首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TheLpslocus on mouse chromosome 4 controls host responsiveness to lipopolysaccharide, a major component of the outer membrane of Gram-negative bacteria. The C3H/HeJ inbred mouse strain is characterized by a mutantLpsallele (Lpsd) that renders it hyporesponsive to LPS and naturally tolerant of its lethal effects. To identify theLpsgene by a positional cloning strategy, we have generated a high-resolution linkage map of the chromosomal region surrounding this locus. We have analyzed a total of 1604 backcross mice from a preexisting interspecific backcross panel of 259 (Mus spretus× C57BL/6J)F1 × C57BL/6J and two novel panels of 597 (DBA/2J × C3H/HeJ)F1 × C3H/HeJ and 748 (C57BL/6J × C3H/HeJ)F1 × C3H/HeJ segregating atLps.A total of 50 DNA markers have been mapped in a 11.8-cM span overlapping theLpslocus. This positions theLpslocus within a 1.1-cM interval, flanked proximally by a large cluster of markers, including three known genes (Cd30l, Hxb,andAmbp), and distally by two microsatellite markers (D4Mit7/D4Mit178). The localization of theLpslocus is several centimorgans proximal to that previously assigned.  相似文献   

2.
Glycoprotein 330 (Gp330) is a member of the low-density lipoprotein receptor gene family that is expressed in the kidney. We have mapped the Gp330 gene to mouse chromosome 2, 4.5 cM proximal to Acra, in an interspecific backcross of (C57BL/6J × Mus spretus) F1 × C57BL/6J.  相似文献   

3.
We report the mapping of the human and mouse genes encoding SEK1 (SAPK/ERK kinase-1), a newly identified protein kinase that is a potent physiological activator of the stress-activated protein kinases. The human SERK1 gene was assigned to human chromosome 17 using genomic DNAs from human–rodent somatic cell hybrid lines. A specific human PCR product was observed solely in the somatic cell line containing human chromosome 17. The mouseSerk1gene was mapped to chromosome 11, closely linked toD11Mit4,using genomic DNAs from a (C57BL/6J ×Mus spretus)F1×M. spretusbackcross.  相似文献   

4.
In the normal C57BL/6J male mouse a specific subset of the kidney glycosphingolipids which is associated with multilamellar bodies of lysosomal origin and represents about 10% of the total kidney glycolipids, is excreted into the urine each day. This excretion is blocked and glycosphingolipids accumulate in the kidney of bg J/bgJ mutants of this strain. To examine this process in vitro, glycosphingolipid metabolism and excretion were studied in beige mouse kidney cell cultures. Primary kidney cell cultures from male C57BL/6J control and bg J/bg J beige mutants were grown in D-valine medium and glycosphingolipids labeled with [3H]palmitate. As we have shown previously, the giant lysosomes of altered morphology were maintained in cultures of the beige kidney cells. Beige-J and control cells synthesized the same types of glycosphingolipids, but the mutant cells had quantitatively higher levels of these compounds than control cells, as determined by high performance liquid chromatography. Beige-J cells incorporated more [3H]palmitate into glycospingholipids than control cells on a cpm/mg protein basis and the specific activity (cpm/pmole glycosphingolipid) was lower in beige cells. Medium from beige-J cells accumulated more glycosphingolipids than that from control cells in a 24 h period. The glycosphingolipids released into the medium as determined by HPLC were primarily non-lysosomal types and both control and mutant cells retained the glycosphingolipids associated with lysosomal multilamellar bodies excreted in vivo. The elevated levels of lysosomal glycosphingolipids and the dysmorphic lysosomes in primary cultures of beige cells, then, are not caused by a mutant block in secretion of lysosomes. (Mol Cell Biochem 118: 61–66, 1992)  相似文献   

5.
Summary Fibroblasts from a beige mouse (C57BL/6J;bg J bgJ) have been established and maintained in culture for more than 3 yr. At early passages, the mutant cells were distinguishable from C57BL/6J control mouse fibroblasts at the ultrastructural level by the presence of enlarged cytoplasmic granules. After continuous passaging, this distinguishing feature was lost from the mutant cells, correlated with their increased growth rate. Clustered, perinuclear distribution of lysosomes was retained, however, and was quantitatively different at any passage number of the beige cell line from the dispersed distribution of these organelles in control mouse fibroblasts, as analyzed by computer-aided, video-enhanced light microscopy. In somatic cell hybrids between the established beige cell line and a control human diploid fibroblast cell strain, seven uncorrected hybrid lines retained a lysosomal dispersion pattern statistically indistinguishable from that of the beige mouse cell lines. Three corrected hybrid lines had lysosomal dispersion patterns that were significantly different from the beige parent line and indistinguishable from that of the control mouse fibroblast line. Thus, lysosomal dispersion can be used objectively and quantitatively to distinguish mutant beige and control mouse fibroblasts and corrected vs. uncorrected cell hybrids made from the beige/control human somatic cell crosses.  相似文献   

6.
We have used RFLP analysis on DNA from a panel of interspecific (C57BL/6J × Mus spretus) F1 × M. spretus backcross offspring to assign the genes encoding 10 neuron-specific mRNAs and 2 loci corresponding to cyclophilin 2-related sequences to the mouse chromosomal map. The Pss1 locus encoding the forebrain-enriched protein kinase C substrate RC3, a component of dendritic spines, mapped to proximal Chr 9. The Camkl locus encoding the calmodulin-binding protein kinase-like vesicle protein 1G5 mapped to distal Chr 9. The Gng7 locus encoding the γ7 G-protein subunit, highly enriched in the striatum and presumptively coupled to dopamine receptors, mapped to mid-Chr 10. The Htr1f, Htr5a, Htr5b, and Htr7 loci, encoding four serotonin receptors, mapped to Chr 16.5, 1, and 19, respectively. The Peplb locus, encoding a CD26 ectopeptidase-like neuronal membrane protein activated by kainate and long-term potentiation, mapped to Chr 5. The D2Sut1e and Cpu3 loci, encoding neural proteins of unknown functions, mapped to Chrs 2 and 9, respectively. Two cyclophilin 2-related loci, Cphn2-r1 and Cphn2-r2, mapped to different regions of Chr 9. Comparison of these 12 newly mapped loci with the existing mouse map and known regions of syntenic homology with the human map, along with the known features and expression profiles of the products of these genes, suggests a few candidates for mouse mutations and human neurological and immunological deficits, including the Tourette syndrome and Bloom syndrome genes.  相似文献   

7.
Natural killer (NK) cells play important roles in controlling tumor cells and against a range of infectious organisms. Recent studies of mouse NK cell surface receptors, which may be involved in the specificity of NK cells, have shown that many of these molecules are encoded by theLy49andLy55(Nkrp1) multigene families that map to distal mouse chromosome 6. Also mapping to this NK cell gene complex (NKC) is the resistance locus,Cmv1,which is involved in genetically determined resistance to murine cytomegalovirus (MCMV). The aim of this study was to localizeCmv1more precisely in relation to other NKC loci by generating a high-resolution genetic map of the region. We have analyzed 1250 backcross mice comprising panels of 700 (BALB/c × C57BL/6J)F1× BALB/c and 550 (A/J × C57BL/6J)F1× A/J progeny. A total of 25 polymorphic genes or microsatellite markers were analyzed over a region of 10 map units fromD6Mit134toD6Mit59.TheCmv1phenotypes of mice recombinant in this interval were tested by infection with MCMV. The results obtained indicate that the functionally important NKC region is a tightly linked cluster of loci spanning at least 0.4 map units. Furthermore,Cmv1maps distal to, but very closely linked to, theLy49multigene family (<0.2 map units), suggesting that MCMV resistance may be conferred by MHC class I-specific NK cell receptors.  相似文献   

8.
Hermansky Pudlak syndrome (HPS) is a heterogeneous recessive genetic disease with a tendency to develop lung fibrosis with aging. A mouse strain with two mutant HPS genes affecting separate vesicle trafficking pathways, C57BL/6-Hps1 ep -Ap3b1 pe , exhibits severe lung abnormalities at young ages, including enlarged alveolar type II (ATII) cells with giant lamellar bodies and foamy alveolar macrophages (AMs), which are readily identified histologically. In this study, the appearance of lung fibrosis in older animals was studied using classical histological and biochemical methods. The HPS double mutant mice, but not Chediak Higashi syndrome (C57BL/6-Lyst bg-J -J, CHS) or C57BL/6J black control (WT) mice, were found to develop lung fibrosis at about 17 months of age using Masson trichrome staining, which was confirmed by hydroxyproline analysis. TGF β1 levels were elevated in bronchial alveolar lavage samples at all ages tested in the double mutant, but not WT or CHS mice, indicative of a prefibrotic condition in this experimental strain; and AMs were highly positive for this cytokine using immunohistochemistry staining. Prosurfactant protein C staining for ATII cells showed redistribution and dysmorphism of these cells with aging, but there was no evidence for epithelial-mesenchymal transition of ATII cells by dual staining for prosurfactant C protein and α-smooth muscle actin. This investigation showed that the HPS double mutant mouse strain develops interstitial pneumonia (HPSIP) past 1 year of age, which may be initiated by abnormal ATII cells and exacerbated by AM activation. With prominent prefibrotic abnormalities, this double mutant may serve as a model for interventive therapy in HPS.  相似文献   

9.
Drosophila haemocytes are essential for the animal to resist Staphylococcus aureus infections. Phagocytosis is a central component of the haemocyte‐mediated immune response. It involves regulated interaction between the phagocytic and the endocytic compartments. RabGTPases are pivotal for the membrane trafficking and fusion events, and thus are often targets of intracellular pathogens that subvert phagocytosis. An in vivo screen identified Rab2 and Rab14 as candidates for proteins regulating phagosome maturation. Since Rab14 is often targeted by intracellular pathogens, an understanding of its function during phagocytosis and the overall immune response can give insight into the pathogenesis of intracellular microbes. We generated a Drosophila Rab14 mutant and characterized the resulting immune defects in animals and specifically in haemocytes in response to an S. aureus infection. Haemocyte based immunofluorescence studies indicate that Rab14 is recruited to the phagosome and like Rab7, a well‐characterized regulator of the phagocytic pathway, is essential for progression of phagosome maturation. Rab14 mutant haemocytes show impaired recruitment of Rab7 and of a lysosomal marker onto S. aureus phagosomes. The defect in phagocytosis is associated with higher bacterial load and increased susceptibility to S. aureus in the animal.  相似文献   

10.
We mapped the locations of the genes encoding the slow skeletal muscle, fast skeletal muscle, and cardiac isoforms of troponin I (Tnni) in the mouse genome by interspecific hybrid backcross analysis of species-specific (C57BL/6 vs Mus spretus) restriction fragment length polymorphisms (RFLPs). The slow skeletal muscle troponin I locus (Tnni1) mapped to Chromosome (Chr) 1. The fast skeletal muscle troponin I locus (Tnni2), mapped to Chr 7, approximately 70 cM from the centromere. The cardiac troponin I locus (Tnni3) also mapped to Chr 7, approximately 5–10 cM from the centromere and unlinked to the fast skeletal muscle troponin I locus. Thus, the troponin I gene family is dispersed in the mouse genome. Received: 10 May 1995 / Accepted: 1 September 1995  相似文献   

11.
《Genomics》1995,29(3)
The BRCA1 gene is in large part responsible for hereditary human breast and ovarian cancer. Here we report the isolation of the murineBrca1homologue cDNA clones. In addition, we identified genomic P1 clones that contain most, if not all, of the mouseBrca1locus. DNA sequence analysis revealed that the mouse and human coding regions are 75% identical at the nucleotide level while the predicted amino acid identity is only 58%. A DNA sequence variant in theBrca1locus was identified and used to map this gene on a (Mus m. musculusCzech II × C57BL/KsJ)F1 × C57BL/KsJ intersubspecific backcross to distal mouse chromosome 11. The mapping of this gene to a region highly syntenic with human chromosome 17, coupled with Southern and Northern analyses, confirms that we isolated the murineBrca1homologue rather than a related RING finger gene. The isolation of the mouseBrca1homologue will facilitate the creation of mouse models for germline BRCA1 defects.  相似文献   

12.
Because T-cell receptor (Tcr) genes may possibly function as non-major histocompatibility complex (MHC) immune response genes or predispose for autoimmune diseases, it is important to know how these genes are inherited. We found that Bgl I-digested DNA of BALB/c, C3H, DBA/2, and C57BL/6 exhibited restriction enzyme fragment length polymorphisms (RFLPs) for the Tcra-V1, Tcra-V2, Tcra-V4, Tcra-V6, Tcra-V7, Tcra-V8, Tcra-V11, Tcra-122, Tcra-V13, and Tcra-C gene segments. Inheritance of these RFLPs in 669 offspring from (BALB/c × C57BL/6) × BALB/c, (BALB/c × C57BL/6) × C57BL/6, (C57BL/6 × DBA2) × DBA/2, and (C57BL/6 × C3H) × C3H backcrosses was studied. Since we did not find any recombinations in the offspring, Tcra-V and Tcra-C gene segments are tightly linked and inherited as a haplotype. A peculiar finding was that 22 out of 103 (BALB/c × C57BL/6) × BALB/c offspring, heterozygous for Tcra-C, had deleted a C57BL/6 Tcra-V1 band as well as Tcra-V2 and Tcra-V4 bands. As will be discussed, this deletion is probably caused by heterogeneity in the C57BL/6 breeding stock of a commercial supplier. In seven BXD and BXH recombinant inbred strains with known recombinations between the Tcra-C and Es-10 loci, all Tcra-V RFLPs cosegregated with the Tcra-C RFLP. This finding agrees with the conclusion from our backcross studies; namely that Tcra-V and Tcra-C gene segments are tightly linked.  相似文献   

13.
C57BL/6J-bgJbgbg mice are reported to be less susceptible to tumor induction by threshold doses of Moloney murine sarcoma virus than their +/bg littermates, and there are no significant differences between bgbg and +/bg mice in which tumors were induced with respect to tumor latency, size, and regression rate. The difference in tumor frequency cannot be accounted for by M-MSV boosting of activity in bgbg mice or by depression of activity in +/bg animals.  相似文献   

14.
The Tsk mutation in the mouse is characterized by the excessive accumulation of collagen in skin and various internal organs, including the heart and lungs. These connective tissue abnormalities are similar to those present in human systemic sclerosis or scleroderma. The Tsk mutation provides an opportunity to investigate, at the molecular level, the pathogenesis of tissue fibrosis. As a first step to cloning the Tsk gene, we report the localization of the Tsk mutation with respect to known molecular markers on mouse chromosome 2. N2 progeny carrying the Tsk mutation were obtained from an intersubspecific backcross of [(C57BL/6-pa +/+ Tsk × Mus castaneus)F1 × M. castaneus ] mice. Genomic DNA from each N2 mouse was subjected to Southern and PCR analyses to identify restriction fragment length polymorphisms and simple sequence length polymorphisms, respectively. Our results refine the location of Tsk to a 3-cM region, eliminate several genes from consideration as the Tsk mutation, identify molecular probes tightly linked with Tsk, and suggest candidate genes responsible for the Tsk phenotype.  相似文献   

15.
Ath6 is a novel quantitative trait locus associated with differences in susceptibility to atherosclerosis between C57BL/6J (B6) and C57BLKS/J (BKS) inbred mouse strains. Combining data from an intercross and a backcross (1593 meioses) between mice from B6 and BKS strains and from The Jackson Laboratory interspecific backcross panels, (C57BL/6J ×Mus spretus) F1× C57BL/6J and (C57BL/6J × SPRET/Ei) F1× SPRET/Ei, we constructed a consensus genetic map and narrowed Ath6 to a 1.07 ± 0.26 cM interval between the anonymous DNA marker D12Pgn4 and the gene Nmyc1. This region is near the proximal end of murine Chromosome (Chr) 12, which is homologous to the human chromosomal region 2p24-p25. Marker order in the Ath6 region was concordant among the two crosses and The Jackson Laboratory interspecific backcross panels. This high resolution map rules out candidate genes encoding apolipoprotein B, syndecan 1, and Adam17. The two Ath6 crosses have a combined potential resolution of 0.06 cM. Received: 12 September 2000 / Accepted: 22 February 2001  相似文献   

16.
Mutations in the voltage-gated sodium channels SCN1A and SCN2A are responsible for several types of human epilepsy. Variable expressivity among family members is a common feature of these inherited epilepsies, suggesting that genetic modifiers may influence the clinical manifestation of epilepsy. The transgenic mouse model Scn2aQ54 has an epilepsy phenotype as a result of a mutation in Scn2a that slows channel inactivation. The mice display progressive epilepsy that begins with short-duration partial seizures that appear to originate in the hippocampus. The partial seizures become more frequent and of longer duration with age and often induce secondary generalized seizures. Clinical severity of the Scn2aQ54 phenotype is influenced by genetic background. Congenic C57BL/6J.Q54 mice exhibit decreased incidence of spontaneous seizures, delayed seizure onset, and longer survival in comparison with [C57BL/6J × SJL/J]F1.Q54 mice. This observation indicates that strain SJL/J carries dominant modifier alleles at one or more loci that determine the severity of the epilepsy phenotype. Genome-wide interval mapping in an N2 backcross revealed two modifier loci on Chromosomes 11 and 19 that influence the clinical severity of of this sodium channel-induced epilepsy. Modifier genes affecting clinical severity in the Scn2aQ54 mouse model may contribute to the variable expressivity seen in epilepsy patients with sodium channel mutations.  相似文献   

17.
Natural resistance of inbred mouse strains to infection withLegionella pneumophilais controlled by the expression of a single dominant gene on chromosome 13, designatedLgn1.The genetic difference atLgn1is phenotypically expressed as the presence or absence of intracellular replication ofL. pneumophilain host macrophages. In our effort to identify theLgn1gene by positional cloning, we have generated a high-resolution linkage map of theLgn1chromosomal region. For this, we have carried out extensive segregation analysis in a total of 1270 (A/J × C57BL/6J) × A/J informative backcross mice segregating the resistance allele of C57BL/6J and the susceptibility allele of A/J. Additional segregation analyses were carried out in three preexisting panels of C57BL/6J ×Mus spretusinterspecific backcross mice. A total of 39 DNA markers were mapped within an interval of approximately 30 cM overlapping theLgn1region. Combined pedigree analyses for the 5.4-cM segment overlappingLgn1indicated the locus order and the interlocus distances (in cM):D13Mit128–(1.4)–D13Mit194–(0.1)–D13Mit147–(0.9)–D13Mit36–(0.9)–D13Mit146–(0.2)–Lgn1/D13Mit37–(1.0)–D13Mit70.Additional genetic linkage studies of markers not informative in the A/J × C57BL/6J cross positionedD13Mit30, -72, -195,and-203, D13Gor4, D13Hun35,andMtap5in the immediate vicinity of theLgn1locus. The marker density and resolution of this genetic linkage map should allow the construction of a physical map of the region and the isolation of YAC clones overlapping the gene.  相似文献   

18.
Various genes that mapped to the distal end of Chromosome (Chr) 10 were considered as possible candidates for the mouse pygmy (pg) locus. Probes derived from Ifg, Gli, Mdm1, Mdm2 and Mdm3 (Mdm2 and Mdm3 are genes that are coamplified with Mdm1 on the same double minute chromosomes in 3T3DM cells) were used for Southern analysis of DNA from wild-type mice and various pg mutants. In addition, the chromosomal locations of Ifg, Gli, Mdm1, Mdm2, and Mdm3 were determined by interspecific backcross analysis with progeny derived from matings of [(C57BL/6J x Mus spretus)F1 x C57BL/6J] mice. The mapping data indicate that the Mdm loci are linked to each other and to Ifg, pg, and Gli in the distal region of mouse Chr 10. Both the mapping data and the Southern analysis confirm that mdm1, Mdm2, Mdm3, Ifg, and Gli are distinct from pg.  相似文献   

19.
Lambda clones of mouse DNA from BALB/c and C57BL/10, each containing an array of telomere hexamers, were localized by FISH to a region close to the telomere of Chr 13. Amplification of mouse genomic DNA with primers flanking SSRs within the cloned DNA showed several alleles, which were used to type eight sets of RI strains. The two lambda clones contained allelic versions of the interstitial telomere array, Tel-rs4, which is 495 bp in C57BL/10 and which includes a variety of sequence changes from the consensus telomere hexamer. Comparison of the segregation of the amplification products of the SSRs with the segregation of other loci in an interspecies backcross (C57BL/6JEi × SPRET/Ei) F1× SPRET/Ei shows recombination suppression, possibly associated with ribosomal DNA sequences present on distal Chr 13 in Mus spretus, when compared with recombination in an interstrain backcross, (C57BL/6J × DBA/J) F1× C57BL/6J, and with the MIT F2 intercross. Analysis of recombination in females using a second interstrain backcross, (ICR/Ha × C57BL/6Ha) F1× C57BL/6Ha, also indicates recombination suppression when compared with recombination in males of the same strains, using backcross C57BL/6Ha × (ICR/Ha × C57BL/6Ha) F1. Thus, more than one cause may contribute to recombination suppression in this region. The combined order of the loci typed was D13Mit37–D13Mit30–D13Mit148–(D13Rp1, 2, 3, 4, Tel-rs4)–D13Mit53–D13Mit196–D13Mit77–(D13Mit78, 35). Data from crosses where apparently normal frequencies of recombination occur suggest that the telomere array is about 6 map units proximal to the most distal loci on Chr 13. This distance is consistent with evidence from markers identified in two YAC clones obtained from the region. Received: 24 September 1996/Accepted: 20 January 1997  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号