首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the unstimulated, lightly anesthetized rat, both on- and off-cells exhibit alternating periods of silence and activity lasting from several seconds to a few minutes. In the preceding paper, we showed that the active periods of all cells of the same class are always in phase, whereas the firing of cells of different classes is invariably out of phase. Thus, the pattern of firing of any single on- or off-cell provides a useful indication of the excitability of all on- and off-cells in the rostral ventromedial medulla (RVM).

In this study, we measured the latency of the tail flick response (TF) at set intervals while recording from TF-related neurons in RVM, and were able to demonstrate a significant relationship between the spontaneous firing of both on- and off-cells and the latency of the TF response. If noxious heat is applied at a time when an off-cell is spontaneously active (or an on-cell is silent), the TF latency is longer than if the TF trial falls during a period in which the off-cell is silent (or the on-cell is active). This correlation between on- and off-cell firing and changes in TF latency is consistent with a nociceptive modulatory role for either or both cell classes. These findings support the hypothesis that off-cells inhibit and on-cells facilitate spinal nociceptive transmission and reflexes.  相似文献   

2.
This study was undertaken to test the hypothesis that gamma-aminobutyric acid (GABA) is an endogeneous neurotransmitter regulating the activity of a class of putative nociceptive modulatory neurons (termed "off-cells") in the rostral ventromedial medulla (RVM) of the barbiturate-anesthetized rat. Off-cells, which are believed to correspond to the RVM output neuron that inhibits nociceptive processing at the level of the spinal cord, exhibit an abrupt pause in firing that begins immediately prior to the occurrence of the tail flick response (TF), a nocifensive reflex evoked by application of noxious heat to the tail. Single-unit recording and iontophoretic techniques were used to examine the ability of the GABAA receptor antagonist bicuculline methiodide (BIC) to antagonize selectively the characteristic off-cell pause. Iontophoretic application of BIC (5-30 nA) blocked the TF-related pause in each of the off-cells tested. This effect of BIC was generally slow in onset, and outlasted the period of application by several minutes. BIC iontophoresis also eliminated the cyclic alternation between active and silent periods that is often displayed by off-cells in lightly anesthetized rats. BIC application did not have a consistent effect on the firing of two other classes of RVM neurons ("on-cells" and "neutral cells"). Iontophoretically applied BIC antagonized the inhibitory effect of iontophoretically applied GABA, but not that produced by glycine. The glycine receptor antagonist strychnine did not mimic the action of BIC on off-cell activity. These data demonstrate antagonism of a synaptically evoked response using iontophoretic application of BIC, and provide strong evidence that the inhibitory neurotransmitter GABA mediates the TF-related off-cell pause. Taken together with behavioral experiments demonstrating that a GABA-mediated inhibitory process within RVM is crucial in permitting execution of the TF response, the present observations point to the significant functional relevance of GABA transmission within RVM in modulation of nociception.  相似文献   

3.
Recent work in this laboratory has identified two classes of putative nociceptive modulating neurons in the rostral ventromedial medulla (RVM) of the rat: "off-cells," which pause beginning just prior to the tail flick response (TF) evoked by noxious heat, and "on-cells," which accelerate shortly before the occurrence of the TF. In the unstimulated, lightly anesthetized rat, the spontaneous firing pattern of individual on- and off-cells consists of alternating periods of silence and activity lasting from several seconds to a few minutes. In the present study, simultaneous recordings were made from pairs of TF-related neurons, and the relationships among the firing patterns of cells within a class and between cells of different classes were determined. All cells of a given class showed fluctuations in spontaneous discharge that were in phase. On the other hand, there was a striking reciprocity of firing between the two cell classes, such that a decrease in activity of cells of one class was accompanied by an increase in activity of cells of the other class. These observations point to the existence of integrating mechanisms that coordinate the activity of all members of each class of TF-related neurons. Thus, the pattern of activity of any single on- or off-cell provides a useful index of the excitability of all cells of that class. Moreover, because of the highly reciprocal nature of the firing of the two classes, it is possible to infer the current state of both cell populations from the pattern of activity of any single TF-related neuron.  相似文献   

4.
Recent work in this laboratory has identified two classes of putative nociceptive modulating neurons in the rostral ventromedial medulla (RVM) of the rat: “off-cells,” which pause beginning just prior to the tail flick response (TF) evoked by noxious heat, and “on-cells,” which accelerate shortly before the occurrence of the TF. In the unstimulated, lightly anesthetized rat, the spontaneous firing pattern of individual on- and off-cells consists of alternating periods of silence and activity lasting from several seconds to a few minutes.

In the present study, simultaneous recordings were made from pairs of TF-related neurons, and the relationships among the firing patterns of cells within a class and between cells of different classes were determined. All cells of a given class showed fluctuations in spontaneous discharge that were in phase. On the other hand, there was a striking reciprocity of firing between the two cell classes, such that a decrease in activity of cells of one class was accompanied by an increase in activity of cells of the other class.

These observations point to the existence of integrating mechanisms that coordinate the activity of all members of each class of TF-related neurons. Thus, the pattern of activity of any single on- or off-cell provides a useful index of the excitability of all cells of that class. Moreover, because of the highly reciprocal nature of the firing of the two classes, it is possible to infer the current state of both cell populations from the pattern of activity of any single TF-related neuron.  相似文献   

5.
Anatomy and physiology of a nociceptive modulatory system   总被引:6,自引:0,他引:6  
Although efferent control of sensory transmission is a well-established concept, a specific network for nociceptive modulation has only recently been discovered. This network includes interconnected components at midbrain, medullary and spinal levels. At the midbrain level, electrical stimulation of the periaqueductal grey (p.a.g.) inhibits spinal neurons that respond to noxious stimuli as well as nociceptor-induced reflexes and escape behaviour in a variety of species. Midbrain stimulation also produces analgesia in patients with clinically significant pain. The rostral ventral medulla (r.v.m.) has similar behavioural and physiological effects and mediates midbrain antinociceptive actions at the level of the spinal cord. Endorphins are present at all levels of this nociceptive modulating network. Opiate microinjections at p.a.g., r.v.m. or spinal levels produce analgesia, presumably by mimicking the actions of the endorphins. The nociceptive modulatory system is diffusely organized, highly interconnected and appears to act as a unit whether activated by opiates or electrical stimulation. There are two classes of r.v.m. neurons the activity of which is correlated with the occurrence of reflexes induced by noxious stimulation. One class (the on-cell) accelerates, the other class (the off-cell) pauses just before tail flick. Both classes project to the spinal cord and are excited by electrical stimulation of the midbrain. However, when morphine is injected either systemically or into the p.a.g., the off-cell is excited and the on-cell stops firing. The off-cell is probably the r.v.m. output cell that inhibits nociceptive transmission at the level of the spinal cord. The function of the on-cell is not clear. The nociceptive modulatory system can be activated by a variety of stressful environmental factors, which are often, but not necessarily, noxious. The idea that the system acts as a simple negative feedback circuit is not consistent with its known properties.  相似文献   

6.
黄洛秀  程珍风 《生理学报》1996,48(4):329-336
在浅麻醉大鼠上,在延髓腹内侧结构内观察到三种具有不同放电类型的细胞,即乃尾前放电骤停的撤反应细胞,甩尾前放电骤增的给反应细胞和甩尾无关的中性细胞。电刺激外侧缰核可抑制撤反应细胞的自发放电,加强给反应细胞自发放电,从而易化两类细胞的甩尾相关反应,同时易化伤害刺激引起的甩尾反射。实验结果说明,外侧缰核对节段性防御反射有易化作用,这种易化作用可能是通过延髓内撤反应和反应细胞的协同活动而实现的。  相似文献   

7.
Meng ID  Harasawa I 《Life sciences》2007,80(20):1915-1920
Chronic opiate exposure produces tolerance and hypersensitivity to mechanical and thermal stimulation that involves increased pain facilitation from the rostral ventromedial medulla (RVM). The aim of the present study was to determine the effect of sustained systemic morphine exposure on RVM neurons. Three cell types in the RVM have been described: on-cells, off-cells and neutral cells. The activity of on-cells increases in response to noxious stimulation, whereas the activity of off-cells decreases following noxious stimulation. Neutral cells remain relatively unaffected. In lightly anesthetized rats, systematic exploration throughout the RVM using single-unit extracellular recordings was used to examine both the relative proportion and the neuronal properties of the different cell classes in chronic morphine and placebo treated animals. Seven days after implanting either morphine (150 mg, s.c.) or placebo pellets a total of four electrode penetrations through the RVM were made in each animal at identical coordinates along midline. Neuronal responses related to radiant heat-evoked paw withdrawals were recorded. When compared to placebo treated rats, chronic morphine increased the number of on-cells and decreased the number of neutral cells, while the number of off-cells remained unchanged. Chronic morphine exposure had no effect on the spontaneous or heat-evoked discharges in on-, off-, or neutral cells. These results indicate that chronic morphine may sensitize a subpopulation of RVM neurons to noxious stimulation, which would be expected to increase descending facilitation and promote tolerance and chronic morphine-induced paradoxical pain.  相似文献   

8.
Hyperresponsiveness to noxious stimulation (hyperalgesia) is observed with naloxone-precipitated morphine withdrawal in several experimental models, and may be due to changes in central nervous system neurons. Previous studies have demonstrated that certain neurons in the rostral ventromedial medulla (on-cells) discharge just prior to nocifensive withdrawal reflexes and are inhibited by morphine. Because the tail flick latency (TFL) is shorter when on-cells are active, it has been proposed that on-cells facilitate nocifensive reflexes. The present study examined the hypothesis that the hyperalgesia observed following naloxone-precipitated withdrawal from morphine is caused by increased on-cell discharge. Rats were maintained in a lightly anesthetized state with chloral hydrate. Administration of saline (1.25 cc, i.v.) or morphine sulfate (1.25 mg/kg, i.v.) was followed by naloxone (1.0 mg/kg, i.v.). On- and off-cell activity was continuously recorded and was correlated with TFL and paw withdrawal threshold (PWT). As previously reported, morphine increased off-cell activity, blocked on-cell activity, and suppressed the tail flick and paw withdrawal reflexes. When naloxone was given after morphine, TFL and PWT were reduced to values significantly below baseline (hyperalgesia). Both spontaneous and reflex-related on-cell activity increased to levels greater than the premorphine baseline. Spontaneous off-cell activity decreased abruptly to near zero when morphine was followed by naloxone. Linear regression analysis during the hyperresponsive state revealed a significant correlation between increased on-cell activity and reduced TFL, but not between decreased off-cell activity and TFL. These findings are consistent with the hypothesis that on-cells facilitate spinal nocifensive reflexes, and that the naloxone-precipitated hyperalgesia is at least in part accounted for by increased on-cell activity. A neural model of opiate dependence, tolerance, and withdrawal is proposed.  相似文献   

9.
Hyperresponsiveness to noxious stimulation (hyperalgesia) is observed with naloxone-precipitated morphine withdrawal in several experimental models, and may be due to changes in central nervous system neurons. Previous studies have demonstrated that certain neurons in the rostral ventromedial medulla (on-cells) discharge just prior to nocifensive withdrawal reflexes and are inhibited by morphine. Because the tail flick latency (TFL) is shorter when on-cells are active, it has been proposed that on-cells facilitate nocifensive reflexes. The present study examined the hypothesis that the hyperalgesia observed following naloxone-precipitated withdrawal from morphine is caused by increased on-cell discharge.

Rats were maintained in a lightly anesthetized state with chloral hydrate. Administration of saline (1.25 cc, i.v.) or morphine sulfate (1.25 mg/kg, i.v.) was followed by naloxone (1.0 mg/kg, i.v.). On- and off-cell activity was continuously recorded and was correlated with TFL and paw withdrawal threshold (PWT). As previously reported, morphine increased off-cell activity, blocked on-cell activity, and suppressed the tail flick and paw withdrawal reflexes. When naloxone was given after morphine, TFL and PWT were reduced to values significantly below baseline (hyperalgesia). Both spontaneous and reflex-related on-cell activity increased to levels greater than the premorphine baseline. Spontaneous off-cell activity decreased abruptly to near zero when morphine was followed by naloxone. Linear regression analysis during the hyperresponsive state revealed a significant correlation between increased on-cell activity and reduced TFL, but not between decreased off-cell activity and TFL.

These findings are consistent with the hypothesis that on-cells facilitate spinal nocifensive reflexes, and that the naloxone-precipitated hyperalgesia is at least in part accounted for by increased on-cell activity. A neural model of opiate dependence, tolerance, and withdrawal is proposed.  相似文献   

10.
To investigate the relative impact of intrinsic and synaptic factors in the maintenance of the membrane potential of cat neocortical neurons in various states of the network, we performed intracellular recordings in vivo. Experiments were done in the intact cortex and in isolated neocortical slabs of anesthetized animals, and in naturally sleeping and awake cats. There are at least four different electrophysiological cell classes in the neocortex. The responses of different neuronal classes to direct depolarization result in significantly different responses in postsynaptic cells. The activity patterns observed in the intact cortex of anesthetized cats depended mostly on the type of anesthesia. The intracellular activity in small neocortical slabs was composed of silent periods, lasting for tens of seconds, during which only small depolarizing potentials (SDPs, presumed miniature synaptic potentials) were present, and relatively short-lasting (a few hundred milliseconds) active periods. Our data suggest that minis might be amplified by intrinsically-bursting neurons and that the persistent Na+ current brings neurons to firing threshold, thus triggering active periods. The active periods in neurons were composed of the summation of synaptic events and intrinsic depolarizing currents. In chronically-implanted cats, slow-wave sleep was characterized by active (depolarizing) and silent (hyperpolarizing) periods. The silent periods were absent in awake cats. We propose that both intrinsic and synaptic factors are responsible for the transition from silent to active states found in naturally sleeping cats and that synaptic depression might be responsible for the termination of active states during sleep. In view of the unexpected high firing rates of neocortical neurons during the depolarizing epochs in slow-wave sleep, we suggest that cortical neurons are implicated in short-term plasticity processes during this state, in which the brain is disconnected from the outside world, and that memory traces acquired during wakefulness may be consolidated during sleep.  相似文献   

11.
Antinociceptive and nociceptive actions of opioids   总被引:7,自引:0,他引:7  
Although the opioids are the principal treatment options for moderate to severe pain, their use is also associated with the development of tolerance, defined as the progressive need for higher doses to achieve a constant analgesic effect. The mechanisms which underlie this phenomenon remain unclear. Recent studies revealed that cholecystokinin (CCK) is upregulated in the rostral ventromedial medulla (RVM) during persistent opioid exposure. CCK is both antiopioid and pronociceptive, and activates descending pain facilitation mechanisms from the RVM enhancing nociceptive transmission at the spinal cord and promoting hyperalgesia. The neuroplastic changes elicited by opioid exposure reflect adaptive changes to promote increased pain transmission and consequent diminished antinociception (i.e., tolerance).  相似文献   

12.
Recent investigations have shown that microinjections of non-opioid analgesics, nonsteroidal anti-inflammatory drugs, NSAIDs, into some brain areas, particularly, into the midbrain periaqueductal gray matter (PAG) and rostral ventro-medial medulla (RVM), cause antinociception with some effects of tolerance. Our preliminary findings have also shown the same effects of tolerance after intraperitoneal injections. The present study was designed to examine whether microinjections of metamizole (Analgin), ketorolac, and xefocam into the central nucleus of the amygdala (Ce) lead to the development of tolerance in rats, and to ascertain whether this nucleus is the pain-modulating pathway through PAG. Our investigation revealed that microinjections of NSAIDs into the Ce both unilaterally (the left side) and bilaterally produced antinociception, as indicated by a latency increase in tail-flick reflex (TF) compared to controls with saline, on the first experimental day for Analgin (P < 0.001), ketorolac (P < 0.001), and xefocam (P < 0.001). However, when these drug microinjections were repeated during subsequent days, the antinociceptive effects progressively diminished so that on the fifth experimental day the TF latency was similar to that in the rats that received repeated injections of only saline. These results show that, alongside with PAG and RVM, the Ce is an important site of the endogenous antinociceptive system, which triggers the descending pain control mechanism and thus inhibits nociceptive transmission. On the other hand, our data confirm the results of other authors that NSAIDs are closely related to endogenous opioids, and tolerance to these non-opioid drugs probably depends on opioid tolerance.  相似文献   

13.
The nature of neurone response of substance nigra (SN) to nociceptive stimulation of the cat's peroneal nerve has been studied. The recording of neurone SN firing rate revealed that the majority (71.0%) of the SN neurones responded to the nociceptive repetitive stimulation of the peroneal nerve. But the thresholds of nociceptive activation in SN neurones turned to be very high. As a result of it the number of SN neurones responding to repetitive peroneal stimulation was twice as many as the number of cells responding to single stimulation of the nerve. The intravenous injection of naloxone in dose 1.0 mg/kg changed both excitatory and inhibitory responses in majority (71.4%) of SN neurones responding to repetitive peroneal stimulation. Naloxone did not modify the firing rate of neurones nonresponsive to nociception.  相似文献   

14.
A technique for analyzing and comparing the dynamic properties of electromyographic (EMG) patterns collected during gait is presented. A gait metric is computed, consisting of both magnitude (amplitude) and phase (timing) components. For the magnitude component, the processed EMG pattern is compared to a normative EMG pattern obtained under similar walking conditions, where the metric is incremented if the muscle is firing during expected active regions or is silent during expected inactive regions. The magnitude metric is penalized when the EMG is silent during phases of expected activity or when the EMG is active in regions of expected inactivity. The phase component of the metric computes the percentage of the gait cycle when the muscle is firing appropriately, that is, active in expected active regions and silent in expected inactive regions. The magnitude and phase components of the metric are normalized and combined to yield the EMG pattern that demonstrates the closest characteristics compared to normative gait data collected under similar walking conditions. Using experimental data, the proposed gait metric was tested and accurately reflects the observed changes in the EMG patterns. Clinical uses for the gait metric are discussed in relation to gait therapies, such as determining optimal gait training conditions in individuals following stroke and spinal cord injury.  相似文献   

15.
王军  程珍凤 《生理学报》1993,45(3):299-304
在浅麻醉状态下的大鼠,用辐射热烫尾并同步记录延髓头端腹内侧区神经元单位放电,按紧随甩尾动作发生前细胞放电频率的变化而将其分为甩尾前放电骤停的撤型细胞,放电骤增的给型细胞和无变化的中性细胞。电针双侧“次髎”穴引起动物甩尾反射抑制时,撤型细胞自发放电增加,与电针前相比差异显著(P<0.001),给型细胞电针后自发放电频率的改变与电针前相比无显著差异(P>0.05),两类细胞的甩尾相关反应均被抑制。结果提示:撤型细胞可能是延髓头端腹内侧区参与针刺镇痛的主要传出神经元。  相似文献   

16.
Pituitary adenylate cyclase-activating polypeptide (PACAP) immunoreactive neural elements have been detected in the mouse spinal cord. The discrepancy of PACAP actions in the role of sensory transmission has been proposed to have potentiation and inhibition on nociceptive responses after intrathecal application of PACAP. The aim of the present study was to assess nociceptive transmission of PACAP in the mouse spinal cord by comparison with that of substance P (SP). The intrathecal injection of PACAP induced licking or scratching behavior similar to that of SP. These PACAP-induced aversive behaviors showed different manner from SP-induced responses in point of time course. SP-induced aversive responses quickly increased and suddenly disappeared almost within 1 min. Meanwhile, following a long latency after the injection, PACAP-induced aversive responses gradually appeared, and then persisted more than 60 min. In the early phase, PACAP produced an increase of tail flick latency. Pretreatment with 6-hydroxydopamine (6-OHDA) which destroys noradrenaline neuron of descending pain inhibitory systems in the spinal cord markedly abridged the latency and augmented the duration of PACAP-induced aversive responses. In this way, PACAP exhibits diverse effects on nociception, such as an analgesic role in early phase of the injection and subsequently lasting algesia. These results suggest that PACAP as a neurotransmitter or neuromodulator might have crucial role in nociceptive transmission system.  相似文献   

17.
Acetylcholine (ACh) causes a wide variety of anti-nociceptive effects. The dentate gyrus (DG) region of the hippocampal formation (HF) has been demonstrated to be involved in nociceptive perception. However, the mechanisms underlying this anti-nociceptive role have not yet been elucidated in the cholinergic pain-related neurons of DG. The electrical activities of pain-related neurons of DG were recorded by a glass microelectrode. Two kinds of pain-related neurons were found: pain-excited neurons (PEN) and pain-inhibited neurons (PIN). The experimental protocol involved intra-DG administration of muscarinic cholinergic receptor (mAChR) agonist or antagonist. Intra-DG microinjection of 1 μl of ACh (0.2 μg/μl) or 1 μl of pilocarpine (0.4 μg/μl) decreased the discharge frequency of PEN and prolonged firing latency, but increased the discharge frequency of PIN and shortened PIN inhibitory duration (ID). Intra-DG administration of 1 μl of atropine (1.0 μg/μl) showed exactly the opposite effects. According to the above experimental results, we can presume that cholinergic pain-related neurons in DG are involved in the modulation of the nociceptive response by affecting the discharge of PEN and PIN.  相似文献   

18.
The effect of morphine on the neuronal activity evoked by a nociceptive stimulus, a foot pinch, was studied in the dorsal raphe nucleus (DR) and in the mesencephalic reticular formation (MRF) of the rat. In the MRF and adjacent areas, neuronal firing was accelerated by the nociceptive stimulus. Morphine blocked this acceleration when administered either microintophoretically or i.v. Three lines of evidence indicate that this is a specific narcotic effect. First, naloxone, a specific narcotic antagonist, antagonized the effect of morphine. Secondly, two morphine agonists, oxymorphone and methadone, blocked the evoked neuronal acceleration like morphine when administered either microiontophoretically or i.v.; naloxone also blocked the effects of the two agonists. Finally, two non-opioid CNS depressants did not block the acceleration in neuronal firing even though microintophoretic ejection currents 2–5 times greater than those for morphine were used. In contrast, neuronal firing in the DR was rarely altered by the nociceptive stimulus or by morphine, administered either microiontophoretically or i.v. Furthermore, morphine did not affect the inhibition produced by 5-HT on neurons in the DR.It is concluded from this study that the MRF is a possible site of action for the antinociceptive effects of morphine. It is also concluded that morphine does not affect the spontaneous neuronal firing rate in the DR and that the DR is not a site of action of the antinociceptive effects of morphine when a foot pinch is used as the nociceptive stimulus.  相似文献   

19.
ABSTRACT: BACKGROUND: Metabotropic glutamate receptors (mGluRs) have been identified as significant analgesic targets. Systemic treatments with inhibitors of the enzymes that inactivate the peptide transmitter N-acetylaspartylglutamate (NAAG), an mGluR3 agonist, have an analgesia-like effect in rat models of inflammatory and neuropathic pain. The goal of this study was to begin defining locations within the central pain pathway at which NAAG activation of its receptor mediates this effect. RESULTS: NAAG immunoreactivity was found in neurons in two brain regions that mediate nociceptive processing, the periaqueductal gray (PAG) and the rostral ventromedial medulla (RVM). Microinjection of the NAAG peptidase inhibitor ZJ43 into the PAG contralateral, but not ipsilateral, to the formalin injected footpad reduced the rapid and slow phases of the nociceptive response in a dose-dependent manner. ZJ43 injected into the RVM also reduced the rapid and slow phase of the response. The group II mGluR antagonist LY341495 blocked these effects of ZJ43 on the PAG and RVM. NAAG peptidase inhibition in the PAG and RVM did not affect the thermal withdrawal response in the hot plate test. Footpad inflammation also induced a significant increase in glutamate release in the PAG. Systemic injection of ZJ43 increased NAAG levels in the PAG and RVM and blocked the inflammation-induced increase in glutamate release in the PAG. CONCLUSION: These data demonstrate a behavioral and neurochemical role for NAAG in the PAG and RVM in regulating the spinal motor response to inflammation and that NAAG peptidase inhibition has potential as an approach to treating inflammatory pain via either the ascending (PAG) and/or the descending pain pathways (PAG and RVM) that warrants further study.  相似文献   

20.
Zheng JH  Feng W  Jian Z  Chen J 《生理学报》2004,56(2):178-182
为阐明脊髓背角神经元痛放电的年龄相关的动力学变化,本研究采用非线性预报方法,对两组不同年龄大鼠(成年青龄鼠3~4月龄,老年鼠>22月龄)组织损伤诱发的脊髓背角神经元痛放电峰峰间期序列进行了确定性行为的定量分析.结果显示,皮下注入蜜蜂毒,在两组大鼠均诱发脊髓背角广动力域神经元长时程放电,而老龄大鼠的痛放电峰峰间期序列表现出更高的可确定性.本研究表明,单个神经元的痛放电动力学在整个生命过程中并不是恒定不变的,伤害性神经元活动的年龄相关动力学变化可能是老年人群中多样化痛反应的内在机制之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号