首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Owing to their small size, synthetic nanoparticles show unprecedented biophysical and biochemical properties which may foster novel advances in life-science research. Using flame-spray synthesis technology we have produced non-coated aluminum-, calcium-, cerium-, and zirconium-derived inorganic metal oxide nanoparticles which not only exhibit high affinity for nucleic acids, but can sequester such compounds from aqueous solution. This non-covalent DNA-binding capacity was successfully used to transiently transfect a variety of mammalian cells including human, reaching transfection efficiencies which compared favorably with classic calcium phosphate precipitation (CaP) procedures and lipofection. In this straightforward protocol, transfection was enabled by simply mixing nanoparticles with DNA in solution prior to addition to the target cell population. Transiently transfected cells showed higher production levels of the human secreted glycoprotein SEAP compared to isogenic populations transfected with established technologies. Inorganic metal oxide nanoparticles also showed a high binding capacity to human-pathogenic viruses including adenovirus, adeno-associated virus and human immunodeficiency virus type 1 and were able to clear these pathogens from aqueous solutions. The DNA transfection and viral clearance capacities of inorganic metal oxide nanoparticles may provide cost-effective biopharmaceutical manufacturing and water treatment in developing countries.  相似文献   

2.
3.
Recombinant adeno-associated virus (rAAV) has proven to be a promising gene delivery vector for human gene therapy. However, its application has been limited by difficulty in obtaining enough quantities of high-titer vector stocks. In this paper, a novel and highly efficient production system for rAAV is described. A recombinant herpes simplex virus type 1 (rHSV-1) designated HSV1-rc/AUL2, which expressed adeno-associated virus type2 (AAV-2) Rep and Cap proteins, was constructed previously. The data confirmed that its functions were to support rAAV replication and packaging, and the generated rAAV was infectious. Meanwhile, an rAAV proviral cell line designated BHK/SG2, which carried the green fluorescent protein (GFP) gene expression cassette, was established by transfecting BHK-21 cells with rAAV vector plasmid pSNAV-2-GFP. Infecting BHK/SG2 with HSV1-rc/AUL2 at an MOI of 0.1 resulted in the optimal yields of rAAV, reaching 250 transducing unit (TU) or 4.28×104 particles per cell. Therefore, compared  相似文献   

4.
Recombinant adeno-associated virus(rAAV) has proven to be a promising gene delivery vector for human gene therapy. However, its application has been limited by difficulty in obtaining enough quantities of high-titer vector stocks. In this paper, a novel and highly efficient production system for rAAV is described. A recombinant herpes simplex virus type 1(rHSV-1) designated HSV1-rc/△UL2, which expressed adeno-associated virus type2(AAV-2) Rep and Cap proteins, was constructed previously. The data confirmed that its functions were to support rAAV replication and packaging, and the generated rAAV was infectious. Meanwhile, an rAAV proviral cell line designated BHK/SG2, which carried the green fluorescent protein(GFP) gene expression cassette, was established by transfecting BHK-21 cells with rAAV vector plasmid pSNAV-2-GFP. Infecting BHK/SG2 with HSV1-rc/△UL2 at an MOI of 0.1 resulted in the optimal yields of rAAV, reaching 250 transducing unit(TU) or 4.28×104 particles per cell. Therefore, compared with the conventional transfection method, the yield of rAAV using this "one proviral cell line, one helper virus" strategy was increased by two orders of magnitude. Large-scale production of rAAV can be easily achieved using this strategy and might meet the demands for clinical trials of rAAV-mediated gene therapy.  相似文献   

5.
Adenoviral, retroviral/lentiviral, adeno-associated viral, and herpesviral vectors are the major viral vectors used in gene therapy. Compared with non-viral methods, viruses are highly-evolved, natural delivery agents for genetic materials. Despite their remarkable transduction efficiency, both clinical trials and laboratory experiments have suggested that viral vectors have inherent shortcomings for gene therapy, including limited loading capacity, immunogenicity, genotoxicity, and failure to support long-term adequate transgenic expression. One of the key issues in viral gene therapy is the state of the delivered genetic material in transduced cells. To address genotoxicity and improve the therapeutic transgene expression profile, construction of hybrid vectors have recently been developed. By adding new abilities or replacing certain undesirable elements, novel hybrid viral vectors are expected to outperform their conventional counterparts with improved safety and enhanced therapeutic efficacy. This review provides a comprehensive summary of current achievements in hybrid viral vector development and their impact on the field of gene therapy.  相似文献   

6.
BACKGROUND: Genetically modified keratinocytes generate transplantable self-renewing epithelia suitable for delivery of therapeutic polypeptides. However, the variety of viral vectors and experimental conditions currently used make fragmented or contradictory the information on the transduction efficiency of the human primary keratinocytes. To compare the suitability of the most currently used viral vectors for efficient gene transfer to human keratinocytes, we have performed a comparative study using a panel of recombinant constructs. METHODS: For each vector, the transduction efficiency and the persistence of the transgene expression were quantified by fluorescence microscopy and flow cytometry analysis of the infected cells. RESULTS: We show that: (1) canine and human adenoviral vectors achieve a highly efficient but transient transduction of both primary and immortalized keratinocytes; (2) the adenovirus-associated virus (AAV) vectors transduce immortalized keratinocytes, albeit with a short-lived gene expression (<4 days), but fail to infect primary keratinocytes; and (3) under appropriate conditions, the oncoretroviral and lentiviral vectors can permanently transduce up to 100% of primary keratinocytes, but the highly clonogenic keratinocytes are more efficiently targeted by lentiviral vectors. CONCLUSIONS: Therefore, AAV vectors are unsuitable to transduce primary keratinocytes, while human and canine adenoviral vectors appears to be appropriate to achieve short-term delivery of therapeutic products. Recombinant retroviruses provide sustained expression of the transgene, but the lentiviral vectors are the most suitable for ex vivo gene therapy because of their ability to transduce clonogenic primary keratinocytes.  相似文献   

7.
Yamada K  McCarty DM  Madden VJ  Walsh CE 《BioTechniques》2003,34(5):1074-8, 1080
Recombinant lentiviral vectors stably transduce both dividing and nondividing cells. Virus pseudotyping with vesicular stomatitis virus envelope G (VSV-G) protein broadens the host range of lentiviral vector and enables vector concentration by ultra-centrifugation. However, as a result of virus vector concentration, contaminating protein debris derived from vector-producing cell culture media is toxic to target cells and reduces the transduction efficiency. Here we report a new and rapid technique for purifying lentivirus vector using the strong anion exchange column that significantly improves gene transfer rates. We purified VSV-G pseudotyped self-inactivating lentivirus vector and obtained two protein elution peaks (Peak 1 and Peak 2) corresponding to transducing activity. Peak 1 viral particles were 4-8 times more effective in transducing target cells than Peak 2 or non-purified (pre-HPLC) viral particles. We used purified lentivirus vector expressing the human Fanconi anemia group A (FANCA) gene to transduce murine hematopoietic stem/progenitor cells. We observed a consistent 2- to 3-fold increase in gene transfer rates using Peak 1 purified virus compared with non-purified virus. We conclude that the purification method using the HPLC system provides the highly purified virus vector that reduces cell toxicity and significantly improves gene transfer in primary cells.  相似文献   

8.
将HIV-1中国株42(B亚型)gag基因及gag与gp120 V3区的嵌合基因gag V3插入腺病毒伴随病毒(AAV)表达载体(pSNAV)质粒中,构建重组质粒pSNAV-gag及pSNAV-gagV3;采用脂质体转染的方法分别将重组质粒转入BHK细胞,G418筛选得到转入重组质粒并能表达外源基因的细胞系,命名为BHK-gag及BHK-gagV3。用具有重组腺病毒伴随病毒(rAAV)包装功能的一种重组单纯疱疹病毒(rHSV)分析感染这两株细胞系,纯化后得到rAAV,电镜观察可见到大量实心病毒颗粒,核酸杂交检测重组病毒滴度达到10^12病毒颗粒/ml,重组病毒感染293细胞,ELISA检测有gag及gagV3基因的表达。用重组病毒免疫Balb/C小鼠,检测抗体及细胞免疫水平,证明重组病毒可以在小鼠体内诱导产生细胞及体液免疫。  相似文献   

9.
BACKGROUND: Human mesenchymal stem cells (hMSCs) are a promising target for ex vivo gene therapy and lentiviruses are excellent gene transfer vehicles in hMSCs since they achieve high transduction rates with long-term gene expression. Nevertheless, senescence of hMSCs may limit therapeutic applications due to time-consuming cell selection and viral titration. Here, we describe a fast and reliable method to determine functional lentiviral titer by quantitative polymerase chain reaction (qPCR) after highly efficient ex vivo gene transfer in hMSCs. METHODS: Lentivirus production was tested with different types of packaging systems. Using p24 ELISA remaining viral particles were detected in the cell culture supernatant. The lentiviral gene transfer efficiency was quantified by FACS analysis. Lentiviral titers were determined by qPCR of expressed transgenes. RESULTS: Third-generation self-inactivating vectors showed highly efficient gene transfer in hMSCs. No viral antigen was detected in the cell culture supernatant after four media changes, suggesting the absence of infectious particles after 4 days. We observed a linear correlation between virus dilution and level of transgene expression by qPCR analysis, therefore allowing viral titering by quantification of transgene expression. Finally, we demonstrated that transduced hMSCs retained their stem cell character by differentiation towards adipogenic, osteogenic and chondrogenic lineages. CONCLUSIONS: Quantification of transgene copy numbers by qPCR is a fast and reliable method to determine functional lentiviral titer after ex vivo gene transfer in hMSCs.  相似文献   

10.
BACKGROUND: The overlapping approach was developed recently to expand the adeno-associated viral (AAV) packaging capacity. In this approach, a gene is split into two partially overlapping fragments and separately packaged into an upstream and a downstream vector, respectively. Transgene expression is achieved in co-infected cells after homologous recombination. Despite the promising proof-of-principle results in the lung, the efficiency has been very disappointing in skeletal muscle. Here we examined two potential rate-limiting factors including AAV serotype and the transgene sequence. METHODS: To study serotype effect, we delivered AAV-2, -5 and -6 overlapping vectors (5 x 10(8) vg particles of the upstream and the downstream vectors, respectively) and 5 x 10(8) vg particles of the intact gene vector to the tibialis anterior muscles of 7-week-old C57Bl/6 mice, respectively. To determine the effect of transgene sequence, we compared LacZ and alkaline phosphatase (AP) overlapping vectors. Transduction efficiency was quantified 6 weeks later by scoring the percentage of transgene-positive myofibers. RESULTS: AAV-2 overlapping vectors barely resulted in detectable transduction. Transduction efficiency was significantly improved in AAV-5 and AAV-6. The highest level was achieved in AAV-6 that reached 42% and 96% of that of the intact gene vector for the LacZ gene and the AP gene, respectively. Surprisingly, AAV-6 overlapping vector resulted in higher transduction than did AAV-2 and AAV-5 intact gene vectors. CONCLUSIONS: Our findings suggest that AAV serotype and the transgene sequence play critical roles in the overlapping approach. AAV-6 holds great promise for overlapping vector-mediated muscle gene therapy.  相似文献   

11.
Genetic modification of human embryonic stem cells (hESCs) using biophysical DNA transfection methods are hampered by the very low single cell survival rate and cloning efficiency of hESCs. Lentiviral gene transfer strategies are widely used to genetically modify hESCs but limited transduction efficiencies in the presence of feeder or stroma cells present problems, particularly if vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped viral particles are applied. Here, we investigated whether the recently described semen derived enhancer of virus infection (SEVI) and alternative viral envelope proteins derived from either Gibbon ape leukaemia virus (GALV) or feline leukaemia virus (RD114) are applicable for transducing hESCs during co-culture with feeder or stroma cells. Our first set of experiments demonstrates that SEVI has no toxic effect on murine or hESCs and that exposure to SEVI does not interfere with the pluripotency-associated phenotype. Focusing on hESCs, we were able to further demonstrate that SEVI increases the transduction efficiencies of GALV and RD114 pseudotyped lentiviral vectors. More importantly, aiming at targeted differentiation of hESCs into functional somatic cell types, GALV pseudotyped lentiviral particles could efficiently and exclusively transduce hESCs grown in co-culture with OP9-GFP stroma cells (which were often used to induce differentiation into haematopoietic derivatives).  相似文献   

12.
13.
Alphaviruses are small, enveloped positive-strand RNA viruses that have been successfully transformed into expression vectors in the case of Semliki Forest virus (SFV), Sindbis virus (SIN), and Venezuelan equine encephalitis virus. Compared to other viral vectors, their advantages are easy and fast generation of recombinant viral particles, rapid onset, and high-level transgene expression. When applied to neuronal tissue, SFV and SIN vectors possess the additional advantage of efficiently and preferentially transducing neurons rather than non-neuronal cells. This article gives an overview of the biology of SFV and SIN, their generation into expression vectors, and their application in neurobiology, with particular emphasis on the transduction of hippocampal neurons. In addition, it describes the more recent development of alphaviral vectors with decreased or absent cytotoxicity and lowered transgene expression, temperature-controllable gene expression, and altered host-cell specificity in the central nervous system (CNS). Finally, the review evaluates the use of SFV and SIN vectors in hippocampal tissue cultures vs recombinant lentivirus, adenovirus type 5, adeno-associated virus type 2, and measles virus.  相似文献   

14.
Lentiviral vectors have drawn considerable attention recently and show great promise to become important delivery vehicles for future gene transfer manipulation. In the present study we have optimized a protocol for preparation of human immunodeficiency virus type-1 (HIV-1)-based defective lentiviral vectors (DLV) and characterized these vectors in terms of their transduction of different cells. Transient co-transfection of 293T packaging cells with DNA plasmids encoding lentiviral vector constituents resulted in production of high-titer DLV (0.5–1.2 × 107IU/mL), which can be further concentrated over 100-fold through a single step ultracentrifugation. These vectors were capable of transducing a variety of cells from both primate and non-primate sources and high transduction efficiency was achieved using concentrated vectors. Assessment of potential generation of RCV revealed no detection of infection by infectious particles in DLV-transduced CEM, SupT-1 and MT-2 cells. Long-term culture of transduced cells showed a stable expression of transgenes without apparent alteration in cellular morphology and growth kinetics. Vector mobilization to untransduced cells mediated by wild-type HIV-1 infection was confirmed in this test. Challenge of transduced human T-lymphocytes with wild-type HIV-1 showed these cells are totally resistant to the viral infection. Considering the effective gene transfer and stable gene expression, safety and anti-HIV activity, these DLV vectors warrant further exploration for their potential use as a gene transfer vehicle in the development of gene therapy protocols. Foundation items: National Institute of Health (S11 NS43499); RCMI (G12RR/AI03061, USA.)  相似文献   

15.
Hepatitis C virus infection is a major public health problem because of an estimated 170 million carriers worldwide. Genotype 1b is the major subtype of HCV in many countries and is resistant to interferon therapy. Study of the viral life cycle is important for understanding the mechanisms of interferon resistance of genotype 1b HCV strains. For such studies, genotype 1b HCV strains that can replicate and produce infectious virus particles in cultured cells are required. In the present study, we isolated HCV cDNA, which we named the NC1 strain, from a patient with acute severe hepatitis. Subgenomic replicon experiments revealed that several mutations enhanced the colony-formation efficiency of the NC1 replicon. The full-length NC1 genome with these adaptive mutations could replicate in cultured cells and produce infectious virus particles. The density gradient profile and morphology of the secreted virus particles were similar to those reported for the JFH-1 virus. Further introduction of a combination of mutations of the NS3 and NS5a regions into the NC1 mutants further enhanced secreted core protein levels and infectious virus titers in the culture medium of HCV-RNA-transfected cells. However, the virus infection efficiency was not sufficient for autonomous virus propagation in cultured cells. In conclusion, we established a novel cell culture-adapted genotype 1b HCV strain, termed NC1, which can produce infectious virus when the viral RNA is transfected into cells. This system provides an important opportunity for studying the life cycle of the genotype 1b HCV.  相似文献   

16.
在以病毒载体介导的基因治疗研究中,重组腺相关病毒(rAAV)因其疗效和安全性方面的优势,是最有临床应用前景的载体。但其转基因包装容量一般不能超过5.0kb,给需要转导大片段基因的应用带来了困难,限制了rAAV在基因治疗研究中的应用。随着对rAAV细胞转导生物学过程研究的不断深入,发现了一些可以突破rAAV包装容量限制的技术,如反式剪接和同源重组策略,为拓展该载体应用范围提供了可能性。另外,rAAV包装容量限制的特点还可以被用来减少生产过程中具有可复制能力的类病毒杂质的污染,为rAAV的临床安全性提供了保障。  相似文献   

17.
Vectors derived from adeno-associated virus type 2 (AAV2) are promising gene delivery vehicles, but it is still challenging to get the large number of recombinant adeno-associated virus (rAAV) particles required for large animal and clinical studies. Current transfection technology requires adherent cultures of HEK 293 cells that can only be expanded by preparing multiple culture plates. A single large-scale suspension culture could replace these multiple culture preparations, but there is currently no effective co-transfection scheme for generating rAAV from cells in suspension culture. Here, we weaned HEK 293 cells to suspension culture using hydrogel-coated six-well culture plates and established an efficient transfection strategy suitable for these cells. Then the cultures were gradually scaled up. We used linear polyethylenimine (PEI) to mediate transfection and obtained high transfection efficiencies ranging from 54% to 99%, thereby allowing efficient generation of rAAV vectors. Up to 10(13) rAAV particles and, more importantly, up to 10(11) infectious particles were generated from a 2-L bioreactor culture. The suspension-transfection strategy of this study facilitates the homogeneous preparation of rAAV at a large scale, and holds further potential as the basis for establishing a manufacturing process in a larger bioreactor.  相似文献   

18.
Gene therapy for cystic fibrosis (CF) could potentially be accomplished with one of several recombinant virus vectors, including a murine retrovirus (MMuLV), adenovirus, or adeno-associated virus (AAV). All these vectors take advantage of their respective viruses' mechanisms for delivery of viral DNA to cells, evasion of lyosomal degradation, and optimization of the levels and duration of expression of viral (or vector) DNA. Each has its own unique life cycle, however. The differences among these viruses result in certain advantages and disadvantages, such as the requirement of retroviruses for active cell division, and the potential pathogenic effects from expression of certain adenovirus genes present in adenovectors. While no single vector may be optimal for CF gene therapy in humans, new techniques, such as receptor-mediated gene transfer, seek to take advantage of the desirable properties of one or more of the virus-based systems while avoiding certain potential hazards.  相似文献   

19.
一种高效快速浓缩腺相关病毒载体的方法   总被引:2,自引:0,他引:2  
腺相关病毒载体(adeno associatedviralvector,AAVvector)是一种具有良好应用前景的基因治疗载体。研究中往往需要高滴度的重组AAV病毒(>105v g /细胞),为此利用完整的腺相关病毒颗粒具有耐受有机溶剂的特点,创造性地采用了一种用乙醇沉淀重组AAV病毒的方法,达到了高效、快速浓缩AAV载体的目的。结果表明,乙醇沉淀法可以高效浓缩AAV载体,并且对病毒的结构和活性没有明显影响。用这种方法可以方便地将低滴度的AAV病毒变成高滴度,解决动物体内实验中每点注射体积受到限制的问题。  相似文献   

20.
None of the vector systems currently available for gene therapy applications have been shown to be capable of both efficient gene transfer into nondividing cells and long-term expression through stable integration into host cell DNA. While integrating vectors based on adeno-associated virus are capable of mediating gene transfer into nondividing cells, this process is 200-fold less efficient than transduction of dividing cells. We demonstrate that the transduction efficiency of adeno-associated virus vectors can be increased by treatment with DNA-damaging agents. Nondividing cells are especially responsive, with increases in transduction efficiency of up to 750-fold. This finding has the potential to facilitate gene therapy applications requiring gene transfer to nondividing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号