首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doxorubicin (DOX) is a highly effective treatment for several forms of cancer. However, clinical experience shows that DOX induces a cumulative and dose-dependent cardiomyopathy that has been ascribed to redox-cycling of the drug on the mitochondrial respiratory chain generating free radicals and oxidative stress in the process. Mitochondrial dysfunction including induction of the mitochondrial permeability transition (MPT) and inhibition of mitochondrial respiration have been implicated as major determinants in the pathogenesis of DOX cardiotoxicity. The present work was aimed at investigating whether the inhibition of mitochondrial respiration occurs secondarily to MPT induction in heart mitochondria isolated from DOX-treated rats and whether one or both consequences of DOX treatment are related with oxidation of protein thiol residues. DOX-induced oxidative stress was associated with the accumulation of products of lipid peroxidation and the depletion of alpha-tocopherol in cardiac mitochondrial membranes. No changes in mitochondrial coenzyme Q9 and Q10 concentrations were detected in hearts of DOX-treated rats. Cardiac mitochondria from DOX-treated rats were more susceptible to diamide-dependent induction of the MPT. Although DOX treatment did not affect state 4 respiration, state 3 respiration was decreased in heart mitochondria isolated from DOX-treated rats, which was reversed in part by adding either cyclosporin A or dithiothreitol, but not Trolox. The results suggest that in DOX-treated rats, (i) induction of the MPT is at least in part responsible for decreased mitochondrial respiration, (ii) heart mitochondria are more susceptible to diamide induced-MPT, (iii) thiol-dependent alteration of mitochondrial respiration is partially reversible ex vivo with dithiothreitol. Collectively, these data are consistent with the thesis that thiol-dependent alteration of MPT and respiration is an important factor in DOX-induced mitochondrial dysfunction.  相似文献   

2.
Role of the mitochondrial membrane permeability transition in cell death   总被引:6,自引:0,他引:6  
In recent years, the role of the mitochondria in both apoptotic and necrotic cell death has received considerable attention. An increase of mitochondrial membrane permeability is one of the key events in apoptotic or necrotic death, although the details of the mechanism involved remain to be elucidated. The mitochondrial membrane permeability transition (MPT) is a Ca2+-dependent increase of mitochondrial membrane permeability that leads to loss of Δψ, mitochondrial swelling, and rupture of the outer mitochondrial membrane. The MPT is thought to occur after the opening of a channel that is known as the permeability transition pore (PTP), which putatively consists of the voltage-dependent anion channel (VDAC), the adenine nucleotide translocator (ANT), cyclophilin D (Cyp D: a mitochondrial peptidyl prolyl-cis, trans-isomerase), and other molecule(s). Recently, significant progress has been made by studies performed with mice lacking Cyp D at several laboratories, which have convincingly demonstrated that Cyp D is essential for the MPT to occur and that the Cyp D-dependent MPT regulates some forms of necrotic, but not apoptotic, cell death. Cyp D-deficient mice have also been used to show that the Cyp D-dependent MPT plays a crucial role in ischemia/reperfusion injury. The anti-apoptotic proteins Bcl-2 and Bcl-xL have the ability to block the MPT, and can therefore block MPT-dependent necrosis in addition to their well-established ability to inhibit apoptosis.  相似文献   

3.
Ferulic acid plays a chemopreventive role in cancer by inducing tumor cells apoptosis. As mitochondria play a key role in the induction of apoptosis in many cells types, here we investigate the mitochondrial permeability transition (MPT) and the release of cytochrome c induced by ferulic acid and its esters in rat testes mitochondria, in TM-3 and MLTC-1 cells. While ferulic acid, but not its esters, induced MPT and cytochrome c release in rat testes isolated mitochondria, in TM-3 cells we found that both ferulic acid and its esters induced cytochrome c release from mitochondria in a dose-dependent manner, suggesting a potential target of these compounds in the induction of cell apoptosis. The apoptosis induced by ferulic acid is therefore associated with the mitochondrial pathway involving cytochrome c release and caspase-3 activation. Cione and Tucci have equally contributed to this article.  相似文献   

4.
The study addressed aspects of energetics of isolated rat liver mitochondria exposed to the flavonoids quercetin, taxifolin, catechin and galangin, taking into account influences of the 2,3 double bond/3-OH group and 4-oxo function on the C-ring, and o-di-OH on the B-ring of their structures, as well as mitochondrial mechanisms potentially involved in cell necrosis and apoptosis. The major findings/hypothesis, were: The 2,3 double bond/3-OH group in conjugation with the 4-oxo function on the C-ring in the flavonoid structure seems favour the interaction of these compounds with the mitochondrial membrane, decreasing its fluidity either inhibiting the respiratory chain of mitochondria or causing uncoupling; while the o-di-OH on the B-ring seems favour the respiratory chain inhibition, the absence of this structure seems favour the uncoupling activity. The flavonoids not affecting the respiration of mitochondria, induced MPT. The ability of flavonoids to induce the release of mitochondria-accumulated Ca(2+) correlated well with their ability to affect mitochondrial respiration on the one hand, and their inability to induce MPT, on the other. The flavonoids causing substantial respiratory chain inhibition or mitochondrial uncoupling, quercetin and galangin, respectively, also decreased the mitochondrial ATP levels, thus suggesting an apparent higher potential for necrosis induction in relation to the flavonoids inducing MPT, taxifolin and cathechin, which did not decrease significantly the ATP levels, rather suggesting an apparent higher potential for apoptosis induction.  相似文献   

5.
The initiating events that lead to the induction of apoptosis mediated by the chemopreventative agent beta-phenyethyl isothiocyanate (PEITC) have yet to be elucidated. In the present investigation, we examined the effects of PEITC on mitochondrial function and apoptotic signaling in hepatoma HepG2 cells and isolated rat hepatocyte mitochondria. PEITC induced a conformational change in Bax leading to its translocation to mitochondria in HepG2 cells. Bax accumulation was associated with a rapid loss of mitochondrial membrane potential (Deltapsim), impaired respiratory chain enzymatic activity, release of mitochondrial cytochrome c and the activation of caspase-dependent cell death. Caspase inhibition did not prevent Bax translocation, the release of cytochrome c or the loss of Deltapsim, but blocked caspase-mediated DNA fragmentation and cell death. To determine whether PEITC dependent Bax translocation caused loss of Deltapsim by the activation of the mitochondrial permeability transition (MPT), we examined the effects of PEITC in isolated rat hepatocyte mitochondria. Interestingly, PEITC did not induce MPT in isolated rat mitochondria. Accordingly, using pharmacological inhibitors of MPT namely cyclosporine A, trifluoperazine and Bongkrekic acid we were unable to block PEITC mediated apoptosis in HepG2 cells, this suggesting that mitochondrial permeablisation is a likely consequence of Bax dependent pore formation. Taken together, our data suggest that mitochondria are a key target in PEITC induced apoptosis in HepG2 cells via the pore forming ability of pro-apoptotic Bax.  相似文献   

6.
Mitochondrial permeability transition (MPT) is thought to determine cell death under oxidative stress. However, MPT inhibitors only partially suppress oxidative stress-induced cell death. Here, we demonstrate that cells in which MPT is inhibited undergo cell death under oxidative stress. When C6 cells were exposed to 250 μM t-butyl hydroperoxide (t-BuOOH), the loss of a membrane potential-sensitive dye (tetramethylrhodamine ethyl ester, TMRE) from mitochondria was observed, indicating mitochondrial depolarization leading to cell death. The fluorescence of calcein entrapped in mitochondria prior to addition of t-BuOOH was significantly decreased to 70% after mitochondrial depolarization. Cyclosporin A suppressed the decrease in mitochondrial calcein fluorescence, but not mitochondrial depolarization. These results show that t-BuOOH induced cell death even when it did not induce MPT. Prior to MPT, lactate production and respiration were hampered. Taken together, these data indicate that the decreased turnover rate of glycolysis and mitochondrial respiration may be as vital as MPT for cell death induced under moderate oxidative stress.  相似文献   

7.
The mitochondrial permeability transition (MPT) is involved in both Ca2+ signaling and cell death. The present study aimed to clarify the involvement of cyclophilin D, a peptidyl prolyl cis-trans isomerase (PPIase), in MPT induction in intact cells. To achieve this, we used C6 cells overexpressing wild-type or PPIase-deficient cyclophilin D, and measured the inner mitochondrial membrane permeability to calcein, a 623-Da hydrophilic fluorescent molecule, to evaluate MPT induction. In vector control cells, the percentage of MPT induction by ionomycin increased as the Ca2+ concentration in the extracellular medium increased. This result indicates that the present method is valid for numerical evaluation of MPT induction. In C6 cells expressing the PPIase-deficient mutant, the percentage of MPT induction was significantly decreased compared with wild-type CypD-overexpressing cells or vector control cells. These results suggest that cyclophilin D is involved in MPT induction by Ca2+ in intact cells.  相似文献   

8.
Metabolic reprogramming in cancer is manifested by persistent aerobic glycolysis and suppression of mitochondrial function and is known as the Warburg effect. The Warburg effect contributes to cancer progression and is considered to be a promising therapeutic target. Understanding the mechanisms used by cancer cells to suppress their mitochondria may lead to development of new approaches to reverse metabolic reprogramming. We have evaluated mitochondrial function and morphology in poorly respiring LM7 and 143B osteosarcoma (OS) cell lines showing the Warburg effect in comparison with actively respiring Saos2 and HOS OS cells and noncancerous osteoblastic hFOB cells. In LM7 and 143B cells, we detected markers of the mitochondrial permeability transition (MPT), such as mitochondrial swelling, depolarization, and membrane permeabilization. In addition, we detected mitochondrial swelling in human OS xenografts in mice and archival human OS specimens using electron microscopy. The MPT inhibitor sanglifehrin A reversed MPT markers and increased respiration in LM7 and 143B cells. Our data suggest that the MPT may play a role in suppression of mitochondrial function, contributing to the Warburg effect in cancer.  相似文献   

9.
Membrane permeability transition (MPT) of mitochondria has an important role in apoptosis of various cells. The classic type of MPT is characterized by increased Ca(2+) transport, membrane depolarization, swelling, and sensitivity to cyclosporin A. In this study, we investigated whether L-carnitine suppresses oleic acid-induced MPT using isolated mitochondria from rat liver. Oleic acid-induced MPT in isolated mitochondria, inhibited endogenous respiration, caused membrane depolarization, and increased large amplitude swelling, and cytochrome c (Cyt. c) release from mitochondria. L-Carnitine was indispensable to beta-oxidation of oleic acid in the mitochondria, and this reaction required ATP and coenzyme A (CoA). In the presence of ATP and CoA, L-carnitine stimulated oleic acid oxidation and suppressed the oleic acid-induced depolarization, swelling, and Cyt. c release. L-Carnitine also contributed to maintaining mitochondrial function, which was decreased by the generation of free fatty acids with the passage of time after isolation. These results suggest that L-carnitine acts to maintain mitochondrial function and suppresses oleic acid-mediated MPT through acceleration of beta-oxidation.  相似文献   

10.
Selenium is an essential trace element in mammals and is thought to play a chemopreventive role in human cancer, possibly by inducing tumor cell apoptosis. Mitochondria play a pivotal role in the induction of apoptosis in many cell types. The effects of selenite on mitochondrial function were therefore investigated. Selenite induced the oxidation and cross-linking of protein thiol groups, mitochondrial permeability transition (MPT), a decrease in the mitochondrial membrane potential, and the release of cytochrome c in mitochondria isolated from rat liver. Induction of the MPT by selenite was prevented by cyclosporin A, EGTA, or N-ethylmaleimide. These results thus indicate that selenite induces the MPT as a result of direct modification of protein thiol groups, resulting in the release of cytochrome c and a loss of mitochondrial membrane potential.  相似文献   

11.
Isolated mitochondria may undergo uncoupling, and in presence of Ca(2+) at different conditions, a mitochondrial permeability transition (MPT) linked to protein thiol oxidation, and demonstrated by CsA-sensitive mitochondrial swelling; these processes may cause cell death either by necrosis or by apoptosis. Isocoumarins isolated from the Brazilian plant Paepalanthus bromelioides (Eriocaulaceae) paepalantine (9,10-dihydroxy-5,7-dimethoxy-1H-naptho(2,3c)pyran-1-one), 8,8'-paepalantine dimer, and vioxanthin were assayed at 1-50 microM on isolated rat liver mitochondria, for respiration, MPT, protein thiol oxidation, and interaction with the mitochondrial membrane using 1,6-diphenyl-1,3,5-hexatriene (DPH). The isocoumarins did not significantly affect state 3 respiration of succinate-energized mitochondria; they did however, stimulate 4 respiration, indicating mitochondrial uncoupling. Induction of MPT and protein thiol oxidation were assessed in succinate-energized mitochondria exposed to 10 microM Ca(2+); inhibition of these processes was assessed in non-energized organelles in the presence of 300 microM t-butyl hydroperoxide plus 500 microM Ca(2+). Only paepalantine was an effective MPT/protein thiol oxidation inducer, also releasing cytochrome c from mitochondria; the protein thiol oxidation, unlike mitochondrial swelling, was neither inhibited by CsA nor dependent on the presence of Ca(2+). Vioxanthin was an effective inhibitor of MPT/protein thiol oxidation. All isocoumarins inserted deeply into the mitochondrial membrane, but only paepalantine dimer and vioxantin decreased the membrane's fluidity. A direct reaction with mitochondrial membrane protein thiols, involving an oxidation of these groups, is proposed to account for MPT induction by paepalantine, while a restriction of oxidation of these same thiol groups imposed by the decrease of membrane fluidity, is proposed to account for MPT inhibition by vioxanthin.  相似文献   

12.
The role of the mitochondrial permeability transition (MPT) in apoptosis and necrosis is controversial. Here we show that the MPT regulates the release of cytochrome c for apoptosis during endoplasmic reticulum (ER) stress by remodeling the cristae junction (CJ). CEM cells, HCT116 colon cancer cells, and murine embryo fibroblast cells were treated with the ER stressor thapsigargin (THG), which led to cyclophilin D-dependent mitochondrial release of the profusion GTPase optic atrophy 1 (OPA1), which controls CJ integrity, and cytochrome c, leading to apoptosis. Interference RNA knockdown of Bax blocked OPA1 and cytochrome c release after THG treatment but did not prevent the MPT, showing that Bax was essential for the release of cytochrome c by MPT. In isolated mitochondria, MPT led to OPA1 and cytochrome c release independently of voltage-dependent anion channel and the outer membrane, indicating that the MPT is an inner membrane phenomenon. Last, the MPT was regulated by the electron transport chain but not mitochondrial reactive oxygen species, since THG-induced cell death was not blocked by antioxidants and did not occur in cells lacking mitochondrial DNA. Our results show that the MPT regulates CJ remodeling for cytochrome c-dependent apoptosis induced by ER stress and that mitochondrial electron transport is indispensable for this process.  相似文献   

13.
Reperfusion of ATP-depleted tissues after warm or cold ischemia causes pH-dependent necrotic and apoptotic cell death. In hepatocytes and other cell types as well, the mechanism underlying this reperfusion-induced cell death involves onset of the mitochondrial permeability transition (MPT). Opening of permeability transition (PT) pores in the mitochondrial inner membrane initiates the MPT, an event blocked by cyclosporin A (CsA) and pH less than 7.4. Thus, both acidotic pH and CsA prevent MPT-dependent reperfusion injury. Glycine also blocks reperfusion-induced necrosis but acts downstream of PT pore opening by stabilizing the plasma membrane. After the MPT, ATP availability from glycolysis or other source determines whether cell injury after reperfusion progresses to ATP depletion-dependent necrosis or ATP-requiring apoptosis. Thus, apoptosis and necrosis after reperfusion share a common pathway, the MPT. Cell injury progressing to either necrosis or apoptosis by shared pathways can be more aptly termed necrapoptosis.  相似文献   

14.
Triterpenoids are a large class of naturally occurring compounds, and some potentially interesting as anticancer agents have been found to target mitochondria. The objective of the present work was to investigate the mechanisms of mitochondrial toxicity induced by novel dimethylaminopyridine (DMAP) derivatives of pentacyclic triterpenes, which were previously shown to inhibit the growth of melanoma cells in vitro. MCF-7, Hs 578T and BJ cell lines, as well as isolated hepatic mitochondria, were used to investigate direct mitochondrial effects. On isolated mitochondrial hepatic fractions, respiratory parameters, mitochondrial transmembrane electric potential, induction of the mitochondrial permeability transition (MPT) pore and ion transport-dependent osmotic swelling were measured. Our results indicate that the DMAP triterpenoid derivatives lead to fragmentation and depolarization of the mitochondrial network in situ, and to inhibition of uncoupled respiration, induction of the permeability transition pore and depolarization of isolated hepatic mitochondria. The results show that mitochondrial toxicity is an important component of the biological interaction of DMAP derivatives, which can explain the effects observed in cancer cells.  相似文献   

15.
The mitochondrion has emerged as a key regulator of apoptosis, a form of animal programmed cell death (PCD). The mitochondrial permeability transition (MPT), facilitated by a pore-mediated, rapid permeability increase in the inner membrane, has been implicated as an early and critical step of apoptosis. Victorin, the host-selective toxin produced by Cochliobolus victoriae, the causal agent of victoria blight of oats, has been demonstrated to bind to the mitochondrial P-protein and also induces a form of PCD. Previous results suggest that a MPT may facilitate victorin's access to the mitochondrial matrix and binding to the P-protein: (i) victorin-induced cell death displays features similar to apoptosis; (ii) in vivo, victorin binds to the mitochondrial P-protein only in toxin-sensitive genotypes whereas victorin binds equally well to P-protein isolated from toxin-sensitive and insensitive oats; (iii) isolated, untreated mitochondria are impermeable to victorin. The data implicate an in vivo change in mitochondrial permeability in response to victorin. This study focused on whether oat mitochondria can undergo a MPT. Isolated oat mitochondria demonstrated high-amplitude swelling when treated with spermine or Ca2+ in the presence of the Ca2+-ionophore A23187, and when treated with mastoparan, an inducer of the MPT in rat liver mitochondria. In all cases, swelling demonstrated size exclusion in the range 0.9-1.7 kDa, similar to that found in animal mitochondria. Further, MPT-inducing conditions permitted victorin access to the mitochondrial matrix and binding to the P-protein. In vivo, victorin treatment induced the collapse of mitochondrial transmembrane potential within 2 h, indicating a MPT. Also, the victorin-induced collapse of membrane potential was clearly distinct from that induced by uncoupling respiration, as the latter event prevented the victorin-induced PCD response and binding to P-protein. These results demonstrate that a MPT can occur in oat mitochondria in vitro, and are consistent with the hypothesis that an MPT, which allows victorin access to the mitochondrial matrix and binding to the P-protein, occurs in vivo during victorin-induced PCD.  相似文献   

16.
Mitochondria and associated oxidative stress have been shown to play critical roles in apoptotic death induced by various stress agents. Previously, we reported the antitumor property of diospyrin (D1), a plant-derived bisnaphthoquinonoid, and its diethylether derivative (D7), which was found to cause apoptotic death in human cancer cell lines. The present study aims to explore the relevant mechanism of apoptosis involving generation of cellular reactive oxygen species (ROS) by D7 in human breast carcinoma (MCF-7) cells. It was found that while D7 inhibited the proliferation of tumor cells, the associated apoptosis induced by D7 was prevented by treating the cells with N-acetyl-L: -cysteine (NAC), an antioxidant, and cyclosporine A (CsA), an inhibitor of mitochondrial permeability transition (MPT). Experiments using suitable inhibitors also demonstrated that D7 could alter the electron flow in mitochondrial electron transport chain by affecting target(s) between complex I and complex III, and indicated the probable site of D7-induced generation of ROS. These results were further supported by confocal microscopic observation on changes in mitochondrial organization and shape in cells treated with D7. Taken together, the results of our study clearly suggested that the apoptosis induced by D7 would involve alteration of MPT, cardiolipin peroxidation, migration of Bax from cytosol to mitochondria, decreased expression of Bcl-2, and release of cytochrome c, indicating oxidative mechanism at the mitochondrial level in the tumor cells.  相似文献   

17.
Resveratrol (RSV), a natural polyphenolic antioxidant, has been considered an anticarcinogenic agent as it triggers tumor cell apoptosis through activation of the mitochondrial pathway. In our study, the effects of RSV on mitochondria, especially on the mitochondrial permeability transition (MPT) process, were investigated by multiple methods. We found that RSV induced a collapse of membrane potential and matrix swelling related to MPT. We further demonstrated that Ca2+ was necessary for this RSV-induced MPT opening. In addition, RSV induced the inner membrane permeabilization to H+ and K+, the depression of respiration and changes in membrane fluidity. The results suggested that RSV-induced MPT was accompanied by mitochondrial dysfunction. But the prohibition on lipid peroxidation and different effects of low- and high-dose RSV on membrane fluidity and respiration showed that the interaction of RSV and the mitochondria could not be the result of a single simple mechanism.  相似文献   

18.
Antisense technology was successfully employed to selectively reduce the expression of Bcl-2 in U937 cells, while leaving their redox status intact. These cells displayed enhanced sensitivity to mitochondrial permeability transition (MPT)-dependent apoptosis induced by arsenite and underwent a rapid, MPT-dependent necrotic response after exposure to otherwise nontoxic concentrations of peroxynitrite. Several lines of evidence consistently indicate that these low concentrations of peroxynitrite nevertheless commit cells to MPT, which is, however, prevented by a survival signaling in which arachidonic acid, protein kinase Cα (PKCα), and Bcl-2 are sequentially involved. Bcl-2, however, was not the direct target of PKCα but most likely Bad, a protein involved in the regulation of Bcl-2 activity via heterodimerization. Further studies revealed that Bcl-2 does not afford protection in cells challenged with intrinsically toxic concentrations of peroxynitrite. This was due to depletion of GSH, an event leading to loss of the anti-MPT function of Bcl-2. Collectively, these results demonstrate a role of Bcl-2 in monocyte survival signaling preventing MPT-dependent necrosis induced by peroxynitrite, and provide an explanation for the reported observation that Bcl-2 fails to prevent necrosis mediated by intrinsically toxic levels of peroxynitrite.  相似文献   

19.
Antisense technology was successfully employed to selectively reduce the expression of Bcl-2 in U937 cells, while leaving their redox status intact. These cells displayed enhanced sensitivity to mitochondrial permeability transition (MPT)-dependent apoptosis induced by arsenite and underwent a rapid, MPT-dependent necrotic response after exposure to otherwise nontoxic concentrations of peroxynitrite. Several lines of evidence consistently indicate that these low concentrations of peroxynitrite nevertheless commit cells to MPT, which is, however, prevented by a survival signaling in which arachidonic acid, protein kinase C (PKC), and Bcl-2 are sequentially involved. Bcl-2, however, was not the direct target of PKC but most likely Bad, a protein involved in the regulation of Bcl-2 activity via heterodimerization. Further studies revealed that Bcl-2 does not afford protection in cells challenged with intrinsically toxic concentrations of peroxynitrite. This was due to depletion of GSH, an event leading to loss of the anti-MPT function of Bcl-2. Collectively, these results demonstrate a role of Bcl-2 in monocyte survival signaling preventing MPT-dependent necrosis induced by peroxynitrite, and provide an explanation for the reported observation that Bcl-2 fails to prevent necrosis mediated by intrinsically toxic levels of peroxynitrite.  相似文献   

20.
The effects of tetrandrine (6,6', 7,12-tetramethoxy-2, 2'-dimethyl-berbaman) on the mitochondrial function were assessed on oxidative stress, mitochondrial permeability transition (MPT), and bioenergetics of rat liver mitochondria. At concentrations lower than 100nmol/mg protein, tetrandrine decreased the hydrogen peroxide formation, the extent of lipid peroxidation, the susceptibility to Ca(2+)-induced opening of MPT pore, and inhibited the inner membrane anion channel activity, not significantly affecting the mitochondrial bioenergetics. High tetrandrine concentrations (100-300nmol/mg protein) stimulated succinate-dependent state 4 respiration, while some inhibition was observed for state 3 and p-trifluoromethoxyphenylhydrazone-uncoupled respirations. The respiratory control ratio and the transmembrane potential were depressed but the adenosine diphosphate to oxygen (ADP/O) ratio was less affected. A slight increase of the inner mitochondrial membrane permeability to H(+) and K(+) by tetrandrine was also observed. It was concluded that low concentrations of tetrandrine afford protection against liver mitochondria injury promoted by oxidative-stress events, such as hydrogen peroxide production, lipid peroxidation, and induction of MPT. Conversely, high tetrandrine concentrations revealed toxicological effects expressed by interference with mitochondrial bioenergetics, as a consequence of some inner membrane permeability to H(+) and K(+) and inhibition of the electron flux in the respiratory chain. The direct immediate protective role of tetrandrine against mitochondrial oxidative stress may be relevant to clarify the mechanisms responsible for its multiple pharmacological actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号