共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Gisèle Laguerre Sylvie Isabelle Mazurier Noëlle Amarger 《FEMS microbiology letters》1992,101(1):17-26
Abstract 56 isolates of Rhizobium leguminosarum biovar viciae from one field were characterized by analysis of plasmid profile, total DNA restriction pattern and restriction fragment length polymorphism (RFLP) of 2 chromosomal regions and of symbiotic (Sym) plasmid. Different levels of similarity exist in patterns generated by the different techniques. At the level of partial similarity these techniques give comparable results for more than 80% of the isolates, with the exception of RFLP profiling with the Sym probe. Analysis at this level allows the grouping of the isolates that have most of their non-Sym genome similarly organized. At the level of total similarity, the techniques are no more equivalent and provide complementary information on possible evolution of the different elements of the genome identified by each specific technique. The non-Sym plasmids defining classes were strongly associated with specific chromosomal backgrounds. In contrast, variations in Sym plasmids were not related with variations in the remaining genome. Host range towards chromosomes was variable among the Sym plasmids, which may reflect plasmid transfer between strains. 相似文献
4.
Symbiotic plasmid rearrangement in Rhizobium leguminosarum bv. viciae VF39SM 总被引:3,自引:0,他引:3 下载免费PDF全文
A rearrangement between the symbiotic plasmid (pRleVF39d) and a nonsymbiotic plasmid (pRleVF39b) in Rhizobium leguminosarum bv. viciae VF39 was observed. The rearranged derivative showed the same plasmid profile as its parent strain, but hybridization to nod, fix, and nif genes indicated that most of the symbiotic genes were now present on a plasmid corresponding in size to pRleVF39b instead of pRleVF39d. On the other hand, some DNA fragments originating from pRleVF39b now hybridized to the plasmid band at the position of pRleVF39d. These results suggest that a reciprocal but unequal DNA exchange between the two plasmids had occurred. 相似文献
5.
Toffanin A Cadahia E Imperial J Ruiz-Argüeso T Palacios M 《Archives of microbiology》2002,177(4):290-298
Moderate levels of urease activity (ca. 300 mU mg(-1)) were detected in Rhizobium leguminosarum bv. viciae UPM791 vegetative cells. This activity did not require urea for induction and was partially repressed by the addition of ammonium into the medium. Lower levels of urease activity (ca. 100 mU mg(-1)) were detected also in pea bacteroids. A DNA region of ca. 9 kb containing the urease structural genes ( ureA, ureB and ureC), accessory genes ( ureD, ureE, ureF, and ureG), and five additional ORFs ( orf83, orf135, orf207, orf223, and orf287) encoding proteins of unknown function was sequenced. Three of these ORFs ( orf83, orf135 and orf207) have a homologous counterpart in a gene cluster from Sinorhizobium meliloti, reported to be involved in urease and hydrogenase activities. R. leguminosarum mutant strains carrying Tn 5 insertions within this region exhibited a urease-negative phenotype, but induced wild-type levels of hydrogenase and nitrogenase activities in bacteroids. orf287 encodes a potential transmembrane protein with a C-terminal GGDEF domain. A mutant affected in orf287 exhibited normal levels of urease activity in culture cells. Experiments aimed at cross-complementing Ni-binding proteins required for urease and hydrogenase synthesis (UreE and HypB, respectively) indicated that these two proteins are not functionally interchangeable in R. leguminosarum. 相似文献
6.
Fox MA Karunakaran R Leonard ME Mouhsine B Williams A East AK Downie JA Poole PS 《FEMS microbiology letters》2008,287(2):212-220
Rhizobium leguminosarum bv. viciae 3841 contains six putative quaternary ammonium transporters (Qat), of the ABC family. Qat6 was strongly induced by hyperosmosis although the solute transported was not identified. All six systems were induced by the quaternary amines choline and glycine betaine. It was confirmed by microarray analysis of the genome that pRL100079-83 (qat6) is the most strongly upregulated transport system under osmotic stress, although other transporters and 104 genes are more than threefold upregulated. A range of quaternary ammonium compounds were tested but all failed to improve growth of strain 3841 under hyperosmotic stress. One Qat system (gbcXWV) was induced 20-fold by glycine betaine and choline and a Tn5::gbcW mutant was severely impaired for both transport and growth on these compounds, demonstrating that it is the principal system for their use as carbon and nitrogen sources. It transports glycine betaine and choline with a high affinity (apparent K(m), 168 and 294 nM, respectively). 相似文献
7.
Cross-testing of a number of strains of Rhizobium leguminosarum for bacteriocin production revealed that strain 306 produced at least two distinct bacteriocins. Further analysis involving plasmid transfer to Agrobacterium and other hosts demonstrated that there were bacteriocin determinants on plasmids pRle306b and pRle306c, as well as a third bacteriocin. The bacteriocin encoded by pRle306b was indistinguishable from the bacteriocin encoded by strain 248, whereas the bacteriocin encoded by plasmid pRle306c had a distinctive spectrum of activity against susceptible strains, as well as different physical properties from other bacteriocins that we have studied in our lab. Two mutants altered in production of the pRle306c bacteriocin were generated by transposon Tn5 mutagenesis, and the DNA flanking the transposon inserts in these mutants was cloned and characterized. DNA sequence analysis suggested that the pRle306c bacteriocin was a large protein belonging to the RTX family, and that a type I secretion system involving an ABC type transporter was required for export of the bacteriocin. A mutant unable to produce this bacteriocin was unaltered in its competitive properties, both in broth and in nodulation assays, suggesting that the bacteriocin may not play a major role in determining the ecological success of this strain. 相似文献
8.
Chemical characterization of effective and ineffective strains of Rhizobium leguminosarum bv. viciae
Izmailov SF Zhiznevskaya GYa Kosenko LV Troitskaya GN Kudryavtseva NN Borodenko LI Dubrovo PN Russa R Pietras H Lorkiewicz Z 《Acta biochimica Polonica》1999,46(4):1001-1009
Chemical composition of lipopolysaccharide (LPS) isolated from an effective (97) and ineffective (87) strains of R. l. viciae has been determined. LPS preparations from the two strains contained: glucose, galactose, mannose, fucose, arabinose, heptose, glucosamine, galactosamine, quinovosamine, and 3-N-methyl-3,6-dideoxyhexose, as well as glucuronic, galacturonic and 3-deoxyoctulosonic acid. The following fatty acids were identified: 3-OH 14:0, 3-OH 15:0, 3-OH 16:0, 3-OH 18:0 and 27-OH 28:0. The ratio of 3-OH 14:0 to other major fatty acids in LPS 87 was higher that in LPS 97. SDS/PAGE profiles of LPS indicated that, in lipopolysaccharides, relative content of S form LPS I to that of lower molecular mass (LPS II) was much higher in the effective strain 97 than in 87. All types of polysaccharides exo-, capsular-, lipo, (EPS, CPS, LPS, respectively) examined possessed the ability to bind faba bean lectin. The degree of affinity of the host lectin to LPS 87 was half that to LPS 97. Fatty acids (FA) composition from bacteroids and peribacteroid membrane (PBM) was determined. Palmitic, stearic and hexadecenoic acids were common components found in both strains. There was a high content of unsaturated fatty acids in bacteroids as well as in PBM lipids. The unsaturation index in the PBM formed by strain 87 was lower than in the case of strain 97. Higher ratio of 16:0 to 18:1 fatty acids was characteristic for PMB of the ineffective strain. 相似文献
9.
Fernández D Toffanin A Palacios JM Ruiz-Argüeso T Imperial J 《FEMS microbiology letters》2005,253(1):83-88
A screening for hydrogen uptake (hup) genes in Rhizobium leguminosarum bv. viciae isolates from different locations within Spain identified no Hup+ strains, confirming the scarcity of the Hup trait in R. leguminosarum. However, five new Hup+ strains were isolated from Ni-rich soils from Italy and Germany. The hup gene variability was studied in these strains and in six available strains isolated from North America. Sequence analysis of three regions within the hup cluster showed an unusually high conservation among strains, with only 0.5-0.6% polymorphic sites, suggesting that R. leguminosarum acquired hup genes de novo in a very recent event. 相似文献
10.
Allaway D Cavalca L Saini S Hocking P Lodwig EM Leonard ME Poole PS Calvaco L 《FEMS microbiology letters》2000,188(1):47-53
A gene, cpaA, with similarity to calcium proton antiporters has been identified adjacent to lpcAB in Rhizobium leguminosarum. LpcA is a galactosyl transferase while LpcB is a 2-keto-3-deoxyoctonate transferase, both of which are required to form the lipopolysaccharide (LPS) core in R. leguminosarum. Mutations in lpcAB result in a rough LPS phenotype with a requirement for elevated calcium concentrations to allow growth, suggesting that truncation of the LPS core exposes a highly negatively charged molecule. This is consistent with the LPS core being one of the main sites for binding calcium in the Gram-negative outer membrane. Strain RU1109 (cpaA::Tn5-lacZ) has a normal LPS layer, as measured by silver staining and Western blotting. This indicates that cpaA mutants are not grossly affected in their LPS layer. LacZ fusion analysis indicates that cpaA is constitutively expressed and is not directly regulated by the calcium concentration. Over-expression of cpaA increased the concentration of calcium required for growth, consistent with CpaA mediating calcium export from the cytosol. The location of lpcA, lpcB and cpaA as well as the phenotype of lpcB mutants suggests that CpaA might provide a specific export pathway for calcium to the LPS core. 相似文献
11.
12.
The competition potential of 14 Rhizobium leguminosarum bv. viciae isolates originating from nodules of Pisum sativum was estimated. Genotypic analyses of the isolates revealed a high level of chromosomal and plasmid content diversity. The isolates tagged with a plasmid-bearing constitutively expressed gusA gene were used to inoculate vetch (Vicia villosa) in competition experiments carried out under laboratory conditions. Soil extract containing autochthonous rhizobial population was used as competitor for gus-tagged strains, and the competition was studied by: (i) estimation of Gus+ root nodules on whole root systems, (ii) the pattern of individual nodule colonization by Gus+/Gus? rhizobia, and (iii) the number of Gus+/Gus? bacteria recovered from individual nodules. Several patterns of nodule colonization by Gus+/Gus? bacteria were found. Some nodules identified as Gus+ contained gus-tagged bacteria only in the young and saprophytic zones, while the symbiotic zone was occupied by unmarked soil rhizobia. In other Gus+ nodules, despite the visible colonization of the entire nodule by gus-marked bacteria, a high number of Gus? soil-derived rhizobia were recovered. The results suggest that rhizobial strains compete with each other also in the late stage of nodule development. Therefore, they may use different strategies to reach the late saprophytic zone of the nodule, which serves as an optimal environment for massive proliferation. 相似文献
13.
Alleviation of aluminum toxicity to Rhizobium leguminosarum bv. viciae by the hydroxamate siderophore vicibactin 总被引:2,自引:0,他引:2
Nicola J. Rogers Kerry C. Carson Andrew R. Glenn Michael J. Dilworth Martin N. Hughes Robert K. Poole 《Biometals》2001,14(1):59-66
Acid rain solubilises aluminum which can exert toxic effects on soil bacteria. The root nodule bacterium Rhizobium leguminosarum biovar viciae synthesises the hydroxamate siderophore vicibactin in response to iron limitation. We report the effect of vicibactin on the toxicity of aluminum(III) to R. leguminosarum and kinetic studies on the reaction of vicibactin with Al(III) and Fe(III). Aluminum (added as the nitrate) completely inhibited bacterial growth at 25 M final concentration, whereas the preformed Al-vicibactin complex had no effect. When aluminum and vicibactin solutions were added separately to growing cultures, growth was partly inhibited at 25 M final concentration of each, but fully inhibited at 50 M final concentration of each. Growth was not inhibited at 50 M Al and 100 M vicibactin, probably reflecting the slow reaction between Al and vicibactin; this results in some aluminum remaining uncomplexed long enough to exert toxic effects on growth, partly at 25 M Al and vicibactin and fully at 50 M Al and vicibactin. At 100 M vicibactin and 50 M Al, Al was complexed more effectively and there was no toxic effect. It was anticipated that vicibactin might enhance the toxicity of Al by transporting it into the cell, but the Al-vicibactin complex was not toxic. Several explanations are possible: the Al-vicibactin complex is not taken up by the cell; the complex is taken up but Al is not released from vicibactin; Al is released in the cell but is precipitated immediately. However, vicibactin reduces the toxicity of Al by complexing it outside the cell. 相似文献
14.
15.
Rhizobium leguminosarum bv. viciae strains expressing different degrees of tolerance to metal stress were used in this work to study the basic mechanisms underlying heavy metal tolerance. We used various parameters to evaluate this response. The strains' growth responses under different Cd2+ concentrations were determined and we reported variation in Cd2+ tolerance. Total soluble protein content decreased drastically, revealing the toxic effects that intracellular Cd2+ imposes on cellular metabolism, but this decrease in protein content was particularly evident in sensitive and moderately tolerant strains. Tolerant strains presented the highest intracellular and wall-bound Cd2+ concentrations. Cd2+ induced increases in the expression of some specific proteins, which were identical in all tolerant strains. Glutathione levels remained unaltered in the sensitive strain and increased significantly in tolerant and moderately tolerant strains, suggesting the importance of glutathione in coping with metal stress. This work suggests that efflux mechanisms may not be the only system responsible for dealing with heavy metal tolerance. A clear correlation between glutathione levels and Cd2+ tolerance is reported, thus adding a novel aspect in bacteria protection against heavy metal deleterious effects. 相似文献
16.
Dinah D Tambalo Denise E Bustard Kate L Del Bel Susan F Koval Morgan F Khan Michael F Hynes 《BMC microbiology》2010,10(1):1-16
Background
Rhizobium leguminosarum bv. viciae establishes symbiotic nitrogen fixing partnerships with plant species belonging to the Tribe Vicieae, which includes the genera Vicia, Lathyrus, Pisum and Lens. Motility and chemotaxis are important in the ecology of R. leguminosarum to provide a competitive advantage during the early steps of nodulation, but the mechanisms of motility and flagellar assembly remain poorly studied. This paper addresses the role of the seven flagellin genes in producing a functional flagellum.Results
R. leguminosarum strains 3841 and VF39SM have seven flagellin genes (flaA, flaB, flaC, flaD, flaE, flaH, and flaG), which are transcribed separately. The predicted flagellins of 3841 are highly similar or identical to the corresponding flagellins in VF39SM. flaA, flaB, flaC, and flaD are in tandem array and are located in the main flagellar gene cluster. flaH and flaG are located outside of the flagellar/motility region while flaE is plasmid-borne. Five flagellin subunits (FlaA, FlaB, FlaC, FlaE, and FlaG) are highly similar to each other, whereas FlaD and FlaH are more distantly related. All flagellins exhibit conserved amino acid residues at the N- and C-terminal ends and are variable in the central regions. Strain 3841 has 1-3 plain subpolar flagella while strain VF39SM exhibits 4-7 plain peritrichous flagella. Three flagellins (FlaA/B/C) and five flagellins (FlaA/B/C/E/G) were detected by mass spectrometry in the flagellar filaments of strains 3841 and VF39SM, respectively. Mutation of flaA resulted in non-motile VF39SM and extremely reduced motility in 3841. Individual mutations of flaB and flaC resulted in shorter flagellar filaments and consequently reduced swimming and swarming motility for both strains. Mutant VF39SM strains carrying individual mutations in flaD, flaE, flaH, and flaG were not significantly affected in motility and filament morphology. The flagellar filament and the motility of 3841 strains with mutations in flaD and flaG were not significantly affected while flaE and flaH mutants exhibited shortened filaments and reduced swimming motility.Conclusion
The results obtained from this study demonstrate that FlaA, FlaB, and FlaC are major components of the flagellar filament while FlaD and FlaG are minor components for R. leguminosarum strains 3841 and VF39SM. We also observed differences between the two strains, wherein FlaE and FlaH appear to be minor components of the flagellar filaments in VF39SM but these flagellin subunits may play more important roles in 3841. This paper also demonstrates that the flagellins of 3841 and VF39SM are possibly glycosylated. 相似文献17.
18.
19.
Rhizobium leguminosarum biovar viciae strain 3841 is a motile alpha-proteobacterium that can establish a nitrogen-fixing symbiosis within the roots of pea plants. In order to determine the contribution of chemotaxis to the lifestyle of R. leguminosarum, we have characterized the function of two chemotaxis gene clusters (che1 and che2) in controlling motility behaviour. We have found that both chemotaxis gene clusters modulate the motility swimming bias of R. leguminosarum cells and that the che1 cluster is the major pathway controlling swimming bias and chemotaxis. The che2 cluster also contributes to swimming bias, but has a minor effect on chemotaxis. Using competitive nodulation assays, we have demonstrated that a functional che1 cluster, but not the che2 cluster, promotes competitive nodulation of the peas. This finding implies that the environmental cue(s) triggering chemotaxis of R. leguminosarum bv. viciae cells towards the roots of pea and facilitating colonization are likely to be processed through the che1 cluster despite the contribution of both che clusters to swimming behaviour. A phylogenetic analysis of the distribution of che1 and che2 orthologues in the alpha-proteobacteria together with our results allow us to propose that che1 homologues are major controllers of chemotaxis and host association in the Rhizobiaceae. 相似文献
20.
B Rodelas J K Lithgow F Wisniewski-Dye A Hardman A Wilkinson A Economou P Williams J A Downie 《Journal of bacteriology》1999,181(12):3816-3823
The rhi genes of Rhizobium leguminosarum biovar viciae are expressed in the rhizosphere and play a role in the interaction with legumes, such as the pea. Previously (K. M. Gray, J. P. Pearson, J. A. Downie, B. E. A. Boboye, and E. P. Greenberg, J. Bacteriol. 178:372-376, 1996) the rhiABC operon had been shown to be regulated by RhiR and to be induced by added N-(3-hydroxy-7-cis-tetradecenoyl)-L-homoserine lactone (3OH, C14:1-HSL). Mutagenesis of a cosmid carrying the rhiABC and rhiR gene region identified a gene (rhiI) that affects the level of rhiA expression. Mutation of rhiI slightly increased the number of nodules formed on the pea. The rhiI gene is (like rhiA) regulated by rhiR in a cell density-dependent manner. RhiI is similar to LuxI and other proteins involved in the synthesis of N-acyl-homoserine lactones (AHLs). Chemical analyses of spent culture supernatants demonstrated that RhiI produces N-(hexanoyl)-L-homoserine lactone (C6-HSL) and N-(octanoyl)-L-homoserine lactone (C8-HSL). Both of these AHLs induced rhiA-lacZ and rhiI-lacZ expression on plasmids introduced into an Agrobacterium strain that produces no AHLs, showing that rhiI is positively regulated by autoinduction. However, in this system no induction of rhiA or rhiI with 3OH,C14:1-HSL was observed. Analysis of the spent culture supernatant of the wild-type R. leguminosarum bv. viciae revealed that at least seven different AHLs are made. Mutation of rhiI decreased the amounts of C6-HSL and C8-HSL but did not block their formation, and in this background the rhiI mutation did not significantly affect the expression levels of the rhiI gene or rhiABC genes or the accumulation of RhiA protein. These observations suggest that there are additional loci involved in AHL production in R. leguminosarum bv. viciae and that they affect rhiI and rhiABC expression. We postulate that the previously observed induction of rhiA by 3OH,C14:1-HSL may be due to an indirect effect caused by induction of other AHL production loci. 相似文献