首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Previous studies have revealed that transforming growth factor-beta-activated protein kinase 1 (TAB1) interacts with p38alpha and induces p38alpha autophosphorylation. Here, we examine the sequence requirements in TAB1 and p38alpha that drive their interaction. Deletion and point mutations in TAB1 reveal that a proline residue in the C terminus of TAB1 (Pro412) is necessary for its interaction with p38alpha. Furthermore, a cryptic D-domain-like docking site was identified adjacent to the N terminus of Pro412, putting Pro412 in the phi(B)+3 position of the docking site. Through mutational analysis, we found that the previously identified hydrophobic docking groove in p38alpha is involved in this interaction, whereas the CD domain and ED domain are not. Furthermore, chimeric analysis with p38beta (which does not bind to TAB1) revealed a previously unidentified locus of p38alpha comprising Thr218 and Ile275 that is essential for specific binding of p38alpha to TAB1. Converting either of these residues to the corresponding amino acid of p38beta abolishes p38alpha interaction with TAB1. These p38alpha mutants still can be fully activated by p38alpha upstream activating kinase mitogen-activated protein kinase kinase 6, but their basal activity and activation in response to some extracellular stimuli are reduced. Adjacent to Thr218 and Ile275 is a site where large conformational changes occur in the presence of docking-site peptides derived from p38alpha substrates and activators. This suggests that TAB1-induced autophosphorylation of p38alpha results from conformational changes that are similar but unique to those seen in p38alpha interactions with its substrates and activating kinases.  相似文献   

3.
The aim of present study was to elucidate the role of TAB1 in nitric oxide-induced activation of p38 MAPK. For this purpose we over-expressed TAB1 in insulin-producing beta-TC6 cells. We observed in cells transiently over-expressing TAB1 that p38 activation was enhanced in response to DETA/NONOate. A lowering of TAB1 levels, using the siRNA technique, resulted in the opposite effect. The DETA/NONOate-induced cell death rate was increased in cells transiently overexpressing TAB1. In stable beta-TC6 cell clones with very high TAB1 levels p38 phosphorylation was enhanced also at basal conditions. DETA/NONOate increased also the phosphorylation of JNK and ERK in beta-TC6 cells, but these events were not affected by TAB1. Interestingly, the inhibitory effect of SB203580 on p38 phosphorylation was paralleled by a stimulatory effect on JNK phosphorylation and an inhibitory effect on ERK phosphorylation. In summary, we propose that TAB1 promotes nitric oxide-induced p38 autophosphorylation. In addition, nitric oxide-induced p38 activation seems to promote JNK inhibition and ERK activation, but this effect appears to not require TAB1. A better understanding of how the TAB1/p38 pathway promotes beta-cell death in response to nitric oxide might help in the development of novel pharmacological approaches in the treatment of diabetes.  相似文献   

4.
Regulation of HIV-1 latency by T-cell activation   总被引:1,自引:0,他引:1  
Williams SA  Greene WC 《Cytokine》2007,39(1):63-74
  相似文献   

5.
6.
7.
8.
Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation   总被引:22,自引:0,他引:22  
Jeong JW  Bae MK  Ahn MY  Kim SH  Sohn TK  Bae MH  Yoo MA  Song EJ  Lee KJ  Kim KW 《Cell》2002,111(5):709-720
Hypoxia-inducible factor 1 (HIF-1) plays a central role in cellular adaptation to changes in oxygen availability. Recently, prolyl hydroxylation was identified as a key regulatory event that targets the HIF-1alpha subunit for proteasomal degradation via the pVHL ubiquitination complex. In this report, we reveal an important function for ARD1 in mammalian cells as a protein acetyltransferase by direct binding to HIF-1alpha to regulate its stability. We present further evidence showing that ARD1-mediated acetylation enhances interaction of HIF-1alpha with pVHL and HIF-1alpha ubiquitination, suggesting that the acetylation of HIF-1alpha by ARD1 is critical to proteasomal degradation. Therefore, we have concluded that the role of ARD1 in the acetylation of HIF-1alpha provides a key regulatory mechanism underlying HIF-1alpha stability.  相似文献   

9.
To become activated, T cells must efficiently recognize antigen-presenting cells or target cells through several complex cytoskeleton-dependent processes, including integrin-mediated adhesion, immunological-synapse formation, cellular polarization, receptor sequestration and signalling. The actin and microtubule systems provide the dynamic cellular framework that is required to orchestrate these processes and ultimately contol T-cell activation. Here, we discuss recent advances that have furthered our understanding of the crucial importance of the T-cell cytoskeleton in controlling these aspects of T-cell immune recognition.  相似文献   

10.
11.
The mitogen-activated protein kinases (MAPKs) play an important role in a variety of biological processes. Activation of MAPKs is mediated by phosphorylation on specific regulatory tyrosine and threonine sites. We have recently found that activation of p38alpha MAPK can be carried out not only by its upstream MAPK kinases (MKKs) but also by p38alpha autophosphorylation. p38alpha autoactivation requires an interaction of p38alpha with TAB1 (transforming growth factor-beta-activated protein kinase 1-binding protein 1). The autoactivation mechanism of p38alpha has been found to be important in cellular responses to a number of physiologically relevant stimuli. Here, we report the characterization of a splicing variant of TAB1, TAB1beta. TAB1 and TAB1beta share the first 10 exons. The 11th and 12th exons of TAB1 were spliced out in TAB1beta, and an extra exon, termed exon beta, downstream of exons 11 and 12 in the genome was used as the last exon in TAB1beta. The mRNA of TAB1beta was expressed in all cell lines examined. The TAB1beta mRNA encodes a protein with an identical sequence to TAB1 except the C-terminal 69 amino acids were replaced with an unrelated 27-amino acid sequence. Similar to TAB1, TAB1beta interacts with p38alpha but not other MAPKs and stimulates p38alpha autoactivation. Different from TAB1, TAB1beta does not bind or activate TAK1. Inhibition of TAB1beta expression with RNA interference in MDA231 breast cancer cells resulted in the reduction of basal activity of p38alpha and invasiveness of MDA231 cells, suggesting that TauAlphaBeta1beta is involved in regulating p38alpha activity in physiological conditions.  相似文献   

12.
The p38alpha MAPK participates in a variety of biological processes. Activation of p38alpha is mediated by phosphorylation on specific regulatory tyrosine and threonine sites, and the three dual kinases, MAPK kinase 3 (MKK3), MKK4, and MKK6, are known to be the upstream activators of p38alpha. In addition to activation by upstream kinases, p38alpha can autoactivate when interacting with transforming growth factor-beta-activated protein kinase 1-binding protein 1 (TAB1). Here we used MKK3 and MKK6 double knock-out (MKK3/6 DKO) and MKK4/7 DKO mouse embryonic fibroblast (MEF) cells to examine activation mechanisms of p38alpha. We confirmed that the MKK3/6 pathway is a primary mechanism for p38alpha phosphorylation in MEF cells, and we also showed the presence of other p38alpha activation pathways. We show that TAB1-mediated p38alpha phosphorylation in MEF cells did not need MKK3/4/6, and it accounted for a small portion of the total p38alpha phosphorylation that was induced by hyperosmolarity and anisomycin. We observed that a portion of peroxynitrite-induced phospho-p38alpha is associated with an approximately 85-kDa disulfide complex in wild-type MEF cells. Peroxynitrite-induced phosphorylation of p38alpha in the approximately 85-kDa complex is independent from MKK3/6 because only phospho-p38alpha not associated with the disulfide complex was diminished in MKK3/6 DKO cells. In addition, our data suggest interference among different pathways because TAB1 had an inhibitory effect on p38alpha phosphorylation in the peroxynitrite-induced approximately 85-kDa complex. Mutagenesis analysis of the cysteines in p38alpha revealed that no disulfide bond forms between p38alpha and other proteins in the approximately 85-kDa complex, suggesting it is a p38alpha binding partner(s) that forms disulfide bonds, which enable it to bind to p38alpha. Therefore, multiple mechanisms of p38alpha activation exist that can influence each other, be simultaneously activated by a given stimulus, and/or be selectively used by different stimuli in a cell type-specific manner.  相似文献   

13.
Hypoxic/ischemic trauma is a primary factor in the pathology of a multitude of disease states. The effects of hypoxia on the stress- and mitogen-activated protein kinase signaling pathways were studied in PC12 cells. Exposure to moderate hypoxia (5% O(2)) progressively stimulated phosphorylation and activation of p38gamma in particular, and also p38alpha, two stress-activated protein kinases. In contrast, hypoxia had no effect on enzyme activity of p38beta, p38beta(2), p38delta, or on c-Jun N-terminal kinase, another stress-activated protein kinase. Prolonged hypoxia also induced phosphorylation and activation of p42/p44 mitogen-activated protein kinase, although this activation was modest compared with nerve growth factor- and ultraviolet light-induced activation. Hypoxia also dramatically down-regulated immunoreactivity of cyclin D1, a gene that is known to be regulated negatively by p38 at the level of gene expression (Lavoie, J. N., L'Allemain, G., Brunet, A., Muller, R., and Pouyssegur, J. (1996) J. Biol. Chem. 271, 20608-20616). This effect was partially blocked by SB203580, an inhibitor of p38alpha but not p38gamma. Overexpression of a kinase-inactive form of p38gamma was also able to reverse in part the effect of hypoxia on cyclin D1 levels, suggesting that p38alpha and p38gamma converge to regulate cyclin D1 during hypoxia. These studies demonstrate that an extremely typical physiological stress (hypoxia) causes selective activation of specific p38 signaling elements; and they also identify a downstream target of these pathways.  相似文献   

14.
15.
Inhibition of p38alpha MAP kinase is a potential approach for the treatment of inflammatory disorders. MKK6-dependent phosphorylation on the activation loop of p38alpha increases its catalytic activity and affinity for ATP. An inhibitor, BIRB796, binds at a site used by the purine moiety of ATP and extends into a "selectivity pocket", which is not used by ATP. It displaces the Asp168-Phe169-Gly170 motif at the start of the activation loop, promoting a "DFG-out" conformation. Some other inhibitors bind only in the purine site, with p38alpha remaining in a "DFG-in" conformation. We now demonstrate that selectivity pocket compounds prevent MKK6-dependent activation of p38alpha in addition to inhibiting catalysis by activated p38alpha. Inhibitors using only the purine site do not prevent MKK6-dependent activation. We present kinetic analyses of seven inhibitors, whose crystal structures as complexes with p38alpha have been determined. This work includes four new crystal structures and a novel assay to measure K(d) for nonactivated p38alpha. Selectivity pocket compounds associate with p38alpha over 30-fold more slowly than purine site compounds, apparently due to low abundance of the DFG-out conformation. At concentrations that inhibit cellular production of an inflammatory cytokine, TNFalpha, selectivity pocket compounds decrease levels of phosphorylated p38alpha and beta. Stabilization of a DFG-out conformation appears to interfere with recognition of p38alpha as a substrate by MKK6. ATP competes less effectively for prevention of activation than for inhibition of catalysis. By binding to a different conformation of the enzyme, compounds that prevent activation offer an alternative approach to modulation of p38alpha.  相似文献   

16.
Transforming growth factor (TGF)-β-activated kinase 1 (TAK1) is a key serine/threonine protein kinase that mediates signals transduced by pro-inflammatory cytokines such as transforming growth factor-β, tumour necrosis factor (TNF), interleukin-1 (IL-1) and wnt family ligands. TAK1 is found in complex with binding partners TAB1-3, phosphorylation and ubiquitination of which has been found to regulate TAK1 activity. In this study, we show that TAB1 is modified with N-acetylglucosamine (O-GlcNAc) on a single site, Ser395. With the help of a novel O-GlcNAc site-specific antibody, we demonstrate that O-GlcNAcylation of TAB1 is induced by IL-1 and osmotic stress, known inducers of the TAK1 signalling cascade. By reintroducing wild-type or an O-GlcNAc-deficient mutant TAB1 (S395A) into Tab1(-/-) mouse embryonic fibroblasts, we determined that O-GlcNAcylation of TAB1 is required for full TAK1 activation upon stimulation with IL-1/osmotic stress, for downstream activation of nuclear factor κB and finally production of IL-6 and TNFα. This is one of the first examples of a single O-GlcNAc site on a signalling protein modulating a key innate immunity signalling pathway.  相似文献   

17.
Biochemical evidence indicates that TGF-beta-activated kinase 1 (TAK1), a key modulator of the inflammatory response, exists in a complex with various adaptor proteins including the TAK1 binding protein 1 (TAB1). However, the physiological importance of TAB1 in TAK1 activation, and in the subsequent induction of proinflammatory mediators, remains unclear. In this study, a critical role for TAK1 in IL-1alpha or TNFalpha stimulated MAPK and NFkappaB activation was confirmed by inhibition of the nuclear accumulation of NFkappaB p65 and phosphorylated forms of c-Jun and p38 following siRNA mediated TAK1 silencing. These effects were associated with significant reductions in IL-1alpha stimulated levels of secreted IL-6, IL-8, MCP-1 and GM-CSF. In contrast, IL-1alpha or TNFalpha dependent cellular redistribution of NFkappaB p65 and phosphorylated c-Jun and p38 was not affected by 80% siRNA mediated knockdown of TAB1 protein levels. Interestingly, IL-6, IL-8 and GM-CSF release from TAB1 siRNA transfected cells was significantly reduced following IL-1alpha treatment, but was unchanged after TNFalpha stimulation, suggesting differential roles for TAB1 in IL-1alpha and TNFalpha signalling pathways. These findings may imply an as yet unidentified role for TAB1 in the inflammatory response, which is independent of the activation of classical TAK1 associated signalling cascades.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号