首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
To mimic the sequence spanning the primary site (the Lys158-Ile159 bond) cleaved by plasmin in its conversion of single-chain urokinase plasminogen activator (scuPA) to urokinase, we synthesized the peptide Cys(Acm)-Leu-Arg-Pro-Arg-Phe-Lys-Ile-Ile-Gly-Gly-Glu-Phe-Cys [Cys(Acm)scuPA(153-164)Cys]. Immunization of A/J mice with the Cys(Acm)scuPA(153-164)Cys peptide linked to hemocyanin, followed by somatic cell fusion with a myeloma cell line (SP2/0), yielded a monoclonal antibody (SCOOP1) that bound to single-chain urokinase but not to urokinase or plasmin-treated single-chain urokinase. SCOOP1 could discriminate between single-chain urokinase and urokinase by greater than three orders of magnitude. In a radioimmunoassay, Cys(Acm)scuPA(153-164)Cys completely inhibited SCOOP1 binding to single-chain urokinase, whereas an equimolar mixture of two heptapeptides comprising the amino terminal [Cys-scuPA(153-158)] and carboxy terminal [scuPA(159-164)Cys)] halves of the cleavage site peptide did not. Thus the epitope recognized by SCOOP1 includes the Lys158-Ile159 peptide bond.  相似文献   

2.
The Acm protecting group for the thiol functionality of cysteine is removed under conditions (Hg2+) that are orthogonal to the acidic milieu used for global deprotection in Fmoc‐based solid‐phase peptide synthesis. This use of a toxic heavy metal for deprotection has limited the usefulness of Acm in peptide synthesis. The Acm group may be converted to the Scm derivative that can then be used as a reactive intermediate for unsymmetrical disulfide formation. It may also be removed by mild reductive conditions to generate unprotected cysteine. Conversion of Cys(Acm)‐containing peptides to their corresponding Cys(Scm) derivatives in solution is often problematic because the sulfenyl chloride reagent used for this conversion may react with the sensitive amino acids tyrosine and tryptophan. In this protocol, we report a method for on‐resin Acm to Scm conversion that allows the preparation of Cys(Scm)‐containing peptides under conditions that do not modify other amino acids. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
There are many examples of bioactive, disulfide‐rich peptides and proteins whose biological activity relies on proper disulfide connectivity. Regioselective disulfide bond formation is a strategy for the synthesis of these bioactive peptides, but many of these methods suffer from a lack of orthogonality between pairs of protected cysteine (Cys) residues, efficiency, and high yields. Here, we show the utilization of 2,2′‐dipyridyl diselenide (PySeSePy) as a chemical tool for the removal of Cys‐protecting groups and regioselective formation of disulfide bonds in peptides. We found that peptides containing either Cys(Mob) or Cys(Acm) groups treated with PySeSePy in trifluoroacetic acid (TFA) (with or without triisopropylsilane (TIS) were converted to Cys‐S–SePy adducts at 37 °C and various incubation times. This novel Cys‐S–SePy adduct is able to be chemoselectively reduced by five‐fold excess ascorbate at pH 4.5, a condition that should spare already installed peptide disulfide bonds from reduction. This chemoselective reduction by ascorbate will undoubtedly find utility in numerous biotechnological applications. We applied our new chemistry to the iodine‐free synthesis of the human intestinal hormone guanylin, which contains two disulfide bonds. While we originally envisioned using ascorbate to chemoselectively reduce one of the formed Cys‐S–SePy adducts to catalyze disulfide bond formation, we found that when pairs of Cys(Acm) residues were treated with PySeSePy in TFA, the second disulfide bond formed spontaneously. Spontaneous formation of the second disulfide is most likely driven by the formation of the thermodynamically favored diselenide (PySeSePy) from the two Cys‐S–SePy adducts. Thus, we have developed a one‐pot method for concomitant deprotection and disulfide bond formation of Cys(Acm) pairs in the presence of an existing disulfide bond.  相似文献   

4.
The 45-residue C-terminal EGF-like domain in human blood coagulation factor IX has been synthesized by a 2-step method to form selectively 3 disulfide bridges. Four out of 6 cysteines are blocked with either trityl or 4-methyl-benzyl, and the remaining 2 cysteines are blocked with acetamidomethyl (Acm). In the first step, 4 free cysteinyl thiols are released concurrently with the removal of all protecting groups except Acm and are oxidized to form 1 of the 3 possible isomers containing 2 pairs of disulfides. In the second step, iodine is used to remove the Acm groups to yield the third disulfide bridge. This approach reduces the number of possible disulfide bridging patterns from 15 to 3. To determine the optimal protecting group strategy, 3 peptides are synthesized, each with Acm blocking 1 of the 3 pairs of cysteines involved in disulfide bridges: Cys5 to Cys16 (Cys 1-3), Cys12 to Cys26 (Cys 2-4), or Cys28 to Cys41 (Cys 5-6). Only the peptide having the Cys 2-4 pair blocked with Acm forms the desired disulfide isomer (Cys 1-3/5-6) in high yield after the first step folding, as identified by proteolytic digestion in conjunction with mass spectrometric peptide mapping. Thus, the choice of which pair of cysteines to block with Acm is critically important. In the case of EGF-like peptides, it is better to place the Acm blocking groups on one of the pairs of cysteines involved in the crossing of disulfide bonds.  相似文献   

5.
Traditional vaccines consisting of whole attenuated microorganisms, killed microorganisms, or microbial components, administered with an adjuvant (e.g. alum), have been proved to be extremely successful. However, to develop new vaccines, or to improve upon current vaccines, new vaccine development techniques are required. Peptide vaccines offer the capacity to administer only the minimal microbial components necessary to elicit appropriate immune responses, minimizing the risk of vaccination associated adverse effects, and focusing the immune response toward important antigens. Peptide vaccines, however, are generally poorly immunogenic, necessitating administration with powerful, and potentially toxic adjuvants. The attachment of lipids to peptide antigens has been demonstrated as a potentially safe method for adjuvanting peptide epitopes. The lipid core peptide (LCP) system, which incorporates a lipidic adjuvant, carrier, and peptide epitopes into a single molecular entity, has been demonstrated to boost immunogenicity of attached peptide epitopes without the need for additional adjuvants. The synthesis of LCP systems normally yields a product that cannot be purified to homogeneity. The current study describes the development of methods for the synthesis of highly pure LCP analogs using native chemical ligation. Because of the highly lipophilic nature of the LCP lipid adjuvant, difficulties (e.g. poor solubility) were experienced with the ligation reactions. The addition of organic solvents to the ligation buffer solubilized lipidic species, but did not result in successful ligation reactions. In comparison, the addition of approximately 1% (w/v) sodium dodecyl sulfate (SDS) proved successful, enabling the synthesis of two highly pure, tri-epitopic Streptococcus pyogenes LCP analogs. Subcutaneous immunization of B10.BR (H-2(k)) mice with one of these vaccines, without the addition of any adjuvant, elicited high levels of systemic IgG antibodies against each of the incorporated peptides.  相似文献   

6.
The antimicrobial 40‐amino‐acid‐peptide lucifensin was synthesized by native chemical ligation (NCL) using N‐acylbenzimidazolinone (Nbz) as a linker group. NCL is a method in which a peptide bond between two discreet peptide chains is created. This method has been applied to the synthesis of long peptides and proteins when solid‐phase synthesis is imcompatible. Two models of ligation were developed: [15 + 25] Ala‐Cys and [19 + 21] His‐Cys. The [19 + 21] His‐Cys method gives lower yield because of the lower stability of 18‐peptide‐His‐Nbz‐CONH2 peptide, as suggested by density functional theory calculation. Acetamidomethyl‐deprotection and subsequent oxidation of the ligated linear lucifensin gave a mixture of lucifensin isomers, which differed in the location of their disulfide bridges only. The dominant isomer showed unnatural pairing of cysteines [C1?6], [C3?5], and [C2?4], which limits its ability to form α‐helical structure. The activity of isomeric lucifensin toward Bacillus subtilis, Staphylococcus aureus, and Micrococcus luteus was lower than that of the natural lucifensin. The desired product native lucifensin was prepared from this isomer using a one‐pot reduction with dithiotreitol and subsequent air oxidation in slightly alkaline medium. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Methods are reported for the unambiguous syntheses of all three possible disulfide regioisomers with the sequence of alpha-conotoxin SI, a tridecapeptide amide from marine cone snail venom that binds selectively to the muscle subtype of nicotinic acetylcholine receptors. The naturally occurring peptide has two 'interlocking' disulfide bridges connecting Cys2-Cys7 and Cys3-Cys13 (2/7&3/13), while in the two mispaired isomers the disulfide bridges connect Cys2-Cys13 and Cys3-Cys7 (2/13 & 3/7, 'nested') and Cys2-Cys3 and Cys7-Cys13 (2/3 & 7/13, 'discrete'), respectively. Alignment of disulfide bridges was controlled at the level of orthogonal protection schemes for the linear precursors, assembled by Fmoc solid-phase peptide synthesis on acidolyzable tris(alkoxy)benzylamide (PAL) supports. Side-chain protection of cysteine was provided by suitable pairwise combination of the S-9H-xanthen-9-yl (Xan) and S-acetamidomethyl (Acm) protecting groups. The first disulfide bridge was formed from the corresponding bis(thiol) precursor obtained by selective deprotection of S-Xan, and the second disulfide bridge was formed by orthogonal co-oxidation of S-Acm groups on the remaining two Cys residues. It was possible to achieve the desired alignments with either order of loop formation (smaller loop before larger, or vice versa). The highest overall yields were obtained when both disulfides were formed in solution, while experiments where either the first or both bridges were formed while the peptide was on the solid support revealed lower overall yields and poorer selectivities towards the desired isomers.  相似文献   

8.
To study the effects of a point mutation found in Pelizaeus-Merzbacher disease (PMD) on the physicochemical and structural properties of the extracellular loop 4 of the myelin proteolipid protein (PLP), we synthesized the peptide PLP(181-230)Pro215 and one mutant PLP(181-230)Ser215 with regioselective formation of the two disulphide bridges Cys200-Cys219 and Cys183-Cys227. As conventional amino acid building blocks failed to give crude peptides of good quality we had to optimize the synthesis by introducing pseudoproline dipeptide building blocks during the peptide elongation. In peptide Pro215 the first bridge Cys200-Cys219 was obtained after air oxidation, but in peptide Ser215 because of aggregation, dimethyl sulfoxide (DMSO) oxidation had to be used. The second bridge Cys183-Cys227 was obtained by iodine oxidation of both Cys (acetamidomethyl, Acm)-protected peptides. The secondary structures of the parent and mutant loops were analysed by circular dichroism (CD) in the presence of trifluoroethanol (TFE) and sodium dodecyl sulphate (SDS) as a membrane mimetic. Analysis of the spectra showed that the content of alpha-helix and beta-sheet varied differently for both peptides in TFE and SDS solutions, demonstrating the sensitivity of their conformation to the environment and the differences in their secondary structure. The ability of both peptides to insert into the SDS micelles was assayed by intrinsic tryptophan fluorescence.  相似文献   

9.
Group A streptococcus (GAS) is responsible for causing many clinical complications including the relatively benign streptococcal pharyngitis and impetigo. However, if left untreated, these conditions may lead to more severe diseases such as rheumatic fever (RF) and rheumatic heart disease (RHD). These diseases exhibit high morbidity and mortality, particularly in developing countries and in indigenous populations of affluent countries. As RF and RHD only ever occur following GAS infection, a vaccine offers promise for their prevention. As such, we have investigated the use of the lipid-core peptide (LCP) system for the development of multi-valent prophylactic GAS vaccines. The current study has investigated the capacity of this system to adjuvant up to four different GAS peptide epitopes. Presented are the synthesis and immunological assessment of tetra-valent and tri-valent GAS LCP systems. We demonstrated their capacity to elicit systemic IgG antibody responses in B10.BR mice to all GAS peptide epitopes. The data also showed that the LCP systems were self-adjuvanting. These findings are particularly encouraging for the development of multi-valent LCP-based GAS vaccines.  相似文献   

10.
The putative receptor-binding region of human transforming growth factor-alpha (TGF alpha) has been shown to be contributed by two fragments: an A-chain (residue 12-18) and a 17-residue carboxyl fragment (residue 34-50) that includes a disulfide-containing C-loop (residue 34-43). An approach to the synthesis of two-chain analogs containing an intermolecular disulfide linked A-chain and the 17-residue carboxyl fragment (C-fragment) possessing receptor-binding activity is described. The synthesis was achieved by the solid-phase method using the Boc-benzyl protecting group strategy. The single Cys of the A-chain was activated as a mixed disulfide with 2-thiopyridine to form the intermolecular disulfide bond with Cys41 or Cys46 of the C-fragment on the resin support. Prior to this reaction, the acetamido (Acm) protecting group of Cys41 or Cys46 was removed by Hg(OAc)2 on the resin support. The peptide and side chain protecting groups including the S-methylbenzyl moiety of the Cys34 and Cys43 were concomitantly cleaved by high HF. The intramolecular disulfide with two unprotected Cys was formed in the presence of an intermolecular disulfide. This intramolecular disulfide bond formation was usually not feasible under the traditionally-held scheme at basic pH since disulfide interchange would occur faster than intramolecular oxidation. To prevent the disulfide interchange, a new method was devised. The intramolecular disulfide bond oxidation was mediated by dimethylsulfoxide at an acidic pH, at which the disulfide interchange reaction was suppressed. The desired product was obtained with a 60-70% yield.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Treatment of a mixture of Cys(R)(O) and Cys(R) with an acid was found to generate cystine in fairly good yields, when suitable R, R, and an acid were selected. An unsymmetrical cystine peptide was prepared by treatment of a mixture of Z(OMe)-Cys(R) (0)-Ala-NH2 (R=Acm or MBzl) and Z(OMe)-Cys(MBzl)-Gly-OBzl with TFA or 1 M TFMSA/TFA.3 Oxytocin was obtained in an excellent yield by TFA treatment of the protected peptide containing Cys(Acm)(0) and Cys(MBzl). Thus, formation of the disulfide bond was found feasible at the position of Cys(R) (0).The following abbreviations are used Boc t-butyloxycarbonyl - Z(OMe) p-methoxybenzyloxycarbonyl - MBzl p-methoxybenzyl - Acm acetamidomethyl - Bzl benzyl - Ad l-adamantyl - tBu t-butyl - TFA trifluoroacetic acid - TFMSA trifluoromethanesulfonic acid - TMSOTf trimethylsilyl trifluoromethane sulfonate  相似文献   

12.
The proximity of the alpha-amine and beta-thiol of alpha-amino terminal-cysteine (NT-Cys) residues in peptides imparts unique chemical properties that have been exploited for inter- and intra-molecular ligation of unprotected peptides obtained through both synthetic and biological means. A reversible protecting group orthogonal to other protection strategies and reversible under mild conditions would be useful in simplifying the synthesis, cleavage, purification and handling of such NT-Cys peptides. It could also be useful for the sequential ligation of peptides. To this end, we explored tri-one chemistry and found that ninhydrin (indane-1,2,3 trione) reacted readily with cysteine or an NT-Cys-containing peptide on- or off-resin at pH 2-5 to form Ninhydrin-protected Cys (Nin-Cys) as a thiazolidine (Thz). The Thz ring, protecting both the amino and thiol groups in Nin-Cys, completely avoids the formylation and Thz side reactions found during hydrofluoric acid (HF) cleavage when N-pi-benzyloxymethyl histidine groups are present. Nin-Cys is stable during coupling reactions and various cleavage conditions with trifluoroacetic acid or HF, but is deprotected under thiolytic or reducing conditions. These properties enable a facile one-step deprotection and end-to-end-cyclization reaction of Nin-Cys peptides containing C-terminal thioesters.  相似文献   

13.
The use of N(alpha)-tert.-butyloxycarbonyl-N(pi)-benzyloxymethylhistidine [Boc-His(Bom)] in peptide synthesis results in a serious level of side products arising from the generation of formaldehyde during the HF cleavage reaction. In particular, when treating a His(Bom)-containing peptide having Cys at the N-terminus by HF, this leads to almost complete conversion of the Cys-peptide to thiazolidyl (Thz)-peptide unless precautions are taken. Also, the reaction of formaldehyde with the N-terminal Trp and the N-methylanthranyl (Nma) group was found to produce tetrahydro-beta-carboline and dihydroquinazolin derivatives, respectively, upon isolation from HF mixtures. The addition of cysteine as a scavenger in HF proved to be effective for suppressing modification arising from the generation of formaldehyde.  相似文献   

14.
A conserved helical peptide vaccine candidate from the M protein of group A streptococci, p145, has been described. Minimal epitopes within p145 have been defined and an epitope recognized by protective antibodies, but not by autoreactive T cells, has been identified. When administered to mice, p145 has low immunogenicity. Many boosts of peptide are required to achieve a high antibody titre (> 12 800). To attempt to overcome this low immunogenicity, lipid-core peptide technology was employed. Lipid-core peptides (LCP) consist of an oligomeric polylysine core, with multiple copies of the peptide of choice, conjugated to a series of lipoamino acids, which acts as an anchor for the antigen. Seven different LCP constructs based on the p145 peptide sequence were synthesized (LCP1-->LCP7) and the immunogenicity of the compounds examined. The most immunogenic constructs contained the longest alkyl side-chains. The number of lipoamino acids in the constructs affected the immunogenicity and spacing between the alkyl side-chains increased immunogenicity. An increase in immunogenicity (enzyme-linked immunosorbent assay (ELISA) titres) of up to 100-fold was demonstrated using this technology and some constructs without adjuvant were more immunogenic than p145 administered with complete Freund's adjuvant (CFA). The fine specificity of the induced antibody response differed for the different constructs but one construct, LCP4, induced antibodies of identical fine specificity to those found in endemic human serum. Opsonic activity of LCP4 antisera was more than double that of p145 antisera. These data show the potential for LCP technology to both enhance immunogenicity of complex peptides and to focus the immune response towards or away from critical epitopes.  相似文献   

15.
ω-Agatoxin IVA, isolated from the venom of funnel web spider Agelenopsis aperta, blocks potently and selectively P-type calcium channels. This toxin, composed of 48 amino acids and containing 8 cysteine residues, was synthesized by the solid-phase procedure. The Cys residues were protected by acetamidomethyl (Acm) groups which were removed by mercuric acetate. During treatment with mercuric acetate, a by-product was detected, involving modification of tryptophan residues by the Acm groups. This side reaction can be completely prevented by addition of an excess of tryptophan in the reaction medium during Acm deprotection. The resulting peptide was submitted to an oxidative refolding, in different conditions, in order to determine the most favourable protocol. After formation of the four disulphide bonds, the toxin was purified by successive preparative HPLC, on two different supports, and fully characterized by analytical HPLC, capillary electrophoresis, amino acid analysis, mass spectrometry and Edman degradation. It was found to block the P-type calcium channel with a similar biological potency as described for the natural product.  相似文献   

16.
For the first time, papain-catalysed synthesis of peptide bonds was successfully carried out using free amino acids as nucleophiles. In kinetically controlled experiments employing pH-Stat-mode, the ester substrates Z-Ala-OMe and Z-Gly-OMe were coupled with alanine, glutamine, and Cys(Acm)-OH, respectively. Under optimized reaction conditions (pH 9.2, high ratio nucleophile/carboxyl component, 10 mumol substrate mg-1 papain), the peptide yields ranged from 17% to 79%, depending on the structure of the amino and/or carboxyl component. The peptides formed were not hydrolysed under the chosen reaction conditions. With Z-Gly-OMe as the ester substrate, formation of the dipeptide was both rapid and high yielding. Papain-catalysed formation of peptide bonds applying free amino acids as nucleophiles might serve as an economic and easily manageable approach for the synthesis of short-chain peptides to be used in clinical nutrition.  相似文献   

17.
Antigen valency has been defined (Singer, 1965) as the maximum number of epitopes per antigen which can be simultaneously occupied by antibody. If the epitopes are closely spaced, steric hindrance prevents the simultaneous occupancy of all epitopes. Current methods of estimating both the antigen valency and the association constant (Ka) from equilibrium binding data do not allow for the effects of steric hindrance. We have developed a theory which accounts rigorously for steric hindrance when monovalent ligands of quite general shape (antibodies) react reversibly with multivalent acceptor molecules (antigens). The surfaces of the acceptors are modelled by completely general two-dimensional lattices. Using this theory we demonstrate that curvature of Scatchard plots can arise from steric effects alone in the absence of other known causes such as cross-linking, cooperativity and heterogeneous epitope affinities. Our results generalize the conclusions of McGhee & von Hippel (1974) who dealt with one-dimension acceptor molecules such as DNA. We discuss inaccuracies in the estimation of both Ka and antigen valency using the traditional approach of fitting straight lines to Scatchard plots.  相似文献   

18.
In a previous report we have shown that the endothelin-B receptor-selective linear endothelin peptide, ET-1[Cys (Acm)1,15, Ala3, Leu7, Aib11], folds into an alpha-helical conformation in a methanol-d3/water co-solvent [Hewage et al. (1998) FEBS Lett., 425, 234-238]. To study the requirements for the structure-activity relationships, truncated analogues of this peptide were subjected to further studies. Here we report the solution conformation of ET7-21[Leu7, Aib11, Cys(Acm)15], in a methanol-d3/water co-solvent at pH 3.6, by NMR spectroscopic and molecular modelling studies. Further truncation of this short peptide results in it displaying poor agonist activity. The modelled structure shows that the peptide folds into an alpha-helical conformation between residues Lys9-His16, whereas the C-terminus prefers no fixed conformation. This truncated linear endothelin analogue is pivotal for designing endothelin-B receptor agonists.  相似文献   

19.
Summary Two peptides derived from the surface loop 4 of class 1 Outer Membrane Protein (OMP) ofNeisseria meningitidis were synthesized on solid phase using the Boc/Bzl strategy: one containing the entire loop 4 cyclized and the other representing the polymerized cyclic loop 4. To test a more efficient cyclic peptide presentation, in the present study a strategy was developed to obtain polymers of cyclic peptides. In order to obtain the polymeric cyclic peptide, two protecting groups for cysteine were used — Acm and Mob. The Cys(Acm)-protected cyclic peptide was obtained after removing the Mob group. The polymerization reaction was carried out by simultaneous deprotection/oxidation ofS-Acm with iodine. Analysis of the polymeric cyclic peptide in Tris-tricine-SDS-PAGE showed different bands with molecular weights higher than expected for the corresponding monomeric cyclic peptide. Both peptides were used in immunization of four different mouse strains. The antisera raised against the peptides were evaluated by ELISA and Western blotting vs. OMP preparation ofN. meningitidis. The titers raised against the polymerized cyclic peptide were higher than the ones raised against the cyclic peptide. The antisera elicited did not show bactericidal activity. Nevertheless, the antisera elicited against the polymeric cyclic peptide in the CBA/J mouse strain showed opsonic activity. The antibodies raised against the polymeric cyclic peptide were successfully used as probes in Western blotting experiments to verify the display of loop 4 peptide on the surface of filamentous phage M13.  相似文献   

20.
A molt-inhibiting hormone (Prc-MIH) of the American crayfish, Procambarus clarkii, a member of the type II CHH family, was chemically synthesized and the location of its three disulfide linkages was determined. Prc-MIH consists of 75 amino acid residues and was synthesized by a thioester method. Two peptide segments, Boc-[Cys(Acm)(7,24,27), Lys(Boc)(19)]-Prc-MIH(1-39)-SCH(2)CH(2)CO-Nle-NH(2) and H-[Cys(Acm)(40,44,53), Lys(Boc)(42,51,67)]-Prc-MIH(40-75)-NH(2), were prepared using peptides obtained via the Boc solid-phase method. Condensation of the building blocks in the presence of silver chloride, 3,4-dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine, and N, N-diisopropylethylamine, followed by removal of the protecting groups, gave the reduced form of Prc-MIH(1-75)-NH(2). This product was converted to the native form of Prc-MIH (synthetic Prc-MIH) in a buffer which contained cysteine and cystine. The synthetic Prc-MIH showed the same behavior by RP-HPLC and biological activity assays as the natural Prc-MIH. The disulfide bond between Cys7 and Cys44 was determined by isolation of a fragment from an enzymatic digest of the synthetic Prc-MIH by RP-HPLC, followed by mass analysis. The disulfide bonds between Cys24 and Cys40 and between Cys27 and Cys53 were determined by comparing the elution position of an enzymatic digest of the synthetic Prc-MIH with authentic chemically synthesized samples, which contained three types of possible disulfide linkages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号