首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Evidence from numerical taxonomic analysis and DNA-DNA hybridization supports the proposal of new species in the genera Actinobacillus and Pasteurella. The following new species are proposed: Actinobacillus rossii sp. nov., from the vaginas of postparturient sows; Actinobacillus seminis sp. nov., nom. rev., associated with epididymitis of sheep; Pasteurella bettii sp. nov., associated with human Bartholin gland abscess and finger infections; Pasteurella lymphangitidis sp. nov. (the BLG group), which causes bovine lymphangitis; Pasteurella mairi sp. nov., which causes abortion in sows; and Pasteurella trehalosi sp. nov., formerly biovar T of Pasteurella haemolytica, which causes septicemia in older lambs.  相似文献   

4.
Three Gram-negative bacterial strains were isolated from the biofilter of a recirculating marine aquaculture. They were non-pigmented rods, mesophiles, moderately halophilic, and showed chemo-organoheterotrophic growth on various sugars, fatty acids, and amino acids, with oxygen as electron acceptor; strains D9-3T and D11-58 were in addition able to denitrify. Phototrophic or fermentative growth could not be demonstrated. Phylogenetic analysis of the 16S rRNA gene sequences placed D9-3T and D11-58, and D1-19T on two distinct branches within the alpha-3 proteobacterial Rhodobacteraceae, affiliated with, but clearly separate from, the genera Rhodobacter, Rhodovulum, and Rhodobaca. Based on morphological, physiological, and 16S rRNA-based phylogenetic characteristics, the isolated strains are proposed as new species of two novel genera, Defluviimonas denitrificans gen. nov., sp. nov. (type strain D9-3T = DSM 18921T = ATCC BAA-1447T; additional strain D11-58 = DSM19039 = ATCC BAA-1448) and Pararhodobacter aggregans gen. nov., sp. nov (type strain D1-19T = DSM 18938T = ATCC BAA-1446T).  相似文献   

5.
A previous phylogenetic study on type strains of the genus Micromonospora and Micromonospora species bearing non-validly published names has pointed towards the species status of several of latter strains. Subsequent studies on morphological, cultural, chemotaxonomic, metabolic, and genomic properties, and on whole cell mass spectrometric analyses by matrix adsorbed laser desorption/ionization time-of-flight (MALDI-TOF) confirmed the species status, leading to the proposal of eight new Micromonospora species: Micromonospora citrea sp. nov., type strain DSM 43903T, Micromonospora echinaurantiaca sp. nov., type strain DSM 43904T, Micromonospora echinofusca sp. nov., type strain DSM 43913T, Micromonospora fulviviridis sp. nov., type strain DSM 43906T, Micromonospora inyonensis sp. nov., type strain DSM 46123T, Micromonospora peucetia sp. nov., type strain DSM 43363T, Micromonospora sagamiensis sp. nov., type strain DSM 43912T and Micromonospora viridifaciens sp. nov., type strain DSM 43909T.  相似文献   

6.
Ten Bifidobacterium strains, i.e., 6T3, 64T4, 79T10, 80T4, 81T8, 82T1, 82T10, 82T18, 82T24, and 82T25, were isolated from mantled guereza (Colobus guereza), Sumatran orangutan (Pongo abeli), silvery marmoset (Mico argentatus), golden lion tamarin (Leontopithecus rosalia), pied tamarin (Saguinus bicolor), and common pheasant (Phaisanus colchinus). Cells are Gram-positive, non-motile, non-sporulating, facultative anaerobic, and fructose 6-phosphate phosphoketolase-positive. Phylogenetic analyses based on the core genome sequences revealed that isolated strains exhibit close phylogenetic relatedness with Bifidobacterium genus members belonging to the Bifidobacterium bifidum, Bifidobacterium longum, Bifidobacterium pullorum, and Bifidobacterium tissieri phylogenetic groups. Phenotypic characterization and genotyping based on the genome sequences clearly show that these strains are distinct from each of the type strains of the so far recognized Bifidobacterium species. Thus, B. phasiani sp. nov. (6T3 = LMG 32224T = DSM 112544T), B. pongonis sp. nov. (64T4 = LMG 32281T = DSM 112547T), B. saguinibicoloris sp. nov. (79T10 = LMG 32232T = DSM 112543T), B. colobi sp. nov. (80T4 = LMG 32225T = DSM 112552T), B. simiiventris sp. nov. (81T8 = LMG 32226T = DSM 112549T), B. santillanense sp. nov. (82T1 = LMG 32284T = DSM 112550T), B. miconis sp. nov. (82T10 = LMG 32282T = DSM 112551T), B. amazonense sp. nov. (82T18 = LMG 32297T = DSM 112548T), pluvialisilvae sp. nov. (82T24 = LMG 32229T = DSM 112545T), and B. miconisargentati sp. nov. (82T25 = LMG 32283T = DSM 112546T) are proposed as novel Bifidobacterium species.  相似文献   

7.
A spiral-shaped, highly motile bacterium was isolated from freshwater sulfidic sediment. Strain J10T is a facultative autotroph utilizing sulfide, thiosulfate, and sulfur as the electron donors in microoxic conditions. Despite high 16S rRNA gene sequence sequence identity to Magnetospirillum gryphiswaldense MSR-1 T (99.6 %), digital DNA-DNA hybridisation homology and average nucleotide identity between the two strains was of the different species level (25 % and 83 %, respectively). Strain J10T is not magnetotactic. The DNA G + C content of strain J10T is 61.9 %. The predominant phospholipid ester-linked fatty acids are C18:1ω7, C16:1ω7, and C16:0. Strain J10T (=DSM 23205 T = VKM B-3486 T) is the first strain of the genus Magnetospirillum showing lithoautotrophic growth and is proposed here as a novel species, Magnetospirillum sulfuroxidans sp. nov. In addition, we propose to establish a framework for distinguishing genera and families within the order Rhodospirillales based on phylogenomic analysis using the threshold values for average amino acid identity at ̴ 72 % for genera and ̴ 60 % for families. According to this, we propose to divide the existing genus Magnetospirillum into three genera: Magnetospirillum, Paramagnetospirillum, and Phaeospirillum, constituting a separate family Magnetospirillaceae fam. nov. in the order Rhodospirillales. Furthermore, phylogenomic data suggest that this order should accomodate six more new family level groups including Magnetospiraceae fam. nov., Magnetovibrionaceae fam. nov., Dongiaceae fam. nov., Niveispirillaceae fam. nov., Fodinicurvataceae fam. nov., and Oceanibaculaceae fam. nov.  相似文献   

8.
9.
Two bacterial strains, KIS66-7T and 5GH26-15T, were isolated from soil samples collected in the South Korean cities of Tongyong and Gongju, respectively. Both strains were aerobic, Gram-stain-positive, mesophilic, flagellated, and rodshaped. A phylogenetic analysis revealed that both strains belonged to the family Microbacteriaceae of the phylum Actinobacteria. The 16S rRNA gene sequence of strain KIS66-7T had the highest similarities with those of Labedella gwakjiensis KSW2-17T (97.3%), Cryobacterium psychrophilum DSM 4854T (97.2%), Leifsonia lichenia 2SbT (97.2%), Leifsonia naganoensis JCM 10592T (97.0%), and Cryobacterium mesophilum MSL-15T (97.0%). Strain 5GH26-15T showed the highest sequence similarities with Leifsonia psychrotolerans LI1T (97.4%) and Schumannella luteola KHIAT (97.1%). The 16S rRNA gene sequence from KIS66-7T exhibited 96.4% similarity with that from 5GH26-15T. Strain KIS66-7T contained a B2γ type peptidoglycan structure with D-DAB as the diamino acid; MK-13, MK-12, and MK-14 as the respiratory quinones; ai-C15:0, ai-C17:0, and i-C16:0 as the major cellular fatty acids; and diphosphatidylglycerol, phatidylglycerol, and glycolipids as the predominant polar lipids. Strain 5GH26-15T had a B2β type peptidoglycan structure with D-DAB as the diamino acid; MK-14 and MK-13 as the respiratory quinones; ai-C15:0, i-C16:0, and ai-C{vn17:0} as the major cellular fatty acids; and diphosphatidylglycerol, phatidylglycerol, and glycolipids as the predominant polar lipids. Both strains had low DNA-DNA hybridization values (<40%) with closely related taxa. Based on our polyphasic taxonomic characterization, we propose that strains KIS66-7T and 5GH26-15T represent novel genera and species, for which we propose the names Diaminobutyricibacter tongyongensis gen. nov., sp. nov. (type strain KIS66-7T=KACC 15515T=NBRC 108724T) and Homoserinibacter gongjuensis gen. nov., sp. nov. (type strain 5GH26-15T=KACC 15524T=NBRC 108755T) within the family Microbacteriaceae.  相似文献   

10.
Mycoplasmas isolated from the throats of lions were shown to belong to three serotypes, all of which were serologically distinct from the previously recognized Mycoplasma and Acholeplasma spp. Eight mycoplasma colonies were cloned, including one from a leopard (strain LP), and were examined in detail for morphology, growth, and biochemical characteristics. The strains had the following properties: guanine-plus-cytosine contents of 37 mol% (strain LXT [T = type strain]), 28 mol% (strain LL2T), and 27 mol% (strain 3L2T) and a requirement for sterol. Strain 3L2T metabolized glucose, which was not metabolized by strains LXT and LL2T. Arginine and urea were not hydrolyzed. Strain LX (= NCTC 11724) is the type strain of a new species, Mycoplasma simbae; strain LL2 (= NCTC 11725) is the type strain of a second new species, Mycoplasma leopharyngis; and strain 3L2 (= NCTC 11726) is the type strain of a third new species, Mycoplasma leocaptivus.  相似文献   

11.
A phylogenetic analysis based on 16S rRNA gene sequences reveals that Alysiella filiformis belongs to the family Neisseriaceae. The genus Simonsiella is phylogenetically separated by the genera Kingella and Neisseria. The species Simonsiella crassa and A. filiformis show a close phylogenetic relationship, with the 16S rDNA sequence similarity and the DNA-DNA hybridization representing 98.7% and 35%, respectively. Therefore, S. crassa should be transferred from the genus Simonsiella to the genus Alysiella as Alysiella crassa comb. nov. Simonsiella steedae and Simonsiella sp. of cat origin show strong genetic affinities and are distantly related with the type species of Simonsiella, S. mulleri. Thus, a new genus, Conchiformibium is proposed; Conchiformibium steedae comb. nov. and Conchiformibium kuhniae sp. nov. are accommodated in this new genus. On the basis of the phylogenetic, phenotypic and chemotaxonomic distinction from the genus Neisseria, N. denitrificans should be reclassified, for which a new genus and new combination Bergeriella denitrificans are proposed.  相似文献   

12.
Strain Gsoil 348T was isolated from a ginseng field soil sample by selecting micro-colonies from one-fifth strength modified R2A agar medium after a long incubation period. 16S rRNA gene sequence analysis indicated that the strain is related to members of the phylum Armatimonadetes (formerly called candidate phylum OP10). Strain Gsoil 348T is mesophilic, strictly aerobic, non-motile and rod-shaped. It only grows in low nutrient media. The major respiratory quinones are menaquinones MK-11 and MK-10, and the main fatty acids are iso-C15:0, iso-C17:0, C16:0 and C16:1 ω11c. The G+C content is 61.4 mol%. The 16S rRNA gene sequences in public databases belonging to the phylum Armatimonadetes were clustered here into 6 groups. Five of these groups constituted a coherent cluster distinct from the sequences of other phyla in phylogenetic trees that were constructed using multiple-outgroup sequences from 49 different phyla. On the basis of polyphasic taxonomic analyses, it is proposed that strain Gsoil 348T (= KACC 14959T = JCM 17079T) should be placed in Fimbriimonas ginsengisoli gen. nov., sp. nov., as the cultured representative of the Fimbriimonadia class. nov., corresponding with Group 4 of the phylum Armatimonadetes.  相似文献   

13.
Two Gram-positive bacteria, designated strains Aji5-31(T) and Ngc37-23(T), were isolated from the intestinal tracts of fishes. 16S rRNA gene sequence analysis indicated that both strains were related to the members of the family Dermatophilaceae, with 95.6-96.9% 16S rRNA gene sequence similarities. The family Dermatophilaceae contains 2 genera and 3 species: Dermatophilus congolensis, Dermatophilus chelonae and Kineosphaera limosa. However, it has been suggested that the taxonomic position of D. chelonae should be reinvestigated using a polyphasic approach, because the chemotaxonomic characteristics are not known (Stackebrandt, 2006; Stackebrandt and Schumann, 2000). Our present study revealed that strains Aji5-31(T), Ngc37-23(T) and D. chelonae NBRC 105200(T) should be separated from the other members of the family Dermatophilaceae on the basis of the following characteristics: the predominant menaquinone of strain Aji5-31(T) is MK-8(H(2)), strain Ngc37-23(T) possesses iso- branched fatty acids as major components, and the menaquinone composition of D. chelonae is MK-8(H(4)), MK-8 and MK-8(H(2)) (5 : 3 : 2, respectively). On the basis of these distinctive phenotypic characteristics and phylogenetic analysis results, it is proposed that strains Aji5-31(T) and Ngc37-23(T) be classified as two novel genera and species of the family Dermatophilaceae. The names are Mobilicoccus pelagius gen. nov., sp. nov. and Piscicoccus intestinalis gen. nov., sp. nov., and the type strains are Aji5-31(T) (=NBRC 104925(T) =DSM 22762(T)) and Ngc37-23(T) (=NBRC 104926(T) =DSM 22761(T)), respectively. In addition, D. chelonae should be reassigned to a new genus of the family Dermatophilaceae with the name Austwickia chelonae gen. nov., comb. nov.  相似文献   

14.
Two isolates, belonging to a new species of a novel genus of the Phylum “Deinococcus/Thermus ”, were recovered from hot spring runoffs on the Island of São Miguel in the Azores. Strains RQ-24T and TU-8 are the first cultured representatives of a distinct phylogenetic lineage within this phylum. These strains form orange/red colonies, spherical-shaped cells, have an optimum growth temperature of about 50 °C, an optimum pH for growth between about 7.5 and 9.5, and do not grow at pH below 6.5 or above pH 11.2. These organisms grow in complex media without added NaCl, but have a maximum growth rate in media with 1.0% NaCl and grow in media containing up to 6.0% NaCl. The organisms are extremely ionizing radiation resistant; 60% of the cells survive 5.0 kGy. These strains are chemoorganotrophic and aerobic; do not grow in Thermus medium under anaerobic conditions with or without nitrate as electron acceptor and glucose as a source of carbon and energy, but ferment glucose to d-lactate without formation of gas. The organisms assimilate a large variety of sugars, organic acids and amino acids. Fatty acids are predominantly iso- and anteiso-branched; long chain 1,2 diols were also found in low relative proportions; menaquinone 8 (MK-8) is the primary respiratory quinone. Peptidoglycan was not detected. Based on 16S rRNA gene sequence analysis, physiological, biochemical and chemical analysis we describe a new species of one novel genus represented by strain RQ-24T (CIP 108686T = LMG 22925T = DSM 17093T) for which we propose the name Truepera radiovictrix. We also propose the family Trueperaceae fam. nov. to accommodate this new genus.  相似文献   

15.
Two novel genera of restricted facultative methylotrophs are described; both Methylosulfonomonas and Marinosulfonomonas are unique in being able to grow on methanesulfonic acid as their sole source of carbon and energy. Five identical strains of Methylosulfonomonas were isolated from diverse soil samples in England and were shown to differ in their morphology, physiology, DNA base composition, molecular genetics, and 16S rDNA sequences from the two marine strains of Marinosulfonomonas, which were isolated from British coastal waters. The marine strains were almost indistinguishable from each other and are considered to be strains of one species. Type species of each genus have been identified and named Methylosulfonomonas methylovora (strain M2) and Marinosulfonomonas methylotropha (strain PSCH4). Phylogenetic analysis using 16S rDNA sequencing places both genera in the α-Proteobacteria. Methylosulfonomonas is a discrete lineage within the α-2 subgroup and is not related closely to any other known bacterial genus. The Marinosulfonomonas strains form a monophyletic cluster in the α-3 subgroup of the Proteobacteria with Roseobacter spp. and some other partially characterized marine bacteria, but they are distinct from these at the genus level. This work shows that the isolation of bacteria with a unique biochemical character, the ability to grow on methanesulfonic acid as energy and carbon substrate, has resulted in the identification of two novel genera of methylotrophs that are unrelated to any other extant methylotroph genera. Received: 19 July 1996 / Accepted: 7 October 1996  相似文献   

16.
Isolations from oak symptomatic of Acute Oak Decline, alder and walnut log tissue, and buprestid beetles in 2009–2012 yielded 32 Gram-negative bacterial strains showing highest gyrB sequence similarity to Rahnella aquatilis and Ewingella americana. Multilocus sequence analysis (using partial gyrB, rpoB, infB and atpD gene sequences) delineated the strains into six MLSA groups. Two MLSA groups contained reference strains of Rahnella genomospecies 2 and 3, three groups clustered within the Rahnella clade with no known type or reference strains and the last group contained the type strain of E. americana. DNA–DNA relatedness assays using both the microplate and fluorometric methods, confirmed that each of the five Rahnella MLSA groups formed separate taxa. Rahnella genomospecies 2 and 3 were previously not formally described due to a lack of distinguishing phenotypic characteristics. In the present study, all five Rahnella MLSA groups were phenotypically differentiated from each other and from R. aquatilis. Therefore we propose to classify the strains from symptomatic oak, alder and walnut and buprestid beetles as: Rahnella victoriana sp. nov. (type strain FRB 225T = LMG 27717T = DSM 27397T), Rahnella variigena sp. nov. (previously Rahnella genomosp. 2, type strain CIP 105588T = LMG 27711T), Rahnella inusitata sp. nov. (previously Rahnella genomosp. 3, type strain DSM 30078T = LMG 2640T), Rahnella bruchi sp. nov. (type strain FRB 226T = LMG 27718T = DSM 27398T) and Rahnella woolbedingensis sp. nov. (type strain FRB 227T = LMG 27719T = DSM 27399T).  相似文献   

17.
Biological denitrification is a significant process in nitrogen biogeochemical cycle of terrestrial geothermal environments, and Thermus species have been shown to be crucial heterotrophic denitrifier in hydrothermal system. Five Gram-stain negative, aerobic and rod-shaped thermophilic bacterial strains were isolated from hot spring sediments in Tibet, China. Phylogenetic analysis based on 16S rRNA gene and whole genome sequences indicated that these isolates should be assigned to the genus Thermus and were most closely related to Thermus caldifontis YIM 73026T, and Thermus brockianus YS38T. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the five strains and the type strains of the genus Thermus were lower than the threshold values (95% and 70%, respectively) recommended for bacterial species, which clearly distinguished the five isolates from other species of the genus Thermus and indicated that they represent independent species. Colonies are circular, convex, non-transparent. Cell growth occurred at 37–80 °C (optimum, 60–65 °C), pH 6.0–8.0 (optimum, pH 7.0) and with 0–2.0% (w/v) NaCl (optimum, 0–0.5%). Denitrification genes (narG, nirK, nirS, and norB genes) detected in their genomes indicated their potential function in nitrogen metabolism. The obtained results combined with those of morphological, physiological, and chemotaxonomic characteristics, including the menaquinones, polar lipids, and cellular fatty acids showed that the isolates are proposed as representing five novel species of the genus Thermus, which are proposed as Thermus hydrothermalis sp. nov. SYSU G00291T, Thermus neutrinimicus sp. nov. SYSU G00388T, Thermus thalpophilus sp. nov. SYSU G00506T, Thermus albus sp. nov. SYSU G00608T, Thermus altitudinis sp. nov. SYSU G00630T.  相似文献   

18.
Phenotypic and phylogenetic studies were performed on an unidentified Gram-positive, strictly anaerobic, non-spore-forming, rod-shaped bacterium isolated from human feces. The organism was catalase-negative, resistant to 20% bile, produced acetic and butyric acids as end products of glucose metabolism, and possessed a G+C content of approximately 70 mol%. Comparative 16S rRNA gene sequencing demonstrated that the unidentified bacterium was a member of the Clostridium sub-phylum of the Gram-positive bacteria, and formed a loose association with rRNA cluster XV. Sequence divergence values of 12% or greater were observed between the unidentified bacterium and all other recognized species within this and related rRNA clusters. Treeing analysis showed the unknown anaerobe formed a deep line branching near to the base of rRNA cluster XV and phylogenetically represents a hitherto unknown taxon, distinct from Acetobacterium, Eubacterium sensu stricto, Pseudoramibacter and other related organisms. Based on both phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium from feces be classified in a new genus Anaerofustis, as Anaerofustis stercorihominis sp. nov. The type strain of Anaerofustis stercorihominis is ATCC BAA-858(T)=CCUG 47767(T).  相似文献   

19.
A taxonomic study was carried out on Chj404T, a bacterial strain isolated from a soil sample collected in an industrial stream near the Chung-Ju industrial complex in Korea. The strain was a gram-negative, aerobic, short rod to coccus-shaped bacterium. It grew well on nutrient agar medium and utilized a broad spectrum of carbon sources. The G+C content of the DNA was 67.4 mol% and the major composition of ubiquinone was Q-10. The major fatty acid was C18:1. Comparative 16S rDNA studies showed a clear affiliation of this bacterium to alpha-Proteobacteria. Comparison of phylogenetic data indicated that it was most closely related to Prosthecomicrobium pneumaticum (92.7% similarity in 16S rDNA sequence). Since strain Chj404 is clearly distinct from closely related species, we propose the name Kaistia adipata gen. nov., sp. nov. for this strain Chj404T (=IAM 15023T=KCTC 12095T).  相似文献   

20.
The relationships of 77 aerotolerant Arcobacter strains that were originally identified as Campylobacter cryaerophila (now Arcobacter cryaerophilus [P. Vandamme, E. Falsen, R. Rossau, B. Hoste, P. Segers, R. Tytgat, and J. De Ley, Int. J. Syst. Bacteriol. 41:88-103, 1991]) and 6 reference strains belonging to the taxa Arcobacter nitrofigilis, Arcobacter cryaerophilus, and "Campylobacter butzleri" were studied by using a polyphasic approach, in which we performed DNA-rRNA hybridizations, DNA-DNA hybridizations, a numerical analysis of whole-cell protein patterns after sodium dodecyl sulfate-polyacrylamide gel electrophoresis, an analysis of cellular fatty acid compositions, and a phenotypic analysis and determined DNA base ratios. Our results indicate that "C. butzleri" should be transferred to the genus Arcobacter as Arcobacter butzleri comb. nov., as was suggested by Kiehlbauch and coworkers (J. A. Kiehlbauch, D. J. Brenner, M. A. Nicholson, C. N. Baker, C. M. Patton, A. G. Steigerwalt, and I. K. Wachsmuth, J. Clin. Microbiol. 29:376-385, 1991). A rapid screening of all strains in which we used the sodium dodecyl sulfate-polyacrylamide gel electrophoresis technique revealed five major groups, which were identified by using DNA-DNA hybridization data as A. cryaerophilus (two distinct electrophoretic subgroups), A. butzleri, A. nitrofigilis, and a new species, for which we propose the name Arcobacter skirrowii. The phylogenetic position within rRNA superfamily VI was established for each species. A. butzleri strains and strains belonging to one of the electrophoretic subgroups of A. cryaerophilus had similar fatty acid contents. An analysis of fatty acid compositions allowed clear-cut differentiation of all of the other groups. All of the species could be distinguished by using classical phenotypic tests, although erroneous identifications due to a shortage of clear-cut differentiating tests could occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号