycans with two terminal sialic acids (SA) each, a total of eight SA, were found in full agreement with the literature. In the IEF-band containing this major isoform (pI 5.18) a further, much less abundant, isoform was detected showing a fucosylation on the glycan attached to Asn155 but being of otherwise identical structure as described above. The isoforms with pI 5.10 were found to include one triantennary glycan, all antennas carrying terminal SA. The occurrence of triantennary structure is site specific, involving the peptides with Asn(135) and Asn(155), alternately. At pI 5.24 we found those four isoforms that carry the glycans like the main-isoform of alpha-AT but missing one terminal SA. There was no site specificity found for the mono-sialo structure. The isoform at pI 5.31 is the major isoform of beta-AT containing three identical biantennary structures being fully sialylated. No isoforms (above 0.5% abundance) with two glycans only or three glycans other than beta-AT were detected. Fucosylation was found in the main isoform with an abundance of about 5%, and as expected with all the other isoforms with a comparable abundance.  相似文献   

7.
The amino acid sequence and glycan structure of PD-L1, PD-L2 and PD-L3, type 1 ribosome-inactivating proteins isolated from Phytolacca dioica L. leaves, were determined using a combined approach based on peptide mapping, Edman degradation and ESI-Q-TOF MS in precursor ion discovery mode. The comparative analysis of the 261 amino acid residue sequences showed that PD-L1 and PD-L2 have identical primary structure, as it is the case of PD-L3 and PD-L4. Furthermore, the primary structure of PD-Ls 1–2 and PD-Ls 3–4 have 81.6% identity (85.1% similarity). The ESI-Q-TOF MS analysis confirmed that PD-Ls 1–3 were glycosylated at different sites. In particular, PD-L1 contained three glycidic chains with the well known paucidomannosidic structure (Man)3 (GlcNAc)2 (Fuc)1 (Xyl)1 linked to Asn10, Asn43 and Asn255. PD-L2 was glycosylated at Asn10 and Asn43, and PD-L3 was glycosylated only at Asn10. PD-L4 was confirmed to be not glycosylated. Despite an overall high structural similarity, the comparative modeling of PD-L1, PD-L2, PD-L3 and PD-L4 has shown potential influences of the glycidic chains on their adenine polynucleotide glycosylase activity on different substrates.  相似文献   

8.
Human alpha‐1‐antitrypsin (A1AT) is a protease inhibitor that is involved in the protection of lungs from neutrophil elastase enzyme that drastically modifies tissue functioning. The glycoprotein consists of 394 amino acids and is N‐glycosylated at Asn‐46, Asn‐83, and Asn‐247. A1AT deficiency is currently treated with A1AT that is purified from human serum. In view of therapeutic applications, rA1AT was produced using a novel human neuronal cell line (AGE1.HN®) and we investigated the N‐glycosylation pattern as well as the in vitro anti‐inflammatory activity of the recombinant glycoprotein. rA1AT (300 mg/L) was biologically active as analyzed using elastase assay. The N‐glycan pool, released by PNGase F digestion, was characterized using 2D‐HPLC, MALDI‐TOF mass spectrometry, and by exoglycosidase digestions. A total of 28 N‐glycan structures were identified, ranging from diantennary to tetraantennary complex‐type N‐glycans. Most of the N‐glycans were found to be (α1–6) core‐fucosylated and part of them contain the Lewis X epitope. The two major compounds are a monosialylated diantennary difucosylated glycan and a disialylated diantennary core‐fucosylated glycan, representing 25% and 18% of the total N‐glycan pool, respectively. Analysis of the site‐specificity revealed that Asn‐247 was mainly occupied by diantennary N‐glycans whereas Asn‐46 was occupied by di‐, and triantennary N‐glycans. Asn‐83 was exclusively occupied by sialylated tri‐ and tetraantennary N‐glycans. Next, we evaluated the anti‐inflammatory activity of rA1AT using A1AT purified from human serum as a reference. rA1AT was found to inhibit the production of TNF‐α in neutrophils and monocytes as commercial A1AT does. Biotechnol. Bioeng. 2011;108:2118–2128. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
Tajiri M  Yoshida S  Wada Y 《Glycobiology》2005,15(12):1332-1340
Isolation of glycopeptides utilizing hydrogen bonding between glycopeptide glycans and a carbohydrate-gel matrix in the organic phase is useful for site-specific characterization of oligosaccharides of glycoproteins, when combined with mass spectrometry. In this study, recovery of glycopeptides was improved by including divalent cations or increasing the organic solvent in the binding solution, without losing specificity, whereas it was still less effective for those with a long peptide backbone exceeding 50 amino acid residues. The method was then applied to the analysis of glycan heterogeneities at seven N-glycosylation sites in each of the plasma and cellular fibronectins (FNs). There was a remarkable site-specific difference in fucosylation between these isoforms; Asn1244 selectively escaped the global fucosylation of cellular FN, whereas only Asn1007 and Asn2108 of the plasma isoform underwent modification. In addition, a new O-glycosylation site was identified at Thr279 in the connecting segment between the fibrin- and heparin-binding domain and the collagen-binding domain, and the glycopeptide was reactive to a peanut agglutinin lectin. Considering that another mucin-type O-glycosylation site lies within a different connecting segment, the O-glycosylation of FN was suggested to play a significant role in segregating the neighboring domains and thus maintaining the topology of FN and the domain functions. In addition, the method was applied to apolipoprotein B-100 (apoB100) whose N-glycan structures at 17 of 19 potential sites have been reported, and characterized the remaining sites. The results also demonstrated that the enriched glycopeptide provides resources for site-specific analysis of oligosaccharides in glycoproteomics.  相似文献   

10.
A recombinant Chinese hamster ovary (CHO) cell line making human interfron-gamma (IFN-gamma) was grown in 12-L stirred tank fermentors in three batch fermentations under conditions of constant temperature, pH, and dissolved oxygen tension. In addition to cell growth, metabolite, and productivity data, a detailed analysis of the carbohydrate structures attached to each glycosylation site of IFN-gamma was achieved using matrix-assisted laser desorption mass spectrometry (MALDI-MS) in combination with exoglycosidase array sequencing. Complex biantennary oligosaccharides (particularly Gal(2)GlcNAc(4)Man(3) which was core alephl-6 fucosylated at Asn(25) but not at Asng(97)) were most prevalent at both glycosylation sites. However, considerable microheterogeneity arising from the presence of triantennary and truncated glycan structures was also observed. The proportion of the dominant core glycan structure (Gal(2)GlcNAc(4)Man(3) +/- Fuc(1)) decreased by 15-26% during batch culture, with increases in the proportion of oligomannose and truncated glycans over the same time period. Prolonged culture resulting from an extended lag phase led to further accumulation of oligomannose and truncated structures, reaching up to 52% of total glycans attached to Asng(97) by 240 h of culture. The implications of these glycosylation changes for optimizing the time for harvesting cell cultures, and for the clearance of recombinant therapeutic products in vivo are discussed. (c) 1995 John Wiley & Sons, Inc.  相似文献   

11.
Human protein C (hPC) is glycosylated at three Asn‐X‐Ser/Thr and one atypical Asn‐X‐Cys sequons. We have characterized the micro‐ and macro‐heterogeneity of plasma‐derived hPC and compared the glycosylation features with recombinant protein C (tg‐PC) produced in a transgenic pig bioreactor from two animals having approximately tenfold different expression levels. The N‐glycans of hPC are complex di‐ and tri‐sialylated structures, and we measured 78% site occupancy at Asn‐329 (the Asn‐X‐Cys sequon). The N‐glycans of tg‐PC are complex sialylated structures, but less branched and partially sialylated. The porcine mammary epithelial cells glycosylate the Asn‐X‐Cys sequon with a similar efficiency as human hepatocytes even at these high expression levels, and site occupancy at this sequon was not affected by expression level. A distinct bias for particular structures was present at each of the four glycosylation sites for both hPC and tg‐PC. Interestingly, glycans with GalNAc in the antennae were predominant at the Asn‐329 site. The N‐glycan structures found for tg‐PC are very similar to those reported for a recombinant Factor IX produced in transgenic pig milk, and similar to the endogenous milk protein lactoferrin, which may indicate that N‐glycan processing in the porcine mammary epithelial cells is more uniform than in other tissues.  相似文献   

12.
Site-specific N-glycan characterization of human complement factor H   总被引:1,自引:0,他引:1  
Human complement factor H (CFH) is a plasma glycoprotein involved in the regulation of the alternative pathway of the complement system. A deficiency in CFH is a cause of severe pathologies like atypical haemolytic uraemic syndrome (aHUS). CFH is a 155-kDa glycoprotein containing nine potential N-glycosylation sites. In the current study, we present a quantitative glycosylation analysis of CFH using capillary electrophoresis and a complete site-specific N-glycan characterization using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESIMS/MS). A 17.9-kDa mass decrease, observed after glycosidase treatment, indicated that N-glycosylation is the major post-translational modification of CFH. This mass difference is consistent with CFH glycosylation by diantennary disialylated glycans of 2204 Da on eight sites. CFH was not sensitive to endoglycosidase H (Endo H) deglycosylation, indicating the absence of hybrid and oligomannose structures. Quantitative analysis showed that CFH is mainly glycosylated by complex, diantennary disialylated, non-fucosylated glycans. Disialylated fucosylated and monosialylated non-fucosylated oligosaccharides were also identified. MS analysis allowed complete characterization of the protein backbone, verification of the glycosylation sites and site-specific N-glycan identification. The absence of glycosylation at Asn199 of the NGSP sequence of CFH is shown. Asn511, Asn700, Asn784, Asn804, Asn864, Asn893, Asn1011 and Asn1077 are glycosylated essentially by diantennary disialylated structures with a relative distribution varying between 45% for Asn804 and 75% for Asn864. Diantennary monosialylated glycans and triantennary trisialylated fucosylated and non-fucosylated structures have also been identified. Interestingly, the sialylation level along with the amount of triantennary structures decreases from the N- to the C-terminal side of the protein.  相似文献   

13.
Liu X  Chan K  Chu IK  Li J 《Carbohydrate research》2008,343(17):2870-2877
Nonspecific proteolytic digestion of glycoproteins is an established technique in glycomics and glycoproteomics. In the presence of pronase E, for example, glycoproteins are digested to small glycopeptides having one to six amino acids residues, which can be analyzed with excellent sensitivity using mass spectrometry. Unfortunately, the long digestion times (1-3 days) limit the analytical throughput. In this study, we used controlled microwave irradiation to accelerate the proteolytic cleavage of glycoproteins mediated by pronase E. We used ESI-MS and MALDI-MS analyses to evaluate the microwave-assisted enzymatic digestions at various digestion durations, temperatures, and enzyme-to-protein ratios. When digesting glycoproteins, pronase E produced glycopeptides within 5 min under microwave irradiation; glycopeptides having one or two amino acids were the major products. Although analysis of peptides containing multiple amino acid residues offers the opportunity for peptide sequencing and provides information regarding the sites of glycosylation, the signals of Asn-linked glycans were often suppressed by the glycopeptides containing basic amino acids (Lys or Arg) in MALDI-MS experiments. To minimize this signal-to-content dependence, we converted the glycopeptides into their sodiated forms and then methylated them using methyl iodide. This controlled methylation procedure resulted in quaternization of the amino group of the N-terminal amino acid residue. Using this approach, the mass spectrometric response of glyco-Asn was enhanced, compensating for the poorer ionization efficiency associated with the basic amino acids residues. The methylated products of glycopeptides containing two or more amino acid residues were more stable than those containing only a single Asn residue. This feature can be used to elucidate glycan structures and glycosylation sites without the need for MS/MS analysis.  相似文献   

14.
Twenty-eight enzymes, encoded by different genes and secreted by different mutant strains of Chrysosporium lucknowense, were subjected to MALDI-TOF MS peptide fingerprinting followed by analysis of the MS data using the GlycoMod tool from the ExPASy proteomic site. Various N-linked glycan structures were discriminated in the C. lucknowense proteins as a result of the analysis. N-Glycosylated peptides with modifications matching the oligosaccharide compositions contained in the GlycoSuiteDB were found in 12 proteins. The most frequently encountered N-linked glycan, found in 9 peptides from 7 proteins, was (Man)(3)(GlcNAc)(2), that is, the core pentasaccharide structure forming mammalian-type high-mannose and hybrid/complex glycans in glycoproteins from different organisms. Nine out of 12 enzymes represented variably N-glycosylated proteins carrying common (Hex)(0-4)(HexNAc)(0-6)+(Man)(3)(GlcNAc)(2) structures, most of them being hybrid/complex glycans. Various glycan structures were likely formed as a result of the enzymatic trimming of a 'parent' oligosaccharide with different glycosidases. The N-glycosylation patterns found in C. lucknowense proteins differ from those reported for the extensively studied enzymes from Aspergilli and Trichoderma species, where high-mannose glycans of variable structure have been detected.  相似文献   

15.
The mammalian oocyte is encased by a transparent extracellular matrix, the zona pellucida (ZP), which consists of three glycoproteins, ZPA, ZPB, and ZPC. The glycan structures of the porcine ZP and the complete N-glycosylation pattern of the ZPB/ZPC oligomer has been recently described. Here we report the N-glycan pattern and N-glycosylation sites of the porcine ZP glycoprotein ZPA of an immature oocyte population as determined by a mass spectrometric approach. In-gel deglycosylation of the electrophoretically separated ZPA protein and comparison of the pattern obtained from the native, the desialylated and the endo-beta-galactosidase-treated glycoprotein allowed the assignment of the glycan structures by MALDI-TOF MS by considering the reported oligosaccharide structures. The major N-glycans are neutral biantennary complex structures containing one or two terminal galactose residues. Complex N-glycans carrying N-acetyllactosamine repeats are minor components and are mostly sialylated. A significant signal corresponding to a high-mannose type chain appeared in the three glycan maps. MS/MS analysis confirmed its identity as a pentamannosyl N-glycan. By the combination of tryptic digestion of the endo-beta-galactosidase-treated ZP glycoprotein mixture and in-gel digestion of ZPA with lectin affinity chromatography and reverse-phase HPLC, five of six N-glycosylation sites at Asn(84/93), Asn268, Asn316, Asn323, and Asn530 were identified by MS. Only one site was found to be glycosylated in the N-terminal tryptic glycopeptide with Asn(84/93.) N-glycosidase F treatment of the isolated glycopeptides and MS analysis resulted in the identification of the corresponding deglycosylated peptides.  相似文献   

16.
We have shown that recombinant forms of VP8* domains of the human rotavirus outer capsid spike protein VP4 from human neonatal strains (N155(G10P[11]) and RV3(G3P[6]) and a bovine strain (B223) recognize unique glycans within the repertoire of human milk glycans. The accompanying study by Yu et al.2, describes a human milk glycan shotgun glycan microarray that led to the identification of 32 specific glycans in the human milk tagged glycan library that were recognized by these human rotaviruses. These microarray analyses also provided a variety of metadata about the recognized glycan structures compiled from anti-glycan antibody and lectin binding before and after specific glycosidase digestions, along with compositional information from mass analysis by matrix-assisted laser desorption ionization-mass spectrometry. To deduce glycan sequence and utilize information predicted by analyses of metadata from each glycan, 28 of the glycan targets were retrieved from the tagged glycan library for detailed sequencing using sequential disassembly of glycans by ion-trap mass spectrometry. Our aim is to obtain a deeper structural understanding of these key glycans using an orthogonal approach for structural confirmation in a single ion trap mass spectrometer. This sequential ion disassembly strategy details the complexities of linkage and branching in multiple compositions, several of which contained isomeric mixtures including several novel structures. The application of this approach exploits both library matching with standard materials and de novo approaches. This combination together with the metadata generated from lectin and antibody-binding data before and after glycosidase digestions provide a heretofore-unavailable level of analytical detail to glycan structure analysis. The results of these studies showed that, among the 28 glycan targets analyzed, 27 unique structures were identified, and 23 of the human milk glycans recognized by human rotaviruses represent novel structures not previously described as glycans in human milk. The functional glycomics analysis of human milk glycans provides significant insight into the repertoire of glycans comprising the human milk metaglycome.  相似文献   

17.
Zona pellucida (ZP), the extracellular glycocalyx that surrounds the mammalian egg plasma membrane, is a relatively simple structure consisting of three to four glycoproteins. In the mouse, the ZP is composed of three glycoproteins, namely ZP1 (200 kDa), ZP2 (120 kDa), and ZP3 (83 kDa). Extensive studies in this species have resulted in the identification of primary (mZP3) and secondary (mZP2) binding sites for spermatozoa. The two zona components are highly glycosylated containing N-linked and O-linked glycan units. In an attempt to characterize N-linked glycan units, mZP2 and mZP3 were purified and the N-linked carbohydrate chains were released by exhaustive digestion with N-glycanase. The released oligosaccharides (OSs) were radiolabeled by reduction with NaB3H4 and resolved by gel filtration on a column of Bio-Gel P-4. The OSs separated into several peaks indicating the presence of a variety of N-linked glycans. Interestingly, the radioactive peaks resolved from mZP2 and mZP3 were quite different, a result suggesting qualitative and quantitative differences in the glycans. The [SH]-labeled glycans present in mZP2 and mZP3 were pooled separately and fractionated by serial lectin chromatography. Experimental evidence included in this report strongly suggests that mZP3 (but not mZP2) contains polylactosaminyl glycan with terminal, nonreducing alpha-galactosyl residues. The mZP3 glycans eluted from the immobilized lectin columns were further characterized by lectin and sizing column chromatography before or after digestion with endo-/ exo-glycohydrolases. Data revealed the presence of a variety of OSs, including poly-N-acetyllactosaminyl, bi-, tri-, and tetraantennary complex-type, and high-mannose-type glycans. Taken together, these results provide additional evidence on the complex nature of the glycan chains present on mZP glycoconjugates.  相似文献   

18.
Peroxidases are known to be very stable enzymes. The reasons for such have not yet been fully investigated. Cationic peroxidase from cultured peanut peroxidase can be obtained in substantial amounts and can easily be purified. It is thus an ideal enzyme for study. Through immunological assays its site in the cell has been found and a function determined. With crystals and X-ray diffraction thereof, a 3-D structure of the protein is available. The sites of the heme as well as the 2 calcium ions have been located. With the cDNA it was possible to determine the sites for three glycan chains on the protein. Good progress is being made on the elucidation of the structure of these glycan chains. While both calcium and glycans influence the stability of the protein, the search for how the glycans control the folding pattern is harder than to define the role of calcium. Site-directed mutagenesis has been carried out in each of the three binding sites in turn to determine the role of each glycan. Further work with Mass Spectroscopy. using Electron Spin Ionization tandem Mass Spectroscopy (ESI MS/MS) is underway.  相似文献   

19.
Six leguminous lectins from the seeds of plants of the Erythrina genus, namely E. caffra (ECafL), E. cristagalli (ECL), E. flabelliformis (EFL), E. lysistemon (ELysL), E. rubrinerva (ERL), and E. vespertilio (EVL), were examined to establish their sequence homology and to determine the structure and sites of attachment of their glycans. Tryptic digests of these lectins were analyzed by capillary electrophoresis coupled to electrospray mass spectrometry (CE-ESMS). Assignments were made by comparing the molecular masses of the observed tryptic peptides with those of Erythrina corallodendron lectin (ECorL), the sequence of which had been established previously. Glycan structure and genetic variations in the amino acid sequence were probed by tandem mass spectrometry. Small differences were found between the sequences of the various lectins examined and all of them exhibited C-terminal processing resulting in proteins with a C-terminal Asn residue. The major glycan of these glycoproteins was shown to be the heptasaccharide Man(3)XylFucGlcNAc(2), consistent with previous investigations on ECL and ECorL. A minor glycan heterogeneity was observed for most lectins examined except for that of ECafL and ECorL where an extra hexose residue was observed on the reducing GlcNAc residue of the heptasaccharide.  相似文献   

20.
Glycosylation is an important posttranslational modificationin proteins, and aberrant glycosylation occurs in malignancies.Human chorionic gonadotropin (hCG) is a glycoprotein hormoneproduced in high concentrations during pregnancy. It is alsoexpressed as particular glycoforms by certain malignancies.These glycoforms, which are called "hyperglycosylated" hCG (hCGh),have been reported to contain more complex glycan moieties.We have analyzed tryptic glycopeptides of the ß-subunitof hCG of various origins by liquid chromatography (LC) connectedto an electrospray mass spectrometer. Site-specific glycan structureswere visualized by the use of differential expression analysissoftware. hCGß was purified from urine of two patientswith testicular cancer, one with choriocarcinoma, one with aninvasive mole, two pregnant women at early and late gestation,from a pharmaceutical preparation and culture medium of a choriocarcinomacell line. N-glycans at Asn-13 and Asn-30 as well as O-glycansat Ser-121, Ser-127, Ser-132, and Ser-138 were characterized.In all samples, the major type of N-glycan was a biantennarycomplex-type structure, but triantennary structures linked toAsn-30 as well as fucosylation of the Asn-13-bound glycan areincreased in cancer-derived hCGß. There were significantsite-specific differences in the O-glycans, with constant core-2glycans at Ser-121, core-1 glycans at Ser-138, and putativesites unoccupied by any glycan. Core-2 glycans at either Ser-127or Ser-132 were enriched in cancer. The glycans of free hCGßwere larger and had a higher fucose content of Asn-13-linkedoligosaccharides than intact hCG. This may facilitate the detectionof this malignancy-associated variant by a lectin assay. Analysisof hCGh affinity purified with antibody B152 confirmed thatthis antibody recognizes a core-2 glycan on Ser-132.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号