首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gating and conduction properties of a channel activated by intracellular Na+ were studied by recording unitary currents in inside-out patches excised from lobster olfactory receptor neurons. Channel openings to a single conductance level of 104 pS occurred in bursts. The open probability of the channel increased with increasing concentrations of Na+. At 210 mm Na+, membrane depolarization increased the open probability e-fold per 36.6 mV. The distribution of channel open times could be fit by a single exponential with a time constant of 4.09 msec at −60 mV and 90 mm Na+. The open time constant was not affected by the concentration of Na+, but was increased by membrane depolarization. At 180 mm Na+ and −60 mV, the distribution of channel closed times could be fit by the sum of four exponentials with time constants of 0.20, 1.46, 8.92 and 69.9 msec, respectively. The three longer time constants decreased, while the shortest time constant did not vary with the concentration of Na+. Membrane depolarization decreased all four closed time constants. Burst duration was unaffected by the concentration of Na+, but was increased by membrane depolarization. Permeability for monovalent cations relative to that of Na+ (P X /P Na ), calculated from the reversal potential, was: Li+ (1.11) > Na+ (1.0) > K+ (0.54) > Rb+ (0.36) > Cs+ (0.20). Extracellular divalent cations (10 mm) blocked the inward Na+ current at −60 mV according to the following sequence: Mn2+ > Ca2+ > Sr2+ > Mg2+ > Ba2+. Relative permeabilities for divalent cations (P Y /P Na ) were Ca2+ (39.0) > Mg2+ (34.1) > Mn2+ (15.5) > Ba2+ (13.8) > Na+ (1.0). Both the reversal potential and the conductance determined in divalent cation-free mixtures of Na+ and Cs+ or Li+ were monotonic functions of the mole fraction, suggesting that the channel is a single-ion pore that behaves as a multi-ion pore when the current is carried exclusively by divalent cations. The properties of the channel are consistent with the channel playing a role in odor activation of these primary receptor neurons. Received: 17 September 1996/Revised: 15 November 1996  相似文献   

2.
A Paramecium cell responded to heat and cold stimuli, exhibiting increased frequency of directional changes in its swimming behavior. The increase in the frequency of directional changes was maintained during heating, but was transient during cooling. Although variations were large, as expected with this type of electrophysiological recording, results consistently showed a sustained depolarization of deciliated cells in response to heating. Depolarizations were also consistently observed upon cooling. However, these depolarizations were transient and not continuous throughout the cooling period. These depolarizations were lost or became small in Ca2+-free solutions. In a voltage-clamped cell, heating induced a continuous inward current and cooling induced a transient inward current under conditions where K+ currents were suppressed. The heat-induced inward current was not affected significantly by replacing extracellular Ca2+ with equimolar concentrations of Ba2+, Sr2+, Mg2+, or Mn2+, and was lost upon replacing with equimolar concentration of Ni2+. On the other hand, the cold-induced inward current was not affected significantly by Ba2+, or Sr2+, however the decay of the inward current was slowed and was lost or became small upon replacing with equimolar concentrations of Mg2+, Mn2+, or Ni2+. These results indicate that Paramecium cells have heat-activated Ca2+ channels and cold-activated Ca2+ channels and that the cold-activated Ca2+ channel is different from the heat-activated Ca2+ channel in the ion selectivity and the calcium-dependent inactivation. Received: 9 September 1998/Revised: 22 January 1999  相似文献   

3.
The concentration of intracellular calcium, [Ca2+] i , in Paramecium was imaged during cold-sensitive response by monitoring fluorescence of two calcium-sensitive dyes, Fluo-3 and Fura-Red. Cooling of a deciliated Paramecium caused a transient increase in [Ca2+] i at the anterior region of the cell. Increase in [Ca2+] i was not observed at any region in Ca2+-free solution. Under the electrophysiological recording, a transient depolarization of the cell was observed in response to cooling. On the voltage-clamped cell, cooling induced a transient inward current under conditions where K+ currents were suppressed. These membrane depolarizations and inward currents in response to cooling were lost upon removing extracellular Ca2+. The cold-induced inward current was lost upon replacing extracellular Ca2+ with equimolar concentration of Co2+, Mg2+ or Mn2+, but it was not affected significantly by replacing with equimolar concentration of Ba2+ or Sr2+. These results indicate that Paramecium cells have Ca2+ channels that are permeable to Ca2+, Ba2+ and Sr2+ in the anterior soma membrane and the channels are opened by cooling. Received: 1 April 1996/Revised: 23 July 1996  相似文献   

4.
A large conductance, Ca2+-activated K+ channel of the BK type was examined in cultured pituitary melanotrophs obtained from adult male rats. In cell-attached recordings the slope conductance for the BK channel was ≈190 pS and the probability (P o ) of finding the channel in the open state at the resting membrane potential was low (<<0.1). Channels in inside-out patches and in symmetrical 150 mm K+ had a conductance of ≈260 pS. The lower conductance in the cell-attached recordings is provisionally attributed to an intracellular K+ concentration of ≈113 mm. The permeability sequence, relative to K+, was K+ > Rb+ (0.87) > NH+ 4 (0.17) > Cs+≥ Na+ (≤0.02). The slope conductance for Rb+ was much less than for K+. Neither Na+ nor Cs+ carried measurable currents and 150 mm internal Cs+ caused a flickery block of the channel. Internal tetraethylammonium ions (TEA+) produced a fast block for which the dissociation constant at 0 mV (K D (0 mV)) was 50 mm. The K D (0 mV) for external TEA+ was much lower, 0.25 mm, and the blocking reaction was slower as evidenced by flickery open channel currents. With both internal and external TEA+ the blocking reaction was bimolecular and weakly voltage dependent. External charybdotoxin (40 nm) caused a large and reversible decrease of P o . The P o was increased by depolarization and/or by increasing the concentration of internal Ca2+. In 0.1 μm Ca2+ the half-maximal P o occurred at ≈100 mV; increasing Ca2+ to 1 μm shifted the voltage for the half-maximal P o to −75 mV. The Ca2+ dependence of the gating was approximated by a fourth power relationship suggesting the presence of four Ca2+ binding sites on the BK channel. Received: 23 October/Revised: 15 December 1995  相似文献   

5.
Previous squid-axon studies identified a novel K/HCO3 cotransporter that is insensitive to disulfonic stilbene derivatives. This cotransporter presumably responds to intracellular alkali loads by moving K+ and HCO 3 out of the cell, tending to lower intracellular pH (pHi). With an inwardly directed K/HCO3 gradient, the cotransporter mediates a net uptake of alkali (i.e., K+ and HCO 3 influx). Here we test the hypothesis that intracellular quaternary ammonium ions (QA+) inhibit the inwardly directed cotransporter by interacting at the intracellular K+ site. We computed the equivalent HCO 3 influx (J HCO3) mediated by the cotransporter from the rate of pHi increase, as measured with pH-sensitive microelectrodes. We dialyzed axons to pHi 8.0, using a dialysis fluid (DF) free of K+, Na+ and Cl. Our standard artificial seawater (ASW) also lacked Na+, K+ and Cl. After halting dialysis, we introduced an ASW containing 437 mm K+ and 0.5% CO2/12 mm HCO 3, which (i) caused membrane potential to become transiently very positive, and (ii) caused a rapid pHi decrease, due to CO2 influx, followed by a slower plateau-phase pHi increase, due to inward cotransport of K+ and HCO 3. With no QA+ in the DF, J HCO3 was ∼58 pmole cm−2 sec−1. With 400 mm tetraethylammonium (TEA+) in the DF, J HCO3 was virtually zero. The apparent K i for intracellular TEA+ was ∼78 mm, more than two orders of magnitude greater than that obtained by others for inhibition of K+ channels. Introducing 100 mm inhibitor into the DF reduced J HCO3 to ∼20 pmole cm−2 sec−1 for tetramethylammonium (TMA+), ∼24 for TEA+, ∼10 for tetrapropylammonium (TPA+), and virtually zero for tetrabutylammonium (TBA+). The apparent K i value for TBA+ is ∼0.86 mm. The most potent inhibitor was phenyl-propyltetraethylammonium (PPTEA+), with an apparent K i of ∼91 μm. Thus, trans-side quaternary ammonium ions inhibit K/HCO3 influx in the potency sequence PPTEA+ > TBA+ > TPA+ > TEA+≅ TMA+. The identification of inhibitors of the K/HCO3 cotransporter, for which no inhibitors previously existed, will facilitate the study of this transporter. Received: 21 November 2000/Revised: 14 May 2001  相似文献   

6.
The THP-1 human monocytic leukemia cell line is a useful model of macrophage differentiation. Patch clamp methods were used to identify five types of ion channels in undifferentiated THP-1 monocytes. (i) Delayed rectifier K+ current, I DR, was activated by depolarization to potentials positive to −50 mV, inactivated with a time constant of several hundred msec, and recovered from inactivation with a time constant ∼21 sec. I DR was inhibited by 4-aminopyridine (4-AP), tetraethylammonium (TEA+), and potently by charybdotoxin (ChTX). (ii) Ca-activated K+ current (I SK) dominated whole-cell currents in cells studied with 3–10 μm [Ca2+] i . I SK was at most weakly voltage-dependent, with reduced conductance at large positive potentials, and was inhibited by ChTX and weakly by TEA+, Cs+, and Ba2+, but not 4-AP or apamin. Block by Cs+ and Ba2+ was enhanced by hyperpolarization. (iii) Nonselective cation current, I cat, appeared at voltages above +20 mV. Little time-dependence was observed, and a panel of channel blockers was without effect. (iv) Chloride current, I Cl, was present early in experiments, but disappeared with time. (v) Voltage-activated H+ selective current is described in detail in a companion paper (DeCoursey & Cherny, 1996. J. Membrane Biol. 152:2). The ion channels in THP-1 cells are compared with channels described in other macrophage-related cells. Profound changes in ion channel expression that occur during differentiation of THP-1 cells are described in a companion paper (DeCoursey et al., 1996. J. Membrane Biol. 152:2). Received: 19 September 1995/Revised: 14 March 1996  相似文献   

7.
Paramecium tetraurelia responds to extracellular GTP (≥ 10 nm) with repeated episodes of prolonged backward swimming. These backward swimming events cause repulsion from the stimulus and are the behavioral consequence of an oscillating membrane depolarization. Ion substitution experiments showed that either Mg2+ or Na+ could support these responses in wild-type cells, with increasing concentrations of either cation increasing the extent of backward swimming. Applying GTP to cells under voltage clamp elicited oscillating inward currents with a periodicity similar to that of the membrane-potential and behavioral responses. These currents were also Mg2+- and Na+-dependent, suggesting that GTP acts through Mg2+-specific (I Mg) and Na+-specific (I Na) conductances that have been described previously in Paramecium. This suggestion is strengthened by the finding that Mg2+ failed to support normal behavioral or electrophysiological responses to GTP in a mutant that specifically lacks I Mg (``eccentric'), while Na+ failed to support GTP responses in ``fast-2,' a mutant that specifically lacks I Na. Both mutants responded normally to GTP if the alternative cation was provided. As I Mg and I Na are both Ca2+-dependent currents, the characteristic GTP behavior could result from oscillations in intracellular Ca2+ concentration. Indeed, applying GTP to cells in the absence of either Mg2+ or Na+ revealed a minor inward current with a periodicity similar to that of the depolarizations. This current persisted when known voltage-dependent Ca2+ currents were blocked pharmacologically or genetically, which implies that it may represent the activation of a novel purinergic-receptor–coupled Ca2+ conductance. Received: 28 October 1996/Revised: 24 December 1996  相似文献   

8.
In the E1 state of the Na,K-ATPase all cations present in the cytoplasm compete for the ion binding sites. The mutual effects of mono-, di- and trivalent cations were investigated by experiments with the electrochromic fluorescent dye RH421. Three sites with significantly different properties could be identified. The most unspecific binding site is able to bind all cations, independent of their valence and size. The large organic cation Br2-Titu3+ is bound with the highest affinity (<μm), among the tested divalent cations Ca2+ binds the strongest, and Na+ binds with about the same equilibrium dissociation constant as Mg2+ (∼0.8 mm). For alkali ions it exhibits binding affinities following the order of Rb+≃ K+ > Na+ > Cs+ > Li+. The second type of binding site is specific for monovalent cations, its binding affinity is higher than that of the first type, for Na+ ions the equilibrium dissociation constant is < 0.01 mm. Since binding to that site is not electrogenic it has to be close to the cytoplasmic surface. The third site is specific for Na+, no other ions were found to bind, the binding is electrogenic and the equilibrium dissociation constant is 0.2 mm. Received: 7 August 2000/Revised: 14 November 2000  相似文献   

9.
Ion channel expression was studied in THP-1 human monocytic leukemia cells induced to differentiate into macrophage-like cells by exposure to the phorbol ester, phorbol 12-myristate 13-acetate (PMA). Inactivating delayed rectifier K+ currents, I DR, present in almost all undifferentiated THP-1 monocytes, were absent from PMA-differentiated macrophages. Two K+ channels were observed in THP-1 cells only after differentiation into macrophages, an inwardly rectifying K+ channel (I IR) and a Ca2+-activated maxi-K channel (I BK). I IR was a classical inward rectifier, conducting large inward currents negative to E K and very small outward currents. I IR was blocked in a voltage-dependent manner by Cs+, Na+, and Ba2+, block increasing with hyperpolarization. Block by Na+ and Ba2+ was time-dependent, whereas Cs+ block was too fast to resolve. Rb+ was sparingly permeant. In cell-attached patches with high [K+] in the pipette, the single I IR channel conductance was ∼30 pS and no outward current could be detected. I BK channels were observed in cell-attached or inside-out patches and in whole-cell configuration. In cell-attached patches the conductance was ∼200–250 pS and at potentials positive to ∼100 mV a negative slope conductance of the unitary current was observed, suggesting block by intracellular Na+. I BK was activated at large positive potentials in cell-attached patches; in inside-out patches the voltage-activation relationship was shifted to more negative potentials by increased [Ca2+]. Macroscopic I BK was blocked by external TEA+ with half block at 0.35 mm. THP-1 cells were found to contain mRNA for Kv1.3 and IRK1. Levels of mRNA coding for these K+ channels were studied by competitive PCR (polymerase chain reaction), and were found to change upon differentiation in the same direction as did channel expression: IRK1 mRNA increased at least 5-fold, and Kv1.3 mRNA decreased on average 7-fold. Possible functional correlates of the changes in ion channel expression during differentiation of THP-1 cells are discussed. Received: 19 September 1995/Revised: 14 March 1996  相似文献   

10.
The depolarization-activated, high-conductance ``maxi' cation channel in the plasma membrane of rye (Secale cereale L.) roots is permeable to a wide variety of monovalent and divalent cations. The permeation of K+, Na+, Ca2+ and Ba2+ through the pore could be simulated using a model composed of three energy barriers and two ion binding sites (a 3B2S model), which assumed single-file permeation and the possibility of double cation occupancy. The model had an asymmetrical free energy profile. Differences in permeation between cations were attributed primarily to differences in their free energy profiles in the regions of the pore adjacent to the extracellular solution. In particular, the height of the central free energy peak differed between cations, and cations differed in their affinities for ion binding sites. Significant ion repulsion occurred within the pore, and the mouths of the pore had considerable surface charge. The model adequately described the diverse current vs. voltage (I/V) relationships obtained over a wide variety of experimental conditions. It described the phenomena of non-Michaelian unitary conductance vs. activity relationships for K+, Na+ and Ca2+, differences in selectivity sequences obtained from measurements of conductance and permeability ratios, changes in relative cation permeabilities with solution composition, and the complex effects of Ba2+ and Ca2+ on K+ currents through the channel. The model enabled the prediction of unitary currents and ion fluxes through the maxi cation channel under physiological conditions. It could be used, in combination with data on the kinetics of the channel, as input to electrocoupling models allowing the relationships between membrane voltage, Ca2+ influx and Ca2+ signaling to be studied theoretically. Received: 29 April 1998/Revised: 20 November 1998  相似文献   

11.
The effects of Ni2+ were evaluated on slowly-decaying, high-voltage-activated (HVA) Ca2+ currents expressed by pyramidal neurons acutely dissociated from guinea-pig piriform cortex. Whole-cell, patch-clamp recordings were performed with Ba2+ as the charge carrier. Ni2+ blocked HVA Ba2+ currents (I Bas) with an EC50 of approximately 60 μm. Additionally, after application of nonsaturating Ni2+ concentrations, residual currents activated with substantially slower kinetics than both total and Ni2+-sensitive I Bas. None of the pharmacological components of slowly decaying, HVA currents activated with kinetics significantly different from that of total currents, indicating that the effect of Ni2+ on I Bas kinetics cannot be attributed to the preferential inhibition of a fast-activating component. The effect of Ni2+ on I Ba amplitude was voltage-independent over the potential range normally explored in our experiments (−60 to +20 mV), hence the Ni2+-dependent decrease of I Ba activation rate is not due to a voltage- and time-dependent relief from block. Moreover, Ni2+ significantly reduced I Ba deactivation speed upon repolarization, which also is not compatible with a depolarization-dependent unblocking mechanism. The dependence on Ni2+ concentration of the I Ba activation-rate reduction was remarkably different from that found for I Ba block, with an EC50 of ∼20 μm and a Hill coefficient of ∼1.73 vs.∼1.10. These results demonstrate that Ni2+, besides inhibiting the I Bas under study probably by exerting a blocking action on the pore of the underlying Ca2+ channels, also interferes with Ca2+-channel gating kinetics, and strongly suggest that the two effects depend on Ni2+ occupancy of binding sites at least partly distinct. Received: 13 July 2000/Revised: 9 November 2000  相似文献   

12.
A cation-selective channel was characterized in isolated patches from osmotically swollen thylakoids of spinach (Spinacea oleracea). This channel was permeable for K+ as well as for Mg2+ and Ca2+ but not for Cl. When K+ was the main permeant ion (symmetrical 105 mm KCl) the conductance of the channel was about 60 pS. The single channel conductance for different cations followed a sequence K+ > Mg2+≥ Ca2+. The permeabilities determined by reversal potential measurements were comparable for K+, Ca2+, and Mg2+. The cation channel displayed bursting behavior. The total open probability of the channel increased at more positive membrane potentials. Kinetic analysis demonstrated that voltage dependence of the total open probability was determined by the probability of bursts formation while the probability to find the channel in open state within a burst of activity was hardly voltage-dependent. The cation permeability of intact spinach thylakoids can be explained on the single channel level by the data presented here. Received: 26 December 1995/Revised: 17 April 1996  相似文献   

13.
The hyperpolarization of the electrical plasma membrane potential difference has been identified as an early response of plant cells to various signals including fungal elicitors. The hyperpolarization-activated influx of Ca2+ into tomato cells was examined by the application of conventional patch clamp techniques. In both whole cell and single-channel recordings, clamped membrane voltages more negative than −120 mV resulted in time- and voltage-dependent current activation. Single-channel currents saturated with increasing activities of Ca2+ and Ba2+ from 3 to 26 mm and the single channel conductance increased from 4 pS to 11 pS in the presence of 20 mm Ca2+ or Ba2+, respectively. These channels were 20–25 and 10–13 times more permeable to Ca2+ than to K+ and to Cl, respectively. Channel currents were strongly inhibited by 10 μm lanthanum and 50% inhibited by 100 μm nifedipine. This evidence suggests that hyperpolarization-activated Ca2+-permeable channels provide a mechanism for the influx of Ca2+ into tomato cells. Received: 13 February 1996/Revised: 12 August 1996  相似文献   

14.
Members of the eukaryotic PIEZO family (the human orthologs are noted hPIEZO1 and hPIEZO2) form cation-selective mechanically-gated channels. We characterized the selectivity of human PIEZO1 (hPIEZO1) for alkali ions: K+, Na+, Cs+ and Li+; organic cations: TMA and TEA, and divalents: Ba2+, Ca2+, Mg2+ and Mn2+. All monovalent ions permeated the channel. At a membrane potential of -100 mV, Cs+, Na+ and K+ had chord conductances in the range of 35–55 pS with the exception of Li+, which had a significantly lower conductance of ~ 23 pS. The divalents decreased the single-channel permeability of K+, presumably because the divalents permeated slowly and occupied the open channel for a significant fraction of the time. In cell-attached mode, 90 mM extracellular divalents had a conductance for inward currents carried by the divalents of: 25 pS for Ba2+ and 15 pS for Ca2+ at -80 mV and 10 pS for Mg2+ at -50 mV. The organic cations, TMA and TEA, permeated slowly and attenuated K+ currents much like the divalents. As expected, the channel K+ conductance increased with K+ concentration saturating at ~ 45 pS and the KD of K+ for the channel was 32 mM. Pure divalent ion currents were of lower amplitude than those with alkali ions and the channel opening rate was lower in the presence of divalents than in the presence of monovalents. Exposing cells to the actin disrupting reagent cytochalasin D increased the frequency of openings in cell-attached patches probably by reducing mechanoprotection.  相似文献   

15.
The adsorption of 5′-AMP onto precipitated calcium phosphate (CaPi) requires the presence of soluble calcium and this dependence exhibits a Michaelian-like behavior. This result suggests that the formation of a complex between 5′-AMP and free Ca2+ (CaAMP) is a prelude to the adsorption of the nucleotide in the solid matrix. At concentrations one order of magnitude higher, Mn2+ and Mg2+ can substitute for soluble Ca2+ in the adsorption of 5′-AMP onto solid CaPi. However, when added simultaneously with 5′-AMP to a heterogeneous mixture that contains CaPi and soluble Ca2+, Mn2+ and Mg2+ inhibit the adsorption of 5′-AMP in a concentration-dependent manner. This suggests the formation of complexes that are much less effective for 5′-AMP adsorption than the CaAMP complex. On the other hand, Mn2+ and Mg2+ cannot promote desorption of the nucleotide attached to the precipitate in the presence of soluble Ca2+ if they are added after adsorption has attained equilibrium. Although desorption of 5′-AMP can be obtained by a sequential dilution of the soluble phase with buffer and no nucleotide in a process that obeys a Langmuir equation, the lack of effect of Mn2+ or Mg2+ when adsorption has attained its maximal value suggests strong interactions between the CaAMP complex and the solid matrix when adsorption equilibrium is reached. The divalent cations present in the matrix also participate with different selectivity in the attachment of the CaAMP complex, indicating that a cation-exchange mechanism could have acted in the modulation of adsorptive/desorptive processes involving biomonomers and phosphate surfaces in primitive aqueous environments. Received: 11 December 1995 / Accepted: 5 April 1996  相似文献   

16.
Calcium channels in the plasma membrane of root cells fulfill both nutritional and signaling roles. The permeability of these channels to different cations determines the magnitude of their cation conductances, their effects on cell membrane potential and their contribution to cation toxicities. The selectivity of the rca channel, a Ca2+-permeable channel from the plasma membrane of wheat (Triticum aestivum L.) roots, was studied following its incorporation into planar lipid bilayers. The permeation of K+, Na+, Ca2+ and Mg2+ through the pore of the rca channel was modeled. It was assumed that cations permeated in single file through a pore with three energy barriers and two ion-binding sites. Differences in permeation between divalent and monovalent cations were attributed largely to the affinity of the ion binding sites. The model suggested that significant negative surface charge was present in the vestibules to the pore and that the pore could accommodate two cations simultaneously, which repelled each other strongly. The pore structure of the rca channel appeared to differ from that of L-type calcium channels from animal cell membranes since its ion binding sites had a lower affinity for divalent cations. The model adequately accounted for the diverse permeation phenomena observed for the rca channel. It described the apparent submillimolar K m for the relationship between unitary conductance and Ca2+ activity, the differences in selectivity sequences obtained from measurements of conductance and permeability ratios, the changes in relative cation permeabilities with solution ionic composition, and the complex effects of Ca2+ on K+ and Na+ currents through the channel. Having established the adequacy of the model, it was used to predict the unitary currents that would be observed under the ionic conditions employed in patch-clamp experiments and to demonstrate the high selectivity of the rca channel for Ca2+ influx under physiological conditions. Received: 23 August 1999/Revised: 12 November 1999  相似文献   

17.
Recent studies from our laboratory have shown that in the mouse and rat nephron Ca2+ and Mg2+ are not reabsorbed in the medullary part of the thick ascending limb (mTAL) of Henle's loop. The aim of the present study was to investigate whether the absence of transepithelial Ca2+ and Mg2+ transport in the mouse mTAL is due to its relative low permeability to divalent cations. For this purpose, transepithelial ion net fluxes were measured by electron probe analysis in isolated perfused mouse mTAL segments, when the transepithelial potential difference (PDte.) was varied by chemical voltage clamp, during active NaCl transport inhibition by luminal furosemide. The results show that transepithelial Ca2+ and Mg2+ net fluxes in the mTAL are not driven by the transepithelial PDte. At zero voltage, a small but significant net secretion of Ca2+ into the tubular lumen was observed. With a high lumen-positive PDte generated by creating a transepithelial bath-to-lumen NaCl concentration gradient, no Ca2+ and Mg2+ reabsorption was noted; instead significant and sustained Ca2+ and Mg2+ net secretion occurred. When a lumen-positive PDte was generated in the absence of apical furosemide, but in the presence of a transepithelial bath-to-lumen NaCl concentration gradient, a huge Ca2+ net secretion and a lesser Mg2+ net secretion, not modified by ADH, were observed. Replacement of Na+ by K+ in the lumen perfusate induced, in the absence of PDte changes, important but reversible net secretions of Ca2+ and Mg2+. In conclusion, our results indicate that the passive permeability of the mouse mTAL to divalent cations is very low and not influenced by ADH. This nephron segment can secrete Ca2+ and Mg2+ into the luminal fluid under conditions which elicit large lumen-positive transepithelial potential differences. Given the impermeability of this epithelium to Ca2+ and Mg2+, the secretory processes would appear to be of cellular origin. Received: 30 January 1996/Revised: 24 April 1996  相似文献   

18.
The effect of extracellular calcium ([Ca2+] e ) on cytosolic calcium ([Ca2+] i ) was investigated in thick ascending limbs and collecting ducts from the rat kidney, using the fluorescent dye fura-2. In cortical collecting ducts, basolateral but not apical changes in [Ca2+] e were associated with parallel changes in [Ca2+] i . Basal [Ca2+] i was hardly modified by nifedipine and verapamil but was decreased by 60% by basolateral La3+. Increasing peritubular [Ca2+] e triggered Ca2+ release from intracellular stores. This effect was not reproduced by agonists of the renal Ca2+-receptor RaKCaR, e.g., Ba2+, Mg2+, Gd3+, and neomycin, but was reproduced by Ni2+. Ni2+-induced mobilization of intracellular Ca2+ was larger in the inner medullary collecting duct, a segment which poorly responds to increasing [Ca2+] e . In the cortical thick ascending limb, removing basolateral Ca2+ hardly altered [Ca2+] i but increasing [Ca2+] e or adding Ba2+, Mg2+, Gd3+ and neomycin released intracellular calcium. These data demonstrate that (1) basolateral influx of calcium occurs in cortical collecting ducts, under basal conditions; (2) this influx occurs through nonvoltage gated channels, permeable to Ba2+, insensitive to verapamil and nifedipine, and blocked by La3+; (3) increasing [Ca2+] e stimulates the influx and triggers intracellular calcium release, independently of the phospholipase C-coupled receptor RaKCaR; (4) RaKCaR is functionally expressed in thick ascending limbs; (5) another membrane receptor, sensitive to Ni2+ but not to Ca2+ is present in the collecting duct. Received: 12 July 1996/Revised: 28 October 1996  相似文献   

19.
A Ca2+-activated (I Cl,Ca) and a swelling-activated anion current (I Cl,vol) were investigated in Ehrlich ascites tumor cells using the whole cell patch clamp technique. Large, outwardly rectifying currents were activated by an increase in the free intracellular calcium concentration ([Ca2+] i ), or by hypotonic exposure of the cells, respectively. The reversal potential of both currents was dependent on the extracellular Cl concentration. I Cl,Ca current density increased with increasing [Ca2+] i , and this current was abolished by lowering [Ca2+] i to <1 nm using 1,2-bis-(o-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid (BAPTA). In contrast, activation of I Cl,vol did not require an increase in [Ca2+] i . The kinetics of I Cl,Ca and I Cl,vol were different: at depolarized potentials, I Cl,Ca as activated in a [Ca2+] i - and voltage-dependent manner, while at hyperpolarized potentials, the current was deactivated. In contrast, I Cl,vol exhibited time- and voltage-dependent deactivation at depolarized potentials and reactivation at hyperpolarized potentials. The deactivation of I Cl,vol was dependent on the extracellular Mg2+ concentration. The anion permeability sequence for both currents was I > Cl > gluconate. I Cl,Ca was inhibited by niflumic acid (100 μm), 5-Nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 100 μm) and 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS, 100 μm), niflumic acid being the most potent inhibitor. In contrast, I Cl,vol was unaffected by niflumic acid (100 μm), but abolished by tamoxifen (10 μm). Thus, in Ehrlich cells, separate chloride currents, I Cl,Ca and I Cl,vol, are activated by an increase in [Ca2+] i and by cell swelling, respectively. Received: 12 November 1997/Revised: 5 February 1998  相似文献   

20.
Different (iso)guanosine-based self-assembled ionophores give distinctly different results in extraction experiments with alkali(ne earth) cations. A lipophilic guanosine derivative gives good extraction results for K+, Rb+, Ca2+, Sr2+, and Ba2+ and in competition experiments it clearly favors the divalent Sr2+ (and Ba2+) cations. 1,3-Alternate calix[4]arene tetraguanosine hardly shows any improvement in the extraction percentages compared to its reference compound 1,3-alternate calix[4]arene tetraamide. This indicates that one G-quartet does not provide efficient cation complexation under these conditions. In the case of the lipophilic isoguanosine derivative there is a cation size dependent affinity for the monovalent cations (Cs+ ? Rb+ ? K+), but not for the divalent cations (Ca2+ > Ba2+ > Sr2+ > Mg2+). In competition experiments the isoguanosine derivative, unlike guanosine, does not discriminate between monovalent and divalent cations, giving an almost equal extraction of Cs+ and Ba2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号