首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ornithine decarboxylase (ODC) is regulated by its metabolic products through a feedback loop that employs a second protein, antizyme 1 (AZ1). AZ1 accelerates the degradation of ODC by the proteasome. We used purified components to study the structural elements required for proteasomal recognition of this ubiquitin-independent substrate. Our results demonstrate that AZ1 acts on ODC to enhance the association of ODC with the proteasome, not the rate of its processing. Substrate-linked or free polyubiquitin chains compete for AZ1-stimulated degradation of ODC. ODC-AZ1 is therefore recognized by the same element(s) in the proteasome that mediate recognition of polyubiquitin chains. The 37 C-terminal amino acids of ODC harbor an AZ1-modulated recognition determinant. Within the ODC C terminus, three subsites are functionally distinguishable. The five terminal amino acids (ARINV, residues 457-461) collaborate with residue C441 to constitute one recognition element, and AZ1 collaborates with additional constituents of the ODC C terminus to generate a second recognition element.  相似文献   

2.
Ornithine decarboxylase antizyme inhibitors, AZIN1 and AZIN2, are regulators and homologous proteins of ornithine decarboxylase (ODC), the rate limiting enzyme in the biosynthesis of polyamines. In this study, we have examined by means of real-time RT-PCR the relative abundance of mRNA of the three ODC paralogs in different rodent tissues, as well as in several cell lines derived from human tumors. With the exception of mouse and rat testes, ODC mRNA was the most expressed gene in all tissues examined (values higher than 60%). AZIN2 was more expressed than AZIN1 in testis, epididymis, brain, adrenal gland and lung, whereas the opposite was found in liver, kidney, heart, intestine and pancreas, as well as in all the cell lines examined. mRNA abundance of the three antizymes (AZ1, AZ2 and AZ3) that interact with ODC and antizyme inhibitors was also analyzed. AZ1 and AZ2 mRNA were ubiquitously expressed, AZ1 mRNA being more abundant than that of AZ2, although the ratio was dependent on the mouse tissue. In carcinoma-derived cells AZ1 was more expressed than AZ2, whereas in neuroblastoma-derived cells AZ2 mRNA was much more abundant than that of AZ1. AZ3 was expressed exclusively in rodent testes, where it was the most abundant of the three antizymes (~80%). This study is the first comparative-quantitative analysis on the expression of antizymes and antizyme inhibitors in different types of mammalian cells.  相似文献   

3.
Antizyme, a mediator of ubiquitin-independent proteasomal degradation   总被引:5,自引:0,他引:5  
Coffino P 《Biochimie》2001,83(3-4):319-323
Ornithine decarboxylase (ODC) is among the small set of proteasome substrates that is not ubiquitinated. It is instead degraded in conjunction with the protein antizyme (AZ). ODC and AZ are participants in a regulatory circuit that restricts pools of polyamines, the downstream products of ODC enzymatic activity. Functional studies using directed mutagenesis have identified regions of ODC and AZ required for the process of ODC degradation. Within ODC, there is a region that is required for AZ binding which lies on the surface of an alpha-beta barrel forming one domain of the ODC monomer. A carboxy-terminal ODC domain is needed for both AZ-dependent and AZ-independent degradation. Within AZ, the carboxy-terminal half molecule is sufficient for binding to ODC, but an additional domain found within the AZ amino terminus must be present for stimulation of ODC degradation by the proteasome. Recently, the AZs have been found to consist of an ancient gene family. Within vertebrate species, multiple isoforms are found, with distinct functions that remain to be sorted out. Although AZ homologs have been found in some yeast species, homology searches have failed to identify an AZ homolog in Saccharomyces cerevisiae. Nevertheless, the close parallel between polyamine-induced ODC degradation in S. cerevisiae and in animal cells suggests that this organism will also be found to harbor an AZ-like protein.  相似文献   

4.
ODC (ornithine decarboxylase), the rate-limiting enzyme in polyamine biosynthesis, is regulated by specific inhibitors, AZs (antizymes), which in turn are inhibited by AZI (AZ inhibitor). We originally identified and cloned the cDNA for a novel human ODC-like protein called ODCp (ODC paralogue). Since ODCp was devoid of ODC catalytic activity, we proposed that ODCp is a novel form of AZI. ODCp has subsequently been suggested to function either as mammalian ADC (arginine decarboxylase) or as AZI in mice. Here, we report that human ODCp is a novel AZI (AZIN2). By using yeast two-hybrid screening and in vitro binding assay, we show that ODCp binds AZ1-3. Measurements of the ODC activity and ODC degradation assay reveal that ODCp inhibits AZ1 function as efficiently as AZI both in vitro and in vivo. We further demonstrate that the degradation of ODCp is ubiquitin-dependent and AZ1-independent similar to the degradation of AZI. We also show that human ODCp has no intrinsic ADC activity.  相似文献   

5.
Ornithine decarboxylase (ODC) catalyzes the first and rate limiting step in the biosynthesis of polyamines in most eukaryotes. Because polyamines have pleiotropic and often dramatic effects on cellular processes at both high and low concentrations, ODC expression is tightly controlled. ODC is regulated by a family of polyamine-induced proteins, antizymes, which bind to, and inactivate it. In mammals, and apparently most vertebrates, antizymes are in turn antagonized by proteins called antizyme inhibitors. Antizyme inhibitors are homologs of ODC that have lost their decarboxylation activity but have retained their ability to bind antizyme, in most cases even more tightly than ODC. We present a phylogenetic analysis of over 200 eukaryotic homologs of ODC and evaluate their potential to be either true ODCs or catalytically inactive proteins that might be analogs of the previously identified antizyme inhibitors. This analysis yielded several orthologous groups of putative novel antizyme inhibitors each apparently arising independently. In the process we also identify previously unrecognized ODC paralogs in several evolutionary branches, including a previously unrecognized ODC paralog in mammals, and we evaluate their biochemical potential based on their pattern of amino acid conservation.  相似文献   

6.
The antizyme family: polyamines and beyond   总被引:6,自引:0,他引:6  
Mangold U 《IUBMB life》2005,57(10):671-676
The family of antizymes functions as regulators of polyamine homeostasis. They are a class of small, inhibitory proteins, whose expression is regulated by a unique ribosomal frameshift mechanism. They have been shown to inhibit cell proliferation and possess anti-tumor activity. Antizymes bind ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis. They inhibit its enzymatic activity and promote the ubiquitin-independent degradation of ODC by the 26S proteasome. In addition, they also negatively regulate polyamine transport. Antizyme-mediated, ubiquitin-independent degradation of ODC is conserved from yeast to man. But recent data suggest that this degradation pathway might not be restricted to ODC alone and could involve newly discovered antizyme binding partners. Interestingly, antizyme proteins have been strictly preserved over a vast evolutionary timeframe. Antizymes consequently represent an important class of proteins that regulate cell growth and metabolism by a diverse set of mechanisms that include protein degradation, inhibition of enzyme activity, small molecule transport and other, potentially not yet discovered properties.  相似文献   

7.
Ornithine decarboxylase (ODC) is a key enzyme in polyamine biosynthesis. Turnover of ODC is extremely rapid and highly regulated, and is accelerated when polyamine levels increase. Polyamine-stimulated ODC degradation is mediated by association with antizyme (AZ), an ODC inhibitory protein induced by polyamines. ODC, in association with AZ, is degraded by the 26S proteasome in an ATP-dependent, but ubiquitin-independent, manner. The 26S proteasome irreversibly inactivates ODC prior to its degradation. The inactivation, possibly due to unfolding, is coupled to sequestration of ODC within the 26S proteasome. This process requires AZ and ATP, but not proteolytic activity of the 26S proteasome. The carboxyl-terminal region of ODC presumably exposed by interaction with AZ plays a critical role for being trapped by the 26S proteasome. Thus, the degradation pathway of ODC proceeds as a sequence of multiple distinct processes, including recognition, sequestration, unfolding, translocation, and ultimate degradation mediated by the 26S proteasome.  相似文献   

8.
Saccharomyces cerevisiae antizyme (AZ) resembles mammalian AZ in its mode of synthesis by translational frameshifting and its ability to inhibit and facilitate the degradation of ornithine decarboxylase (ODC). Despite many studies on the interaction of AZ and ODC, the ODC:AZ complex has not been purified from any source and thus clear information about the stoichiometry of the complex is still lacking. In this study we have studied the yeast antizyme protein and the ODC:AZ complex. The far UV CD spectrum of the full-length antizyme shows that the yeast protein consists of 51% β-sheet, 19% α-helix, and 24% coils. Surface plasmon resonance analyses show that the association constant (KA) between yeast AZ and yeast ODC is 6 × 107 (M−1). Using purified His-tagged AZ as a binding partner, we have purified the ODC:AZ inhibitory complex. The isolated complex has no ODC activity. The molecular weight of the complex is 90 kDa, which indicates a one to one stoichiometric binding of AZ and ODC in vitro. Comparison of the circular dichroism (CD) spectra of the two individual proteins and of the ODC:AZ complex shows a change in the secondary structure in the complex.  相似文献   

9.
10.
Amino acids, especially glutamine (GLN) have been known for many years to stimulate the growth of small intestinal mucosa. Polyamines are also required for optimal mucosal growth, and the inhibition of ornithine decarboxylase (ODC), the first rate-limiting enzyme in polyamine synthesis, blocks growth. Certain amino acids, primarily asparagine (ASN) and GLN stimulate ODC activity in a solution of physiological salts. More importantly, their presence is also required before growth factors and hormones such as epidermal growth factor and insulin are able to increase ODC activity. ODC activity is inhibited by antizyme-1 (AZ) whose synthesis is stimulated by polyamines, thus, providing a negative feedback regulation of the enzyme. In the absence of amino acids mammalian target of rapamycin complex 1 (mTORC1) is inhibited, whereas, mTORC2 is stimulated leading to the inhibition of global protein synthesis but increasing the synthesis of AZ via a cap-independent mechanism. These data, therefore, explain why ASN or GLN is essential for the activation of ODC. Interestingly, in a number of papers, AZ has been shown to inhibit cell proliferation, stimulate apoptosis, or increase autophagy. Each of these activities results in decreased cellular growth. AZ binds to and accelerates the degradation of ODC and other proteins shown to regulate proliferation and cell death, such as Aurora-A, Cyclin D1, and Smad1. The correlation between the stimulation of ODC activity and the absence of AZ as influenced by amino acids is high. Not only do amino acids such as ASN and GLN stimulate ODC while inhibiting AZ synthesis, but also amino acids such as lysine, valine, and ornithine, which inhibit ODC activity, increase the synthesis of AZ. The question remaining to be answered is whether AZ inhibits growth directly or whether it acts by decreasing the availability of polyamines to the dividing cells. In either case, evidence strongly suggests that the regulation of AZ synthesis is the mechanism through which amino acids influence the growth of intestinal mucosa. This brief article reviews the experiments leading to the information presented above. We also present evidence from the literature that AZ acts directly to inhibit cell proliferation and increase the rate of apoptosis. Finally, we discuss future experiments that will determine the role of AZ in the regulation of intestinal mucosal growth by amino acids.  相似文献   

11.
Ornithine decarboxylase (ODC), a key enzyme in the biosynthesis of polyamines, is a labile protein that is regulated by interacting with antizymes (AZs), a family of polyamine-induced proteins. Recently, a novel human gene highly homologous to ODC, termed ODC-like or ODC-paralogue (ODCp), was cloned, but the studies aimed to determine its function rendered contradictory results. We have cloned the mouse orthologue of human ODCp and studied its expression and possible function. mRNA of mouse Odcp was found in the brain and testes, showing a conserved expression pattern with regard to the human gene. Transfection of mouse Odcp in HEK 293T cells elicited an increase in ODC activity, but no signs of arginine decarboxylase activity were evident. On the other hand, whereas the ODCp protein was mainly localized in the mitochondrial/membrane fraction, ODC activity was found in the cytosolic fraction and was markedly decreased by small interfering RNA against human ODC. Co-transfection experiments with combinations of Odc, Az1, Az2, Az3, antizyme inhibitor (Azi), and Odcp genes showed that ODCp mimics the action of AZI, rescuing ODC from the effects of AZs and prevented ODC degradation by the proteasome. A direct interaction between ODCp and AZs was detected by immunoprecipitation experiments. We conclude that mouse ODCp has no intrinsic decarboxylase activity, but it acts as a novel antizyme inhibitory protein (AZI2).  相似文献   

12.
Hoffman DW  Carroll D  Martinez N  Hackert ML 《Biochemistry》2005,44(35):11777-11785
Antizyme and its isoforms are members of an unusual yet broadly conserved family of proteins, with roles in regulating polyamine levels within cells. Antizyme has the ability to bind and inhibit the enzyme ornithine decarboxylase (ODC), targeting it for degradation at the proteasome; antizyme is also known to affect the transport of polyamines and interact with the antizyme inhibitor protein (AZI), as well as the cell-cycle protein cyclin D1. In the present work, NMR methods were used to determine the solution structure of a stable, folded domain of mammalian antizyme isoform-1 (AZ-1), consisting of amino acid residues 87-227. The protein was found to contain eight beta strands and two alpha helices, with the strands forming a mixed parallel and antiparallel beta sheet. At the level of primary sequence, antizyme is not similar to any protein of known structure, and results show that antizyme exhibits a novel arrangement of its strands and helices. Interestingly, however, the fold of antizyme is similar to that found in a family of acetyl transferases, as well as translation initiation factor IF3, despite a lack of functional relatedness between these proteins. Structural results, combined with amino acid sequence comparisons, were used to identify conserved features among the various homologues of antizyme and their isoforms. Conserved surface residues, including a cluster of acidic amino acids, were found to be located on a single face of antizyme, suggesting this surface is a possible site of interaction with target proteins such as ODC. This structural model provides an essential framework for an improved future understanding of how the different parts of antizyme play their roles in polyamine regulation.  相似文献   

13.
The polyamines spermidine and spermine are ubiquitous and required for cell growth and differentiation in eukaryotes. Ornithine decarboxylase (ODC, EC 4.1.1.17) performs the first step in polyamine biosynthesis, the decarboxylation of ornithine to putrescine. Elevated polyamine levels can lead to down-regulation of ODC activity by enhancing the translation of antizyme mRNA, resulting in subsequent binding of antizyme to ODC monomers which targets ODC for proteolysis by the 26S proteasome. The crystal structure of ornithine decarboxylase from human liver has been determined to 2.1 A resolution by molecular replacement using truncated mouse ODC (Delta425-461) as the search model and refined to a crystallographic R-factor of 21.2% and an R-free value of 28.8%. The human ODC model includes several regions that are disordered in the mouse ODC crystal structure, including one of two C-terminal basal degradation elements that have been demonstrated to independently collaborate with antizyme binding to target ODC for degradation by the 26S proteasome. The crystal structure of human ODC suggests that the C terminus, which contains basal degradation elements necessary for antizyme-induced proteolysis, is not buried by the structural core of homodimeric ODC as previously proposed. Analysis of the solvent-accessible surface area, surface electrostatic potential, and the conservation of primary sequence between human ODC and Trypanosoma brucei ODC provides clues to the identity of potential protein-binding-determinants in the putative antizyme binding element in human ODC.  相似文献   

14.
Polyamines are essential organic cations with multiple cellular functions. Their synthesis is controlled by a feedback regulation whose main target is ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis. In mammals, ODC has been shown to be inhibited and targeted for ubiquitin-independent degradation by ODC antizyme (AZ). The synthesis of mammalian AZ was reported to involve a polyamine-induced ribosomal frameshifting mechanism. High levels of polyamine therefore inhibit new synthesis of polyamines by inducing ODC degradation. We identified a previously unrecognized sequence in the genome of Saccharomyces cerevisiae encoding an orthologue of mammalian AZ. We show that synthesis of yeast AZ (Oaz1) involves polyamine-regulated frameshifting as well. Degradation of yeast ODC by the proteasome depends on Oaz1. Using this novel model system for polyamine regulation, we discovered another level of its control. Oaz1 itself is subject to ubiquitin-mediated proteolysis by the proteasome. Degradation of Oaz1, however, is inhibited by polyamines. We propose a model, in which polyamines inhibit their ODC-mediated biosynthesis by two mechanisms, the control of Oaz1 synthesis and inhibition of its degradation.  相似文献   

15.
The polyamine biosynthetic enzyme ornithine decarboxylase (ODC) is degraded by the 26 S proteasome via a ubiquitin-independent pathway in mammalian cells. Its degradation is greatly accelerated by association with the polyamine-induced regulatory protein antizyme 1 (AZ1). Mouse ODC (mODC) that is expressed in the yeast Saccharomyces cerevisiae is also rapidly degraded by the proteasome of that organism. We have now carried out in vivo and in vitro studies to determine whether S. cerevisiae proteasomes recognize mODC degradation signals. Mutations of mODC that stabilized the protein in animal cells also did so in the fungus. Moreover, the mODC degradation signal was able to destabilize a GFP or Ura3 reporter in GFP-mODC and Ura3-mODC fusion proteins. Co-expression of AZ1 accelerated mODC degradation 2-3-fold in yeast cells. The degradation of both mODC and the endogenous yeast ODC (yODC) was unaffected in S. cerevisiae mutants with various defects in ubiquitin metabolism, and ubiquitinylated forms of mODC were not detected in yeast cells. In addition, recombinant mODC was degraded in an ATP-dependent manner by affinity-purified yeast 26 S proteasomes in the absence of ubiquitin. Degradation by purified yeast proteasomes was sensitive to mutations that stabilized mODC in vivo, but was not accelerated by recombinant AZ1. These studies demonstrate that cell constituents required for mODC degradation are conserved between animals and fungi, and that both mammalian and fungal ODC are subject to proteasome-mediated proteolysis by ubiquitin-independent mechanisms.  相似文献   

16.

Background

Ornithine decarboxylase (ODC), the key enzyme in the polyamine biosynthetic pathway, is highly regulated by antizymes (AZs), small proteins that bind and inhibit ODC and increase its proteasomal degradation. Early studies delimited the putative AZ-binding element (AZBE) to the region 117-140 of ODC. The aim of the present work was to study the importance of certain residues of the region 110-142 that includes the AZBE region for the interaction between ODC and AZ1 and the ODC functionality.

Methods

Computational analysis of the protein sequences of the extended AZBE site of ODC and ODC paralogues from different eukaryotes was used to search for conserved residues. The influence of these residues on ODC functionality was studied by site directed mutagenesis, followed by different biochemical techniques.

Results

The results revealed that: a) there are five conserved residues in ODC and its paralogues: K115, A123, E138, L139 and K141; b) among these, L139 is the most critical one for the interaction with AZs, since its substitution decreases the affinity of the mutant protein towards AZs; c) all these conserved residues, with the exception of A123, are critical for ODC activity; d) substitutions of K115, E138 or L139 diminish the formation of ODC homodimers.

Conclusions

These results reveal that four of the invariant residues of the AZBE region are strongly related to ODC functionality.

General significance

This work helps to understand the interaction between ODC and AZ1, and describes various new residues involved in ODC activity, a key enzyme for cell growth and proliferation.  相似文献   

17.
Antizymes are key regulators of cellular polyamine metabolism that negatively regulate cell proliferation and are therefore regarded as tumor suppressors. Although the regulation of antizyme (Az) synthesis by polyamines and the ability of Az to regulate cellular polyamine levels suggest the centrality of polyamine metabolism to its antiproliferative function, recent studies have suggested that antizymes might also regulate cell proliferation by targeting to degradation proteins that do not belong to the cellular polyamine metabolic pathway. Using a co-degradation assay, we show here that, although they efficiently stimulated the degradation of ornithine decarboxylase (ODC), Az1 and Az2 did not affect or had a negligible effect on the degradation of cyclin D1, Aurora-A, and a p73 variant lacking the N-terminal transactivation domain whose degradation was reported recently to be stimulated by Az1. Furthermore, we demonstrate that, although Az1 and Az2 could not be constitutively expressed in transfected cells, they could be stably expressed in cells that express trypanosome ODC, a form of ODC that does not bind Az and therefore maintains a constant level of cellular polyamines. Taken together, our results clearly demonstrate that Az1 and Az2 affect cell proliferation and viability solely by modulating cellular polyamine metabolism.  相似文献   

18.
Mouse ODC (ornithine decarboxylase) is quickly degraded by the 26S proteasome in mammalian and fungal cells. Its degradation is independent of ubiquitin but requires a degradation signal composed of residues 425-461 at the ODC C-terminus, cODC (the last 37 amino acids of the ODC C-terminus). Mutational analysis of cODC revealed the presence of two essential elements in the degradation signal. The first consists of cysteine and alanine at residues 441 and 442 respectively. The second element is the C-terminus distal to residue 442; it has little or no sequence specificity, but is intolerant of insertions or deletions that alter its span. Reducing conditions, which preclude all well-characterized chemical reactions of the Cys(441) thiol, are essential for in vitro degradation. These experiments imply that the degradative function of Cys(441) does not involve its participation in chemical reaction; it, instead, functions within a structural element for recognition by the 26S proteasome.  相似文献   

19.
Ornithine decarboxylase antizyme 1 (AZ1) is a major regulatory protein responsible for the regulation and degradation of ornithine decarboxylase (ODC). To better understand the role of AZ1 in polyamine metabolism and in modulating the response to anticancer polyamine analogues, a small interfering RNA strategy was used to create a series of stable clones in human H157 non-small cell lung cancer cells that expressed less than 5-10% of basal AZ1 levels. Antizyme 1 knockdown clones accumulated greater amounts of the polyamine analogue N (1),N (11)-bis(ethyl)norspermine (BENSpm) and were more sensitive to analogue treatment. The possibility of a loss of polyamine uptake regulation in the knockdown clones was confirmed by polyamine uptake analysis. These results are consistent with the hypothesis that AZ1 knockdown leads to dysregulation of polyamine uptake, resulting in increased analogue accumulation and toxicity. Importantly, there appears to be little difference between AZ1 knockdown cells and cells with normal levels of AZ1 with respect to ODC regulation, suggesting that another regulatory protein, potentially AZ2, compensates for the loss of AZ1. The results of these studies are important for the understanding of both the regulation of polyamine homeostasis and in understanding the factors that regulate tumor cell sensitivity to the anti-tumor polyamine analogues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号