首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The relationships between intracellular sodium content, sodium transport and serum effects were investigated in human fibroblasts. In the cells with low intracellular sodium (Na iL /+ ;0.04 mol sodium/mg protein) serum stimulated the sodium-potassium pump as measured by ouabain-sensitive sodium efflux and rubidium influx and also exerted a transstimulation of ouabain-insensitive sodium transport resulting in net influx. In cells with high intracellular sodium (Na iH /+ ;0.42 mol sodium/mg protein) all aspects of sodium transport were increased compared to Na iL /+ cells. In these cells serum caused no change in sodium-potassium pump activity but significantly increased the ouabain-insensitive sodium fluxes resulting in net efflux. In Na iL /+ cells, serum promoted net sodium influx through an amiloride-sensitive pathway that was undetectable in the basal state. In Na iH /+ cells the serum-stimulated net efflux was amiloride sensitive but this pathway also contributed to a major portion of sodium transport in the basal state. This study demonstrated that sodium-potassium pump activity is directed by the supply of internal sodium and that serum can increase this supply by promoting net influx, and that serum-induced sodium transport can be modified by intracellular sodium content.  相似文献   

2.
Summary Models for active Cl transport across epithelia are often assumed to be universal although they are based on detailed studies of a relatively small number of epithelia from vertebrate animals. Epithelial Cl transport is also important in many invertebrates, but little is known regarding its cellular mechanisms. We used short-circuit current, tracer fluxes and ion substitutions to investigate the basic properties of Cl absorption by locust hindgut, an epithelium which is ideally suited for transport studies. Serosal addition of 1mm adenosine 35-cyclic monophosphate (cAMP), a known stimulant of Cl transport in this tissue, increased short-circuit current (I sc) and net reabsorptive36Cl flux (J net Cl ) by 1000%. Cl absorption did not exhibit an exchange diffusion component and was highly selective over all anions tested except Br. Several predictions of Na- and HCO3-coupled models for Cl transport were tested: Cl-dependentI sc was not affected by sodium removal (<0.05mm) during the first 75 min. Also, a large stimulation ofJ net Cl was elicited by cAMP when recta were bathed for 6 hr in nominally Na-free saline (<0.001 to 0.2mm) and there was no correlation between Cl transport rate and the presence of micromolar quantities of Na contamination. Increased unidirectional influx of36Cl into rectal tissue during cAMP-stimulation was not accompanied by a comparable uptake of22Na.J net Cl was independent of exogenous CO2 and HCO3, but was strongly dependent on the presence of K. These results suggest that the major fraction of Cl transport across this insect epithelium occurs by an unusual K-dependent mechanism that does not directly require Na or HCO3.  相似文献   

3.
Summary Cl influx at the luminal border of the epithelium of rabbit gallbladder was measured by 45-sec exposures to36Cl and3H-sucrose (as extracellular marker). Its paracellular component was evaluated by the use of 25mm SCN which immediately and completely inhibits Cl entry into the cell. Cellular influx was equal to 16.7eq cm–2 hr–1 and decreased to 8.5eq cm–2 hr–1 upon removal of HCO 3 from the bathing media and by bubbling 100% O2 for 45 min. When HCO 3 was present, cellular influx was again about halved by the action of 10–4 m acetazolamide, 10–5 to 10–4 m furosemide, 10–5 to 10–4 m 4-acetamido-4-isothiocyanostilbene-2,2-disulfonate (SITS), 10–3 m amiloride. The effects of furosemide and SITS were tested at different concentrations of the inhibitor and with different exposure times: they were maximal at the concentrations reported above and nonadditive. In turn, the effects of amiloride and SITS were not additive. Acetazolamide reached its maximal action after an exposure of about 2 min. When exogenous HCO 3 was absent, the residual cellular influx was insensitive to acetazolamide, furosemide and SITS. When exogenous HCO 3 was present in the salines, Na+ removal from the mucosal side caused a slow decline of cellular Cl influx; conversely, it immediately abolished cellular Cl influx in the absence of HCO 3 . In conclusion, about 50% of cellular influx is sensitive to HCO 3 , inhibitable by SCN, acetazolamide, furosemide, SITS and amiloride and furthermore slowly dependent on Na+. The residual cellular influx is insensitive to bicarbonate, inhibitable by SCN, resistant to acetazolamide, furosemide, SITS and amiloride, and immediately dependent on Na+. Thus, about 50% of apical membrane NaCl influx appears to result from a Na+/H+ and Cl/HCO 3 exchange, whereas the residual influx seems to be due to Na+–Cl contranport on a single carrier. Whether both components are simultaneously present or the latter represents a cellular homeostatic counterreaction to the inhibition of the former is not clear.  相似文献   

4.
Cat Heart Muscle in Vitro : III. The extracellular space   总被引:15,自引:8,他引:7       下载免费PDF全文
The "osmotic gradient" method, an intracellular microelectrode technique for determining whether an uncharged, water-soluble molecule enters cells or remains extracellular, is described. Using this method, a series of carbohydrates of graded molecular size were examined. In cat papillary muscles mannitol, molecular radius 4.0 Å, remained extracellular while arabinose, molecular radius 3.5 Å entered the cells. Measurement of the simultaneous uptake of H3-mannitol and C14-inulin showed that mannitol equilibrates with 40 per cent of total water in 1 hour, after which the mannitol space does not further increase. By contrast, inulin, molecular radius ~15 Å, equilibrates with 24 per cent of total water in 1 hour; thereafter the inulin space continues to increase very slowly. The intracellular K concentrations are significantly higher and the intracellular Na and Cl concentrations significantly lower when mannitol rather than inulin is used to measure the extracellular space. The intracellular Cl concentration determined with Cl36 or Br82 is significantly higher than that calculated from the membrane potential assuming a passive Cl distribution. In addition, it is shown that choline enters and is probably metabolized by the cells of papillary muscle.  相似文献   

5.
A method has been developed for measuring K influx into the epithelial cells of frog skin from the inside solution. Diffusion delay in the connective tissue has been taken into account. Ninety-four per cent of skin K was found to exchange with K42 in the inside solution with a single time constant. K influx showed saturation with increasing K concentration, was not altered by imposing a potential difference of ±200 mv across the skin, and was inhibited by dinitrophenol, fluoroacetate, and ouabain. Relatively low concentrations of dinitrophenol (5 x 10-5 M) and fluoroacetate (10-10 M) had no effect on k influx but caused a 40 per cent decrease in net Na flux. There was no correlation between the rate of K uptake at the "inner barrier" and the rate of net Na transport. Reduction of net Na transport by lowering Na concentration in the outside solution caused little change in K uptake. These observations indicate that there is not a significant Na-K exchange involved in active transport of Na across the skin. K influx was found, however, to require Na in the inside bathing solution.  相似文献   

6.
Summary The influx and efflux of sodium from 4-hr washed, low salt corn roots (Zea mays L.) has been studied for characterization of passive and active components. Initial Na+ content of the roots is very low, 2.25±0.4 mol/g fresh weight. Na+ influx in the presence of 0.2mm Ca2+ and 0.002 to 20mm K+ is passive (a leak) based upon Goldman-type models, being determined by Na+ and cell potential (). Na+ was not transported by the K+ carrier and influx was unaffected by 50 m dicyclohexylcarbodiimide (DCCD). Permeability of the cells to Na+ was of the same order asP k.Efflux of Na+ was by an efficient and rapid active transport system (a pump), thus accounting for the failure of these roots to accumulate high levels of Na+. In short-term loading and efflux experiments, internal Na+ turnover had a half-time of about 5 min. Sodium efflux was unaffected by DCCD. Net H+ flux was zero in the presence of DCCD regardless of sodium efflux, indicating absence of Na+/H+ antiport. Efflux of Na+ was equally rapid into medium containing no Na+ and only 0.002mm K+. K+ influx accounted for less than 4% of Na+ efflux, prompting the hypothesis that the Na+ (or cation?) efflux pump is the second electrogenic system previously defined based upon electrophysiological measurements.  相似文献   

7.
Sodium movements in internally perfused giant axons from the squid Dosidicus gigas were studied with varying internal sodium concentrations and with fluoride as the internal anion. It was found that as the internal concentration of sodium was increased from 2 to 200 mM the resting sodium efflux increased from 0.09 to 34.0 pmoles/cm2sec and the average resting sodium influx increased from 42.9 to 64.5 pmoles/cm2sec but this last change was not statistically significant. When perfusing with a mixture of 500 mM K glutamate and 100 mM Na glutamate the resting efflux was 10 ± 3 pmoles/cm2sec and 41 ± 10 pmoles/cm2sec for sodium influx. Increasing the internal sodium concentration also increased both the extra influx and the extra efflux of sodium due to impulse propagation. At any given internal sodium concentration the net extra influx was about 5 pmoles/cm2impulse. This finding supports the notion that the inward current generated in a propagated action potential can be completely accounted for by movements of sodium.  相似文献   

8.
9.
Summary Instead of the conventional steady-state fluxes, the presteady-state fluxes of22Na across the rabbit corneal endothelium were measured. In contrast to reports that there is no net Na+ movement across the corneal endothelium, we find a net transport of Na+ across this tissue. The direction of net Na+ flux is from the stromal to the aqueous side and the magnitude is 2.3±0.4 eq/cm2·hr (n=11,sem). Net Na+ transport is inhibited in the presence of ouabain (10–4 m). Acetazolamide (10–4 m) has only a slight inhibitory effect on the rate of Na+ transport but decreases the transendothelial potential difference by about 30%. The passive component of the Na+ transport has been estimated by analyzing the presteady-state influx and efflux curves and found to occur 10% via cellular and 90% via paracellular routes. The analysis for the separation of the pathways has been based on a recently proposed theory which holds that the flux ratio, regardless of its driving forces, is independent of time.  相似文献   

10.
Summary We have confirmed previous demonstrations of sodium gradient-stimulated transport ofl-alanine, phenylalanine, proline, and -alanine, and in addition demonstrated transport of N-methylamino-isobutyric acid (MeAIB) and lysine in isolated rabbit kidney brush border vesicles. In order to probe the multiplicity of transport pathways available to each of these14C-amino acids, we measured the ability of test amino acids to inhibit tracer uptake. To obtain a rough estimate of nonspecific effects, e.g., dissipation of the transmembrane sodium electrochemical potential gradient, we measured the ability ofd-glucose to inhibit tracer uptake.l-alanine and phenylalanine were completely mutually inhibitory. Roughly 75% of the14C-l-alanine uptake could be inhibited by proline and -alanine, while lysine and MeAIB were no more effective thand-glucose. Roughly 50% of the14C-phenylalanine uptake could be inhibited by proline and -alanine; lysine was as effective as proline and -alanine, and the effects of pairs of these amino acids at 50mm each were not cumulative. MeAIB was no more effective thand-glucose. We conclude that three pathways mediate the uptake of neutral,l, -amino acids. One system is inaccessible to lysine, proline, and -alanine. The second system carries a major fraction of thel-alanine flux; it is sensitive to proline and -alanine, but not to lysine. The third system carries half the14C-phenylalanine flux, and it is sensitive to proline, lysine, and -alanine. Since the neutral,l, -amino acid fluxes are insensitive to MeAIB, we conclude that they are not mediated by the classicalA system, and since all of thel-alanine flux is inhibited by phenylalanine, we conclude that it is not mediated by the classicalASC system.l-alanine and phenylalanine completely inhibit uptake of lysine. MeAIB is no more effective thand-glucose in inhibiting lysine uptake, while proline and -alanine appear to inhibit a component of the lysine flux. We conclude that the14C-lysine fluxes are mediated by two systems, one, shared with phenylalanine, which is inhibited by proline, -alanine, andl-alanine, and one which is inhibited byl-alanine and phenylalanine but inaccessible to proline, -alanine, and MeAIB. Fluxes of14C-proline and14C-MeAIB are completely inhibited byl-alanine, phenylalanine, proline, and MeAIB, but they are insensitive to lysine. Proline and MeAIB, as well as alanine and phenylalanine, but not lysine, inhibit14C--alanine uptake. However, -alanine inhibits only 38% of the14C-proline uptake and 57% of the MeAIB uptake. We conclude that two systems mediate uptake of proline and MeAIB, and that one of these systems also transports -alanine.  相似文献   

11.
Summary Addition of noradrenaline (4×10–5 m) to the inner bathing fluid in the skin of the frogRana esculenta results in increased unidirectional fluxes of urea, thiourea, N-methyl-thiourea, N-N-dimethylthiourea and mannitol. Fluxes towards the external medium ( 0) undergo a much greater increase than those moving in the opposite direction ( i ). The effect of noradrenaline on ( 0) is higher for urea and thiourea than mannitol, while its effect on ( 0) thiourea derivatives is related to lipid solubility. This phenomenon does not occur for ( i ) of the same molecules.FCCP (10–6 m) pretreatment strongly inhibits the noradrenaline effect on ( 0). In skin pretreated whith colchicine (2×10–5 m) both urea fluxes are increased to the same extent by noradrenaline. Noradrenaline is concluded to exert two separate effects: (1) a change in permeability in both directions; (2) a secretion of nonelectrolytes towards the external fluid. Such secretion is most probably associated with the hormone-induced secretion of fluid and electrolytes, perhaps mediated by an exocytotic mechanism.  相似文献   

12.
Summary A simple procedure was developed for the isolation of a sarcolemma-enriched membrane preparation from homogenates of bullfrog (Rana catesbeiana) heart. Crude microsomes obtained by differential centrifugation were fractionated in Hypaque density gradients. The fraction enriched in surface membrane markers consisted of 87% tightly sealed vesicles. The uptake of86Rb+ by the preparation was measured in the presence of an opposing K+ gradient using a rapid ion exchange technique. At low extravesicular Rb+ concentrations, at least 50% of the uptake was blocked by addition of 1mm ouabain to the assay medium. Orthovanadate (50 m), ADP (2.5mm), or Mg (1mm) were also partial inhibitors of Rb+ uptake under these conditions, and produced a complete block of Rb+ influx in the presence of 1mm ouabain. When86Rb+ was used as a tracer of extravesicular K+ (Rb 0 + 40 m K 0 + =0.1–5mm) a distinct uptake pathway emerged, as detected by its inhibition by 1mm Ba2+ (K 0.5=20 m). At a constant internal K+ concentration (K in + =50mm) the magnitude of the Ba2+-sensitive K+ uptake was found to depend on K 0 + in a manner that closely resembles the K+ concentration dependence of the background K+ conductance (I Kl) observed electrophysiologically in intact cardiac cells. We conclude that K+ permeates passively this preparation through two distinct pathways, the sodium pump and a system identifiable as the background potassium channel.  相似文献   

13.
Summary Bidirectional transepithelial K+ flux measurements across high-resistance epithelial monolayers of MDCK cells grown upon millipore filters show no significant net K+ flux.Measurements of influx and efflux across the basal-lateral and apical cell membranes demonstrate that the apical membranes are effectively impermeable to K+.K+ influx across the basal-lateral cell membranes consists of an ouabain-sensitive component, an ouabain-insensitive component, an ouabain-insensitive but furosemide-sensitive component, and an ouabain-and furosemide-insensitive component.The action of furosemide upon K+ influx is independent of (Na+–K+)-pump inhibition. The furosemide-sensitive component is markedly dependent upon the medium K+, Na+ and Cl content. Acetate and nitrate are ineffective substitutes for Cl, whereas Br is partially effective. Partial Cl replacement by NO3 gives a roughly linear increase in the furosemide-sensitive component. Na+ replacement by choline abolishes the furosemide-sensitive component, whereas Li+ is a partially effective replacement. Partial Na+ replacement with choline gives an apparent affinity of 7mm Na, whereas variation of the external K+ content gives an affinity of the furosemide-sensitive component of 1.0mm.Furosemide inhibition is of high affinity (K 1/2=3 m). Piretanide, ethacrynic acid, and phloretin inhibit the same component of passive K+ influx as furosemide; amiloride, 4,-aminopyridine, and 2,4,6-triaminopyrimidine partially so. SITS was ineffective.Externally applied furosemide and Cl replacement by NO 3 inhibit K+ efflux across the basal-lateral membranes indicating that the furosemide-sensitive component consists primarily of KK exchange.  相似文献   

14.
The effects of Mg2+ on the glutamate-, kainate-, N-methyl-d-aspartate- and quisqualate-induced influx of45Ca2+ were studied in cultured cerebellar granule cells. The N-methyl-d-aspartate- and quisqualate-evoked influx was totally and the kainate- and glutamate-evoked influx partially blocked in 1.3 mM extracellular Mg2+. The increase in influx induced by kainate, quisqualate and glutamate was maximal at 0.1 mM Mg2+, whereas N-methyl-d-aspartate was most effective in totally Mg2+-free media.d-2-Amino-5-phosphonovalerate blocked partially and phencyclidine completely the enhancement of Ca2+ influx by 1 mM quisqualate in 0.1-mM Mg2+ medium. The effect of 10 M quisqualate was also significantly inhibited by antagonists specific for different glutamate receptor subtypes, including N-methyl-d-aspartate, (RS)-amino-3-hydroxy-5-methyl-4-isozazolepropionate and metabotropic recptors. This evidences a heterogeneous action of quisqualate, mediated by different glutamate receptor subtypes in 0.1 mM Mg2+ medium. The efficacy of quisqualate in inducing influx of Ca+ and the selectivity of antagonists for different receptors are also modified by extracellular Mg2+.  相似文献   

15.
Summary Transepithelial Li+ influx was studied in the isolated epithelium from abdominal skin ofRana catesbeiana. With Na+-Ringer's as inside medium and Li+-Ringer's as outside medium, the Li+ influx across the epithelium was 15.6 A/cm2. This influx was considerably reduced by removal of either Na+ or K+ from the inside bath or by the addition of ouabain or amiloride. Epithelial K+ or Na+ concentration was respectively lower in epithelia bathed in K+-free Ringer's or Na+-free Ringer's. In conditions of negligible Na+ transport, a 20mm Li+ gradient (outin) produced across the short-circuited epithelium a Li+ influx of 11.8 A/cm2 and a mean short-circuit current of 10.2 A/cm2. The same Li+ gradient in the opposite direction produced a Li+ outflux of only 1.9 A/cm2. With equal Li+ concentration (10.3 and 20.6mm) on both sides of the epithelium, plus Na+ in the inside solution only, a stable Li+-dependent short-circuit current was observed. Net Li+ movement (outin) was also indirectly determined in the presence of an opposing Li+ gradient. Although Li+ does not substitute for Na+ as an activator of the (Na++K+)-ATPase from frog skin epithelium, Li+ influx appears to be related to Na+–K+ pump activity. It is proposed that the permeability of the outer barrier to Na+ and Li+ is regulated by the electrical gradient produced by electrogenic Na+–K+ pumps located in the membrane of the deeper epithelial cells.  相似文献   

16.
Summary Previous experiments indicate that the apical membrane of the frog retinal pigment epithelium contains electrogenic NaK pumps. In the pressent experiments net potassium and rubidium transport across the epithelium was measured as a function of extracellular potassium (rubidium) concentration, [K] o ([Rb] o ). The net rate of retina-to-choroid42K(86Rb) transport increased monotonically as [K] o ([Rb] o ), increased from approximately 0.2 to 5mm on both sides of the tissue or on the apical (neural retinal) side of the tissue. No further increase was observed when [K] o ([Rb] o ) was elevated to 10mm. Net sodium transport was also stimulated by elevating [K] o . The net K transport was completely inhibited by 10–4 m ouabain in the solution bathing the apical membrane. Ouabain inhibited the unidirectional K flux in the direction of net flux but had not effect on the back-flux in the choroid-to-retina direction. The magnitude of the ouabain-inhibitable42K(86Rb) flux increased with [K] o ([Rb] o ). These results show that the apical membrane NaK pumps play an important role in the net active transport of potassium (rubidium) across the epithelium. The [K] o changes that modulate potassium transport coincide with the light-induced [K] o changes that occur in the extracellular space separating the photoreceptors and the apical membrane of the pigment epithelium.  相似文献   

17.
Isolated posterior gills of shore crabs,Carcinus maenas, previously acclimated for at least 1 month to brackish water of 10 S, were connected with an artificial hemolymph circulation by means of thin polyethylene tubings. Gills were symmetrically perfused and bathed with 50 % sea water. Transepithelial potential differences (PDs) and fluxes of sodium between medium and blood were measured under control conditions and following reductions of PDs by means of 5 mM internal (blood side) ouabain, 0.5 mM internal and external (bathing medium) NaCN or by exhaustion of energy reserves along with a prolonged perfusion period of more than 9 h. In these experiments22Na was used as tracer. Each of the three modes of reducing transepithelial potential differences resulted in a decrease in sodium influxes from 500–1000 µmoles g–1 h–1 to 250–400 µmoles g–1 h–1. The findings suggest that sodium influx, which normally greatly exceeds efflux, was diminished by its active component. The remaining non-inhibitable influx equals efflux values. Our findings thus indicate that efflux is completely passive, while influx has — beside a passive component of efflux magnitudes — an additional active portion which is much larger than the passive component. Since ouabain is a specific inhibitor of the Na-K-ATPase, our results confirm previous findings (Siebers et al., 1985) that the basolaterally located Na-K-ATPase generates the transepithelial potential difference in the gills, which is inside negative by about 6–12 mV. Inhibition of the active portion of sodium influx by internal ouabain along with reduced PDs suggests that transepithelial PDs generated by the branchial sodium pump are the driving force for active sodium uptake in hyperregulating brackish water crabs.  相似文献   

18.
Summary We have investigated the kinetic properties of the human red blood cell Na+/H+ exchanger to provide a tool to study the role of genetic, hormonal and environmental factors in its expression as well as its functional properties in several clinical conditions. The present study reports its stoichiometry and the kinetic effects of internal H+ (H i ) and external Na+ (Na o ) in red blood cells of normal subjects.Red blood cells with different cell Na+ (Na i ) and pH (pH i ) were prepared by nystatin and DIDS treatment of acid-loaded cells. Unidirectional and net Na+ influx were measured by varying pH i (from 5.7 to 7.4), external pH (pH o ), Na i and Na o and by incubating the cells in media containing ouabain, bumetanide and methazolamide. Net Na+ influx (Na i <2.0 mmol/liter cell, Na o = 150mm) increased sigmoidally (Hill coefficient 2.5) when pH i fell below 7.0 and the external pH o was 8.0, but increased linearly at pH o 6.0. The net Na+ influx driven by an outward H+ gradient was estimated from the difference of Na+ influx at the two pH o levels (pH o 8 and pH o 6). The H+-driven Na+ influx reached saturation between pH i 5.9 and 6.1. TheV max had a wide interindividual variation (6 to 63 mmol/liter cell · hr, 31.0±3, mean±sem,n=20). TheK m for H i to activate H+-driven Na+ influx was 347±30nm (n=7). Amiloride (1mm) or DMA (20 m) partially (59±10%) inhibited red cell Na+/H+ exchange. The stoichiometric ratio between H+-driven Na+ influx and Na+-driven H+ efflux was 11. The dependence of Na+ influx from Na o was studied at pH i 6.0, and Na i lower than 2 mmol/liter cell at pH o 6.0 and 8.0. The meanK m for Na o of the H+-gradient-driven Na+ influx was 55±7mm.An increase in Na i from 2 to 20 mmol/liter cell did not change significantly H+-driven net Na+ influx as estimated from the difference between unidirectional22Na influx and efflux. Na+/Na+ exchange was negligible in acid-loaded, DIDS-treated cells. Na+ and H+ efflux from acid-loaded cells were inhibited by amiloride analogs in the absence of external Na+ indicating that they may represent nonspecific effects of these compounds and/or uncoupled transport modes of the Na+/H+ exchanger.It is concluded that human red cell Na+/H+ exchange performs 11 exchange of external Na+ for internal protons, which is partially amiloride sensitive. Its kinetic dependence from internal H+ and external Na+ is similar to other cells, but it displays a larger variability in theV max between individuals.  相似文献   

19.
Summary The bumetanide-sensitive uptake of Na+, K(Rb) and Cl has been measured at 21°C in ferrent red cells treated with (SITS+DIDS) to minimize anion flux via capnophorin (Band 3). During the time course of the influx experiments tracer uptake was a first-order rate process. At normal levels of external Na+ (150mm) the bumetanide-sensitive uptake of K+ was dependent on Cl and represented almost all of the K+ uptake, the residual flux demonstrating linear concentration dependence. The uptake of Na+ and Cl was only partially inhibited by bumetanide indicating that pathways other than (Na+K+Cl) cotransport participate in these fluxes. The diuretic-sensitive uptake of Na+ or Cl was, however, abolished by the removal of K+ or the complementary ion indicating that bumetanide-sensitive fluxes of Na+, K+ and Cl are closely coupled. At very low levels of [Na] o (<5mm) K+ influx demonstrated complex kinetics, and there was evidence of the unmasking of a bumetanide-sensitive Na+-independent K+ transport pathway. The stoichiometry of bumetanide-sensitive tracer uptake was 2Na1K3Cl both in cells suspended in a low and a high K+-containing medium. The bumetanide-sensitive flux was markedly reduced by ATP depletion. We conclude that a bumetanide-sensitive cotransport of (2Na1K3Cl) occurs as an electroneutral complex across the ferret red cell membrane.  相似文献   

20.
Summary Transmural fluxes of3H-mannitol and22Na or36Cl were measured simultaneously in portions of isolated turtle colon stripped of serosal musculature. The relationships between mannitol flux and the flux of Na or Cl are characteristic of simple diffusion and suggest that transmural mannitol flow is largely confined to a paracellular pathway where Na, Cl and mannitol move much as in free solution. The contribution of edge damage to the transmural mannitol flow appears to be minimal. Mucosal hyperosmolarity causes blisters in epithelial tight junctions and increases the diffusional permeability to Na and mannitol, suggesting that the rate-limiting barrier in the shunt path is the tight junction. If the total mucosa to serosa flux of Na is corrected for the portion traversing the shunt pathway it is apparent that changes in the short-circuit current are completely accounted for by the mucosa to serosal movement of Na through a cellular path. In addition, the serosa to mucosa flux of Na appears to be restricted to the shunt. These observations suggest that there is no appreciable backflux of Na through the active, cellular path. In the presence of 10–4 m amiloride the short-circuit current is markedly reduced and the mucosa to serosa Na flux is restricted to the shunt, so that the net Na flux is abolished. The small amiloride-insensitive short-circuit current is consistent with HCO3 secretion. Mucosa to serosa and serosa to mucosa fluxes of Cl appear to be largely restricted to the paracellular shunt path and there is no evidence for any net flow of Cl under short-circuit conditions. The total tissue conductance can be described as the sum of three components: a shunt conductance which is linearly related to the transmural mannitol flow, an active conductance which is linearly related to the short-circuit current and a small residual conductance. The shunt conductance is attributable to the diffusive movements of Na and Cl through the paracellular path. Variations in the active Na transport from tissue to tissue are largely attributable to variations in the apparent conductance of the active Na transport path. The driving force for active Na transport can be described as an apparent emf of approximately 130 mV. These results suggest that transmural mannitol flux provides a quantitative estimate of the ion permeability and electrical conductance of a paracellular shunt path across the isolated turtle colon and thereby facilitates the study of the transport characteristics and electrical properties of cellular paths for transepithelial solute movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号