首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
AIMS: To establish a criterion for measuring the purity of purified and sterilized magnetosomes from Magnetospirillum gryphiswaldense and to evaluate their toxicity for mouse fibroblasts in vitro. METHODS AND RESULTS: The purification of magnetosomes involves disrupting bacterial cells with a French Press, washing directly with PBS buffer accompanied by treatment with low power ultrasonication, and using a magnet to collect the magnetosomes. Five characteristic peaks were displayed by Fourier-transform infrared spectroscopy (FT-IR), which was used to detect the quality of the purified magnetosomes, at 3273, 2921, 1735, 1645 and 1531 cm(-1). The purified magnetosomes showed no evidence of impurities when observed by transmission electron microscopy and energy disperse spectroscopy. The particles could be stored at -20 degrees C after lyophilization and treatment by gamma-rays. Purified and sterilized magnetosomes had no obvious negative effects on the viability of mouse fibroblasts by 3-(4,5-dimethylthiazolyl)-2,5-diphenyl-tetrazolium bromide assay. CONCLUSIONS: Purified and sterilized magnetosomes were not toxic to mouse fibroblasts in vitro. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides methods for evaluating the purity and safety of magnetosomes from M. gryphiswaldense. The magnetosomes have the potential to be used as novel drug or gene carriers for tumour therapy.  相似文献   

2.
刘召明  林敏  杨雪  汲霞 《生物工程学报》2021,37(9):3190-3200
提高抗肿瘤药物的靶向性是肿瘤治疗、降低药物副作用的重要手段。在肿瘤组织内部由于癌细胞的快速增殖致使其形成低氧区,低氧区会对多种肿瘤治疗方案产生耐受。趋磁细菌 (Magnetotactic bacteria, MTB) 是一类能在细胞内产生外包生物膜、纳米尺寸、单磁畴磁铁矿 (Fe3O4) 或硫铁矿 (Fe3S4) 晶体颗粒-磁小体的微生物的统称。在磁场的作用下,趋磁细菌可凭借鞭毛运动至厌氧区。趋磁细菌在动物体内毒性较低且生物相容性良好,其磁小体与人工合成的磁性纳米材料相比优势显著。文中在介绍趋磁细菌及其磁小体生物学特点、理化性能的基础上,综述了趋磁细菌作为载体偶联药物进入肿瘤内部,并通过感受低氧信号定位于肿瘤低氧区,以及趋磁细菌竞争肿瘤细胞铁源的研究进展,总结了磁小体运载化疗药物、抗体、DNA疫苗靶向结合肿瘤的研究进展,分析了趋磁细菌及磁小体肿瘤治疗中面临的问题,并对趋磁细菌和磁小体在肿瘤治疗中的应用进行了展望。  相似文献   

3.
Zhan F  Chen W  Wang Z  Lu W  Cheng R  Deng C  Meng F  Liu H  Zhong Z 《Biomacromolecules》2011,12(10):3612-3620
Endosomal pH-activatable doxorubicin (DOX) prodrug nanogels were designed, prepared, and investigated for triggered intracellular drug release in cancer cells. DOX prodrugs with drug grafting contents of 3.9, 5.7, and 11.7 wt % (denoted as prodrugs 1, 2, and 3, respectively) were conveniently obtained by sequential treatment of poly(ethylene glycol)-b-poly(2-hydroxyethyl methacrylate-co-ethyl glycinate methacrylamide) (PEG-b-P(HEMA-co-EGMA)) copolymers with hydrazine and doxorubicin hydrochloride. Notably, prodrugs 1, 2, and 3 formed monodispersed nanogels with average sizes of 114.4, 75.3, and 66.3 nm, respectively, in phosphate buffer (PB, 10 mM, pH 7.4). The in vitro release results showed that DOX was released rapidly and nearly quantitatively from DOX prodrug nanogels at endosomal pH and 37 °C in 48 h, whereas only a minor amount (ca. 20% or less) of drug was released at pH 7.4 under otherwise the same conditions. Confocal laser scanning microscope (CLSM) observations revealed that DOX prodrug nanogels delivered and released DOX into the cytosols as well as cell nuclei of RAW 264.7 cells following 24 h incubation. MTT assays demonstrated that prodrug 3 had pronounced cytotoxic effects to tumor cells following 72 h incubation with IC(50) data determined to be 2.0 and 3.4 μg DOX equiv/mL for RAW 264.7 and MCF-7 tumor cells, respectively. The corresponding polymer carrier, PEG-b-P(HEMA-co-GMA-hydrazide), was shown to be nontoxic up to a tested concentration of 1.32 mg/mL. These endosomal pH-activatable DOX prodrug nanogels uniquely combining features of water-soluble macromolecular prodrugs and nanogels offer a promising platform for targeted cancer therapy.  相似文献   

4.
We have investigated the in vitro cytotoxicity of free doxorubicin (DOX) and liposome-entrapped DOX (L-DOX) against a human ovarian carcinoma cell line (OV-1063) using a colorimetric assay. DOX was encapsulated in the inner water phase of liposomes by an ammonium sulfate-generated proton gradient. Liposomes varied in phospholipid composition but were of a similar size. It was found that the cytotoxic activity of L-DOX is substantially decreased when liposomes containing phospholipids of high phase-transition temperature (Tm) are used. The type of negatively charged headgroup did not have any significant influence on the cytotoxicity observed. Experiments using resin beads that bind free and protein-bound DOX, but do not interact with L-DOX, indicated that the cytotoxic effect is mediated by the release of drug from the liposomes into the extracellular medium; no evidence was found for direct cellular uptake of liposome-encapsulated drug. The use of the ionophore nigericin to induce the release of DOX from high-Tm liposomes increased cytotoxicity to a level comparable to free DOX, suggesting that 'remote release' techniques may substantially improve the efficiency of liposome-mediated drug delivery and allow for the full exploitation of the favorable pharmacokinetic properties of specific high-Tm formulations.  相似文献   

5.
With the aim of enhancing the efficacy of chemotherapeutic agents, we investigated the antitumor actions and reversal effect on drug resistance of proanthocyanidin plus doxorubicin. The results showed that proanthocyanidin 12.5-200 mg/L significantly inhibited proliferation of K562, K562/DOX, SPC-A-1, and Lewis cells in vitro in a time- and concentration-dependent manner, as determined by microculture tetrazolium assay. A combination of proanthocyani din 12.5, or 25 mg/L and doxorubicin treatment synergistically inhibited cell proliferation with decreased IC50 values. Proanthocyanidin reverses drug resistance in doxorubicin-resistant K562/DOX cells, and IC50 values were decreased by 9.19 (3.64-23.19), 2.56 (1.48-.44), and 0.94 (0.81-1.09) mg/L, respectively, after 24 h treatment with doxorubicin 0.1-9.0 mg/L alone or in combination with proanthocyanidin 12.5 or 25 mg/L; the proanthocyanidin reversal fold was 3.6 and 9.8, respectively. Under confocal laser scanning microscope, the combination of proanthocyanidin 25 or 50 mg/L with doxorubicin 3 mg/L significantly increased the accumulation of intracellular doxorubicin, Ca2+, and Mg2+, and reduced the pH value and mitochondrial membrane potential in K562/DOX cells as compared with doxorubicin alone (p < 0.01). Additionally, the apoptosis rate was increased by 11.3% +/- 3.3%, 14.2% +/- 5.4%, and 23.8% +/- 2.8%, respectively, for doxorubicin 3 mg/L alone or with proanthocyanidin 12.5 or 25 mg/L, as compared with controls (3.0% +/- 1.4%), as demonstrated by flow cytometry. In vivo experiments demonstrated that i.p. administration of proanthocyanidin 10 mg/kg with doxorubicin 2 mg/kg had an inhibitory effect on the growth of transplantation tumor sarcoma 180 and hepatoma 22 in mice as compared with doxorubicin alone (p < 0.05). These results suggest that proanthocyanidin enhances doxorubicin-induced antitumor effect and reverses drug resistance, and its mechanism is attributed partially to the promotion of doxorubicin-induced apoptosis through an elevation of intracellular doxorubicin, and Ca2+, Mg2+ concentration, and a reduction of pH value and mitochondrial membrane potential.  相似文献   

6.
Immunoconjugates of monoclonal antibody BR96 and Doxorubicin have been prepared using a novel series of branched hydrazone linkers. Since each linker bound to the mAb carries two DOX molecules, the DOX/mAb molar ratios of these conjugates were approximately 16, twice that of those previously prepared with single-chain hydrazone linkers. The conjugates were stable at a physiological pH of 7, but released DOX rapidly at lysosomal pH 5. The branched series of BR96 conjugates demonstrated antigen-specific cytotoxicity, and were more potent in vitro than the single-chain conjugate on both a DOX (4-14-fold) and mAb (7-23-fold) basis. The results suggest that, by using the branched linker methodology, it is possible to significantly reduce the amount of mAb required to achieve antigen-specific cytotoxic activity. In this paper, the synthesis and in vitro biology of branched chain immunoconjugates are described.  相似文献   

7.
Carvedilol (CAR) is a vasodilating beta-blocker which also has antioxidant properties. CAR produces dose-related reduction in mortality in patients with congestive heart failure. In the present study, we tested the hypothesis that CAR protects against doxorubicin (DOX)-induced cardiomyopathy in rats. Sprague-Dawley rats were treated with DOX, CAR, CAR+DOX, or atenolol (ATN)+DOX. DOX (cumulative dose, 15 mg/kg) was administered intraperitoneally, and CAR (30 mg/kg daily) or ATN (150 mg/kg daily) was administered orally. Three weeks after the completion of these treatments, cardiac performance and myocardial lipid peroxidation were assessed. Mortality was observed in the DOX (25%) and ATN+DOX (12.5%) groups. Compared with control rats, DOX significantly decreased systolic blood pressure (104+/-4 vs. 120+/-4 mmHg, P<0.05) and left ventricular fractional shortening (38.8+/-3.1 vs. 55.4+/-1.3%, P<0.01), and resulted in a significant accumulation of ascites (14.4+/-4.9 vs. 0 ml, P<0.01). CAR significantly prevented the cardiomyopathic changes caused by DOX, while ATN did not. The myocardial thiobarbituric acid reactive substances (TBARS) content was significantly higher in DOX-treated rats than in control rats (80.4+/-7.1 vs. 51.5+/-1.2 nmol/g heart, p<0.01). CAR prevented the increase in TBARS content (48.8+/-3.0 nmol/g heart, P<0.01 vs. DOX group), whereas ATN had no significant effect (74.3+/-5.2 nmol/g heart). CAR also significantly prevented the increase in both myocardial and plasma cholesterol concentrations caused by DOX. These data indicate that CAR protects against DOX-induced cardiomyopathy and that this effect may be attributed to the antioxidant and lipid-lowering properties of CAR, not to its beta-blocking property.  相似文献   

8.
Multiple myeloma (MM) remains an incurable disease despite improvements to available treatments and efforts to identify new drug targets. Consequently new approaches are urgently required. We have investigated the potential of native tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), in combination with doxorubicin, to induce apoptotic cell death in phenotypically distinct populations of myeloma cells in vitro and in vivo. The cytotoxic potential of TRAIL alone, and in combination with DOX, was assessed in vitro in purified CD138(+) and CD138(-) cells from the MM cell lines and samples from patients with MM. Mouse xenografts obtained by implanting CD138(-) MM cells were used to assess the efficacy of TRAIL, alone and in combination with DOX, in vivo. CD138(-) cells were shown to be more resistant to the cytotoxic activity of TRAIL than CD138(+) cells and have reduced expression of TRAIL death receptors. This resistance results in preferential killing of CD 138(+) cells during exposure of MM culture to TRAIL. Furthermore, prolonged exposure results in the appearance of TRAIL-resistant CD138(-) cells. However, when TRAIL is combined with doxorubicin, this results in complete eradication of MM cells in vivo. Most importantly, this treatment successfully eliminates CD138(-) cells implicated in tumour initiation and growth maintenance. These findings may explain the failure of current therapies and offer a promising new approach in the quest to cure MM and disseminated cancers.  相似文献   

9.

Background

Gene therapy has gained an increasing interest in its anti-tumor efficiency. However, numerous efforts are required to promote them to clinics. In this study, a novel and efficient delivery platform based on bacterial magnetosomes (BMs) were developed, and the efficiency of BMs in delivering small interfering ribonucleic acid (siRNA) as well as antiproliferative effects in vitro were investigated.

Results

Initially, we optimized the nitrogen/phosphate ratio and the BMs/siRNA mass ratio as 20 and 1:2, respectively, to prepare the BMs–PEI–siRNA composites. Furthermore, the prepared nanoconjugates were systematically characterized. The dynamic light scattering measurements indicated that the particle size and the zeta potential of BMs–PEI–siRNA are 196.5 nm and 49.5 ± 3.77 mV, respectively, which are optimum for cell internalization. Moreover, the confocal laser scanning microscope observations showed that these composites were at a proximity to the nucleus and led to an effective silencing effect. BMs–PEI–siRNA composites efficiently inhibited the growth of HeLa cells in a dose-as well as time-dependent manner. Eventually, a dual stain assay using acridine orange/ethidium bromide, revealed that these nanocomposites induced late apoptosis in cancer cells.

Conclusions

A novel and efficient gene delivery system based on BMs was successfully produced for cancer therapy, and these innovative carriers will potentially find widespread applications in the pharmaceutical field.
  相似文献   

10.
The distribution of the anti-cancer drug doxorubicin (DOX) in human breast cancer MCF-7 cells was imaged directly by low-energy-loss electron microscopy (EM) without specific antibodies or heavy metal stains, using only the electron-induced molecular orbital excitation of the drug. Cells treated with DOX were examined live by confocal fluorescence microscopy and as very thin sections in an electron microscope equipped with an electron energy filter having an energy resolution of 1 eV. The distribution of DOX obtained by EM from pairs of images at energy losses of 3+/-1 eV and 10+/-1 eV agreed with fluorescence microscope observations, but provided much more detail, easily distinguishing localization between nuclear membrane and perimembrane compartments and between vacuolated nucleoli and perinucleolar chromatin. Treatment times up to 1h and DOX concentrations up to 30 microM indicated a progression of DOX ingress from higher concentrations in the nuclear membrane to labeling of the nucleolus. Subsequently DOX moved into perinucleolar chromatin and concentrated in perimembrane chromatin aggregations. Quantification of the DOX signal indicated a decay half-life of 320 e/A2 under electron irradiation, whereas each image at 3000 x required 10 e/A2. The results point to a new field of high resolution microanalysis: color electron microscopy.  相似文献   

11.
pH-Responsive drug carriers have the potential to provide selective drug release at therapeutic targets including tumors and in acidic intracellular vesicles such as endosomes and lysosomes. We have developed a new approach to the design of acid-sensitive micelles by incorporating hydrophobic acetal groups on the core block of a micelle-forming block copolymer. Hydrolysis of the acetals at mildly acidic pH is designed to reveal polar groups on the core-forming block, thus changing its solubility and disrupting the micelle, triggering drug release. The anticancer drug doxorubicin (DOX) was encapsulated in these pH-sensitive micelles, and the acetal hydrolysis rates and DOX release rates were determined in the pH range of 4.0 to 7.4 and were compared to those of control systems. The micelle disruption was investigated by dynamic light scattering. The in vitro toxicities of the empty and DOX-loaded micelles were determined, and the intracellular fate of the encapsulated DOX was compared to free DOX using fluorescence confocal microscopy.  相似文献   

12.
Targeted chemotherapy is a modern approach aimed at increasing the efficacy of systemic chemotherapy and reducing its side effects. The peptide receptors expressed primarily on cancerous cells can serve as targets for a selective destruction of malignant tumors. Binding sites for LHRH (now known in genome and microarray databases as GNRH1), were found on 52% of human breast cancers, about 80% of human ovarian and endometrial cancers, and 86% of human prostatic carcinoma specimens. Because LHRH receptors are not expressed on most normal tissues, they represent a specific target for cancer chemotherapy with antineoplastic agents linked to an LHRH vector molecule. To test the efficacy of targeted chemotherapy based on LHRH analogs, we recently developed a cytotoxic analog of LHRH, designated AN-152, which consists of [D-Lys6]LHRH covalently linked to one of the most widely used chemotherapeutic agents, doxorubicin (DOX). In addition, we designed and synthesized a highly active derivative of DOX, 2-pyrrolino-DOX (AN-201), which is 500-1000 times more potent than DOX in vitro. AN-201 is active against tumors resistant to DOX, and noncardiotoxic. As in the case of DOX, AN-201 was coupled to carrier peptide [D-Lys6]LHRH to form a superactive targeted cytotoxic LHRH analog, AN-207. Both AN-152 and AN-207 can effectively inhibit the growth of LHRH receptor-positive human breast, ovarian, endometrial, and prostate cancers xenografted into nude mice. DOX-containing cytotoxic LHRH analog AN-152 is scheduled for clinical phase I/IIa trials in patients with advanced ovarian and breast cancers in 2005.  相似文献   

13.
This study aimed to design and evaluate enhanced permeation and retention (EPR)‐mediated anticancer effect of polymer‐modified and drug‐loaded magnetite nanocomposites. The preformulated bare (10 nm), chitosan‐superparamagnetic iron oxide (SPIO; 69 nm), heparin‐SPIO (42 nm), and (3‐aminopropyl)triethoxysilane‐polyethylene glycol‐SPIO (17 nm) nanocomposites were utilized to evaluate the EPR‐mediated localized cancer targeting and retention of doxorubicin (DOX) and paclitaxel (PTX) in human ovarian cancer cell lines, A2780 and OVCAR‐3 in vitro and in the tumor‐baring Balb/c mice in vivo. Fluorescence microscopy showed that DOX‐ and PTX‐loaded SPIO nanoparticles caused long‐term accumulation and cytoplasmic retention in A2780 and OVCAR‐3 cells, as compared to free drugs in vitro. In vivo antiproliferative effect of present formulations on immunodeficient female Balb/c mice showed a tremendous amount of ovarian tumor shrinkage within 6 weeks. The present nanocomposite systems of targeted drug delivery proved to be efficient drug carrier with sustained drug release and long‐term retention with enhanced cytotoxic properties in vitro and in vivo.  相似文献   

14.
Doxorubicin (DOX) is an efficient chemotherapeutic agent used against several types of tumors; however, its use is limited due to severe cardiotoxicity. Since it is accepted that reactive oxygen species are involved in DOX-induced cardiotoxicity, antioxidant agents have been used to attenuate its side effects. To determine tomato-oleoresin protection against cardiac oxidative DNA damage induced by DOX, we distributed Wistar male rats in control (C), lycopene (L), DOX (D) and DOX+lycopene (DL) groups. They received corn oil (C, D) or tomato-oleoresin (5mg/kg body wt. day) (L, DL) by gavage for a 7-week period. They also received saline (C, L) or DOX (4mg/kg body wt.) (D, DL) intraperitoneally at the 3rd, 4th, 5th, and at 6th week. Lycopene absorption was checked by HPLC. Cardiac oxidative DNA damage was evaluated by the alkaline Comet assay using formamidopyrimidine-DNA glycosylase (FPG) and endonuclease III (endo III). Cardiomyocyte levels of SBs, SBs FPG and SBs Endo III were higher in rats from D when compared to other groups. DNA damage levels in cardiomyocytes from DL were not different when compared to C and L groups. The viability of cardiomyocytes from D or DL was lower than C or L groups (p<0.01). Lycopene levels (mean+/-S.D.nmol/kg) in saponified hearts were similar between L (47.43+/-11.78) and DL (49.85+/-16.24) groups. Our results showed: (1) lycopene absorption was confirmed by its cardiac levels; (2) DOX-induced oxidative DNA damage in cardiomyocyte; (3) tomato-oleoresin supplementation protected against cardiomyocyte oxidative DNA damage.  相似文献   

15.
Polyacetal-doxorubicin conjugates designed for pH-dependent degradation   总被引:2,自引:0,他引:2  
Terpolymerization of poly(ethylene glycol) (PEG), divinyl ethers, and serinol can be used to synthesize water soluble, hydrolytically labile, amino-pendent polyacetals (APEGs) suitable for drug conjugation. As these polyacetals display pH-dependent degradation (with faster rates of hydrolysis at acidic pH) and they are not inherently hepatotropic after intravenous (iv) injection, they have potential for development as biodegradable carriers to facilitate improved tumor targeting of anticancer agents. The aim of this study was to synthesize a polyacetal-doxorubicin (APEG-DOX) conjugate, determine its cytotoxicity in vitro and evaluate its potential for improved tumor targeting in vivo compared to an HPMA copolymer-DOX conjugate in clinical development. Amino-pendent polyacetals were prepared, and following succinoylation (APEG-succ), the polymeric intermediate conjugated to DOX via one of three methods using carbodiimide mediated coupling (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) in aqueous solution was the most successful). The resultant APEG-DOX conjugates had a DOX content of 3.0-8.5 wt %, contained <1.2% free DOX (relative to total DOX content) and had a M(w) = 60000-100000 g/mol and M(w)/M(n) = 1.7-2.6. In vitro cytotoxicity studies showed APEG-DOX to be 10-fold less toxic toward B16F10 cells than free DOX (IC(50) = 6 microg/mL and 0.6 microg/mL respectively), but confirmed the serinol-succinoyl-DOX liberated during main-chain degradation to be biologically active. When administered iv to C57 black mice bearing subcutaneous (sc) B16F10 melanoma, APEG-DOX of M(w) = 86000 g/mol, and 5.0 wt % DOX content exhibited significantly (p < 0.05) prolonged blood half-life and enhanced tumor accumulation compared to an HPMA copolymer-GFLG-DOX conjugate of M(w) = 30000 g/mol and 6.2 wt % DOX content. Moreover, APEG-DOX exhibited lower uptake by liver and spleen. These observations suggest that APEG anticancer conjugates warrant further development as novel polymer therapeutics for improved tumor targeting.  相似文献   

16.
Targeted drug delivery approaches have been implementing significant therapeutic gain for cancer treatment since last decades. Aptamers are one of the mostly used and highly selective targeting agents for cancer cells. Herein, we address a nano-sized targeted drug delivery approach adorned with A-172 glioblastoma cell-line-specific single stranded DNA (ssDNA) aptamer in which the chemotherapeutic agent Doxorubicin (DOX) had been conjugated. DNA aptamer, GMT-3, was previously selected for specific recognition of glioblastoma and represented many advantageous characteristics for drug targeting purposes. Flow cytometry analysis proved the binding efficiency of the specific aptamer to tumour cell lines. Cell-type-specific toxicity of GMT-3:DOX complex was showed by XTT assay and terminated cytotoxic effects were screened for both target cell and a control breast cancer cell line. The result of this contribution demonstrated the potential utility of GMT-3 aptamer-mediated therapeutic drug transportation in the treatment of gliomas specifically. It was concluded that aptamer-mediated drug delivery can be applied successfully for clinical use.  相似文献   

17.
Doxorubicin remains one of the most widely used chemotherapeutic agents however its effect on healthy tissue, such as skeletal muscle, remains poorly understood. The purpose of the current study was to examine the accumulation of doxorubicin (DOX) and its metabolite doxorubicinol (DOXol) in skeletal muscle of the rat up to 8 days after the administration of a 1.5 or 4.5 mg kg-1 i.p. dose. Subsequent to either dose, DOX and DOXol were observed in skeletal muscle throughout the length of the experiment. Interestingly an efflux of DOX was examined after 96 hours, followed by an apparent re-uptake of the drug which coincided with a spike and rapid decrease of plasma DOX concentrations. The interstitial space within the muscle did not appear to play a significant rate limiting compartment for the uptake or release of DOX or DOXol from the tissue to the circulation. Furthermore, there was no evidence that DOX preferentially accumulated in a specific muscle group with either dose. It appears that the sequestering of drug in skeletal muscle plays an acute and important role in the systemic availability and metabolism of DOX which may have a greater impact on the clinical outcome than previously considered.  相似文献   

18.
P Saha  S Fortin  V Leblanc  S Parent  E Asselin  G Bérubé 《Steroids》2012,77(11):1113-1122
Doxorubicin (DOX) is an important medicine for the treatment of breast cancer, which is the most frequently diagnosed and the most lethal cancer in women worldwide. However, the clinical use of DOX is impeded by serious toxic effects such as cardiomyopathy and congestive heart failure. Covalently linking DOX to estrogen to selectively deliver the drug to estrogen receptor-positive (ER(+)) cancer tissues is one of the strategies under investigation for improving the efficacy and decreasing the cardiac toxicity of DOX. However, conjugation of drug performed until now was at 3- or 17-position of estrogen, which is not ideal since the hydroxyl groups at this position are important for receptor binding affinity. In this study, we designed, prepared and evaluated in vitro the first estrogen-doxorubicin conjugates at 16α-position of estradiol termed E-DOXs (8a-d). DOX was conjugated using a 3-9 carbon atoms alkylamide linking arm. E-DOXs were prepared from estrone using a seven-step procedure to afford the desired conjugates in low to moderate yields. The antiproliferative activities of the E-DOX 8a conjugate through a 3-carbon spacer chain on ER(+) MCF7 and HT-29 are in the micromolar range while inactive on M21 and the ER(-) MDA-MB-231 cells (>50μM). Compound 8a exhibits a selectivity ratio (ER(+)/ER(-) cell lines) of >3.5. Compounds 8b-8d bearing alkylamide linking arms ranging from 5 to 9 carbon atoms were inactive at the concentrations tested (>50μM). Interestingly, compounds 8a-8c exhibited affinity for the estrogen receptor α (ERα) in the nanomolar range (72-100nM) whereas compound 8d exhibited no affinity at concentrations up to 215nM. These results indicate that a short alkylamide spacer is required to maintain both antiproliferative activity toward ER(+) MCF7 and affinity for the ERα of the E-DOX conjugates. Compound 8a is potentially a promising conjugate to target ER(+) breast cancer and might be useful also for the design of more potent E-DOX conjugates.  相似文献   

19.
Hyaluronic acid (HA) coated drug carriers (HCDCs) were successfully synthesized by chemical conjugation method for targeted delivery of doxorubicin (DOX) as a prototype anticancer drug to CD44 expressed human breast cancer cell. From XPS analysis, the HCDCs by conjugation methods demonstrated the superior HA fixation amount and colloidal stability compared with the nanoparticles by nanoprecipitation. The cytotoxicity of the HCDCs formulation accessed by the MTT assay against the higher CD44 expressed cell line (MDA-MB-231) and lower CD44 expressed cell line (ZR-75-1) human breast cancer cell lines demonstrated that the HCDCs formulation exhibited excellent tumoricidal effect and their affinity to cancer cells was predominant. The in vitro drug release profile of the HCDCs showed sustained release behavior and after 14 days, 80% of the encapsulated DOX was released due to a high release rate of DOX from HCDCs. We synthesized that HCDCs have therapeutic potentials of cancer as a target specific fashion by increasing the tumoricidal efficacy of targeted cancer cells while reducing their cytotoxicity of non-targeted cells to minimize the side effect.  相似文献   

20.
The development of drug resistance of tumors is multifactorial and still poorly understood. Some cytotoxic drugs generate free radicals, and, therefore, antioxidant enzymes may contribute to drug resistance. We investigated the levels of manganese superoxide dismutase (Mn SOD), its inducibility, and its protective role against tumor necrosis factor-alpha and cytotoxic drugs (cisplatin, epirubicin, methotrexate, and vindesin) in human pleural mesothelioma (M14K) and pulmonary adenocarcinoma (A549) cells. We also studied other major antioxidant mechanisms in relation to oxidant and drug resistance of these cells. A549 cells were more resistant than M14K cells toward both oxidants (hydrogen peroxide and menadione) and all the cytotoxic drugs tested. M14K cells contained higher basal Mn SOD activity than A549 cells (28.3 +/- 3.4 vs. 1.8 +/- 0.3 U/mg protein), and Mn SOD activity was significantly induced by tumor necrosis factor-alpha only in A549 cells (+524%), but the induction did not offer any protection during subsequent oxidant or drug exposure. Mn SOD was not induced significantly in either of these cell lines by any of the cytotoxic drugs (0.007-2 microM, 48 h) tested when assessed by Northern blotting, Western blotting, or specific activity. A549 cells contained higher catalase activity than M14K cells (7.6 +/- 1.3 vs. 3.6 +/- 0.5 nmol O(2). min(-1). mg protein(-1)). They also contained twofold higher levels of glutathione and higher immunoreactivity of the heavy subunit of gamma-glutamylcysteine synthetase than M14K cells. Experiments with inhibitors of gamma-glutamylcysteine synthetase and catalase supported our conclusion that mechanisms associated with glutathione contribute to the drug resistance of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号