首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress is a universal phenomenon experienced by organisms in all domains of life. Proteins like those in the ferritin-like di-iron carboxylate superfamily have evolved to manage this stress. Here we describe the cloning, isolation, and characterization of a Dps-like protein from the hyperthermophilic archaeon Pyrococcus furiosus (PfDps-like). Phylogenetic analysis, primary structure alignments and higher order structural predictions all suggest that the P. furiosus protein is related to proteins within the broad superfamily of ferritin-like di-iron carboxylate proteins. The recombinant PfDps protein self-assembles into a 12 subunit quaternary structure with an outer shell diameter of approximately 10nm and an interior diameter of approximately 5 nm. Dps proteins functionally manage the toxicity of oxidative stress by sequestering intracellular ferrous iron and using it to reduce H(2)O(2) in a two electron process to form water. The iron is converted to a benign form as Fe(III) within the protein cage. This Dps-mediated reduction of hydrogen peroxide, coupled with the protein's capacity to sequester iron, contributes to its service as a multifunctional antioxidant.  相似文献   

2.
Phosphoenolpyruvate synthetase (PpsA) was purified from the hyperthermophilic archaeon Pyrococcus furiosus. This enzyme catalyzes the conversion of pyruvate and ATP to phosphoenolpyruvate (PEP), AMP, and phosphate and is thought to function in gluconeogenesis. PpsA has a subunit molecular mass of 92 kDa and contains one calcium and one phosphorus atom per subunit. The active form has a molecular mass of 690 ± 20 kDa and is assumed to be octomeric, while approximately 30% of the protein is purified as a large (~1.6 MDa) complex that is not active. The apparent Km values and catalytic efficiencies for the substrates pyruvate and ATP (at 80°C, pH 8.4) were 0.11 mM and 1.43 × 104 mM−1 · s−1 and 0.39 mM and 3.40 × 103 mM−1 · s−1, respectively. Maximal activity was measured at pH 9.0 (at 80°C) and at 90°C (at pH 8.4). The enzyme also catalyzed the reverse reaction, but the catalytic efficiency with PEP was very low [kcat/Km = 32 (mM · s)−1]. In contrast to several other nucleotide-dependent enzymes from P. furiosus, PpsA has an absolute specificity for ATP as the phosphate-donating substrate. This is the first PpsA from a nonmethanogenic archaeon to be biochemically characterized. Its kinetic properties are consistent with a role in gluconeogenesis, although its relatively high cellular concentration (~5% of the cytoplasmic protein) suggests an additional function possibly related to energy spilling. It is not known whether interconversion between the smaller, active and larger, inactive forms of the enzyme has any functional role.  相似文献   

3.
The methyltransferase fibrillarin is the catalytic component of ribonucleoprotein complexes that direct site-specific methylation of precursor ribosomal RNA and are critical for ribosome biogenesis in eukaryotes and archaea. Here we report the crystal structure of a fibrillarin ortholog from the hyperthermophilic archaeon Pyrococcus furiosus at 1.97A resolution. Comparisons of the X-ray structures of fibrillarin orthologs from Methanococcus jannashii and Archaeoglobus fulgidus reveal nearly identical backbone configurations for the catalytic C-terminal domain with the exception of a unique loop conformation at the S-adenosyl-l-methionine (AdoMet) binding pocket in P. furiosus. In contrast, the N-terminal domains are divergent which may explain why some forms of fibrillarin apparently homodimerize (M. jannashii) while others are monomeric (P. furiosus and A. fulgidus). Three positively charged amino acids surround the AdoMet-binding site and sequence analysis indicates that this is a conserved feature of both eukaryotic and archaeal fibrillarins. We discuss the possibility that these basic residues of fibrillarin are important for RNA-guided rRNA methylation.  相似文献   

4.
In all organisms the Signal Recognition Particle (SRP), binds to signal sequences of proteins destined for secretion or membrane insertion as they emerge from translating ribosomes. In Archaea and Eucarya, the conserved ribonucleoproteic core is composed of two proteins, the accessory protein SRP19, the essential GTPase SRP54, and an evolutionarily conserved and essential SRP RNA. Through the GTP-dependent interaction between the SRP and its cognate receptor SR, ribosomes harboring nascent polypeptidic chains destined for secretion are dynamically transferred to the protein translocation apparatus at the membrane. We present here high-resolution X-ray structures of SRP54 and SRP19, the two RNA binding components forming the core of the signal recognition particle from the hyper-thermophilic archaeon Pyrococcus furiosus (Pfu). The 2.5 A resolution structure of free Pfu-SRP54 is the first showing the complete domain organization of a GDP bound full-length SRP54 subunit. In its ras-like GTPase domain, GDP is found tightly associated with the protein. The flexible linker that separates the GTPase core from the hydrophobic signal sequence binding M domain, adopts a purely alpha-helical structure and acts as an articulated arm allowing the M domain to explore multiple regions as it scans for signal peptides as they emerge from the ribosomal tunnel. This linker is structurally coupled to the GTPase catalytic site and likely to propagate conformational changes occurring in the M domain through the SRP RNA upon signal sequence binding. Two different 1.8 A resolution crystal structures of free Pfu-SRP19 reveal a compact, rigid and well-folded protein even in absence of its obligate SRP RNA partner. Comparison with other SRP19*SRP RNA structures suggests the rearrangement of a disordered loop upon binding with the RNA through a reciprocal induced-fit mechanism and supports the idea that SRP19 acts as a molecular scaffold and a chaperone, assisting the SRP RNA in adopting the conformation required for its optimal interaction with the essential subunit SRP54, and proper assembly of a functional SRP.  相似文献   

5.
和致中 《生命科学》2000,12(4):189-193
本文述及Pyrococcus furiosus的丙酮酸代谢、麦芽糖发酵(高温糖酵解途径)、由丙酮酸糖原异生途径、还原性末端产物--L-丙氨酸的形成和钨对代谢类型的影响等。  相似文献   

6.
7.
Aminoacylase was identified in cell extracts of the hyperthermophilic archaeon Pyrococcus furiosus by its ability to hydrolyze N-acetyl-L-methionine and was purified by multistep chromatography. The enzyme is a homotetramer (42.06 kDa per subunit) and, as purified, contains 1.0 +/- 0.48 g-atoms of zinc per subunit. Treatment of the purified enzyme with EDTA resulted in complete loss of activity. This was restored to 86% of the original value (200 U/mg) by treatment with ZnCl(2) (and to 74% by the addition of CoCl(2)). After reconstitution with ZnCl(2), the enzyme contained 2.85 +/- 0.48 g-atoms of zinc per subunit. Aminoacylase showed broad substrate specificity and hydrolyzed nonpolar N-acylated L amino acids (Met, Ala, Val, and Leu), as well as N-formyl-L-methionine. The high K(m) values for these compounds indicate that the enzyme plays a role in the metabolism of protein growth substrates rather than in the degradation of cellular proteins. Maximal aminoacylase activity with N-acetyl-L-methionine as the substrate occurred at pH 6.5 and a temperature of 100 degrees C. The N-terminal amino acid sequence of the purified aminoacylase was used to identify, in the P. furiosus genome database, a gene that encodes 383 amino acids. The gene was cloned and expressed in Escherichia coli by using two approaches. One involved the T7 lac promoter system, in which the recombinant protein was expressed as inclusion bodies. The second approach used the Trx fusion system, and this produced soluble but inactive recombinant protein. Renaturation and reconstitution experiments with Zn(2+) ions failed to produce catalytically active protein. A survey of databases showed that, in general, organisms that contain a homolog of the P. furiosus aminoacylase (> or = 50% sequence identity) utilize peptide growth substrates, whereas those that do not contain the enzyme are not known to be proteolytic, suggesting a role for the enzyme in primary catabolism.  相似文献   

8.
9.
10.
赵留群  张大伟 《微生物学报》2022,62(12):4769-4780
依赖信号识别颗粒(signal recognition particle,SRP)的共翻译转运是所有生命体中的一个保守途径,它将新生肽链的翻译与转运耦联在一起。超过30%的新合成的多肽链被SRP转运到正确位置。最近的研究表明,大肠杆菌中SRP抑制子可以规避SRP的需求。当SRP缺失时,翻译控制在介导膜蛋白定位方面起着关键作用。本综述总结了SRP底物如何在存在或缺失SRP的情况下转运到适当的位置以及翻译速率降低如何补偿SRP的缺失。我们还讨论了不同蛋白质对SRP的依赖程度。这一回顾将为进一步研究SRP功能及膜蛋白定位提供新思路。  相似文献   

11.
Roy R  Adams MW 《Journal of bacteriology》2002,184(24):6952-6956
Pyrococcus furiosus grows optimally near 100 degrees C using peptides and carbohydrates as carbon sources, and it reduces elemental sulfur (S(0)), if present, to H(2)S. Tungsten (W), an element rarely used in biology, is required for optimal growth, and three different tungsten-containing enzymes have been previously purified from this organism. They all oxidize aldehydes of various types and are thought to play primary roles in the catabolism of sugars or amino acids. Here, the purification of a fourth tungsten-containing enzyme, termed WOR 4, from cell extracts of P. furiosus grown with S(0) is described. This was achieved by monitoring through multiple chromatography steps the W that is not associated with the three characterized tungstoenzymes. The N-terminal sequence of WOR 4 and the approximate molecular weight of its subunit determined electrophoretically (69,000) correspond to the product of an ORF (PF1961, wor4) present in the complete genome sequence of P. furiosus. WOR 4 is a homodimer and contains approximately one W, three Fe, three or four acid-labile sulfide, and one Ca atom per subunit. The visible and electron paramagnetic resonance spectra of the oxidized and reduced enzyme indicate the presence of an unusual iron-sulfur chromophore. WOR 4 does not oxidize aliphatic or aromatic aldehydes or hydroxy acids, nor does it reduce keto acids. Consistent with prior microarray data, the protein could not be purified from P. furiosus cells grown in the absence of S(0), suggesting that it may have a role in S(0) metabolism.  相似文献   

12.
Replication factor C (RFC) and proliferating cell nuclear antigen (PCNA) are accessory proteins essential for processive DNA synthesis in the domain Eucarya. The function of RFC is to load PCNA, a processivity factor of eukaryotic DNA polymerases delta and epsilon, onto primed DNA templates. RFC-like genes, arranged in tandem in the Pyrococcus furiosus genome, were cloned and expressed individually in Escherichia coli cells to determine their roles in DNA synthesis. The P. furiosus RFC (PfuRFC) consists of a small subunit (RFCS) and a large subunit (RFCL). Highly purified RFCS possesses an ATPase activity, which was stimulated up to twofold in the presence of both single-stranded DNA (ssDNA) and P. furiosus PCNA (PfuPCNA). The ATPase activity of PfuRFC itself was as strong as that of RFCS. However, in the presence of PfuPCNA and ssDNA, PfuRFC exhibited a 10-fold increase in ATPase activity under the same conditions. RFCL formed very large complexes by itself and had an extremely weak ATPase activity, which was not stimulated by PfuPCNA and DNA. The PfuRFC stimulated PfuPCNA-dependent DNA synthesis by both polymerase I and polymerase II from P. furiosus. We propose that PfuRFC is required for efficient loading of PfuPCNA and that the role of RFC in processive DNA synthesis is conserved in Archaea and Eucarya.  相似文献   

13.
The structure of Pyrococcus furiosus carboxypeptidase (PfuCP) has been determined to 2.2 A resolution using multiwavelength anomalous diffraction (MAD) methods. PfuCP represents the first structure of the new M32 family of carboxypeptidases. The overall structure is comprised of a homodimer. Each subunit is mostly helical with its most pronounced feature being a deep substrate binding groove. The active site lies at the bottom of this groove and contains an HEXXH motif that coordinates the metal ion required for catalysis. Surprisingly, the structure is similar to the recently reported rat neurolysin. Comparison of these structures as well as sequence analyses with other homologous proteins reveal several conserved residues. The roles for these conserved residues in the catalytic mechanism are inferred based on modeling and their location.  相似文献   

14.
15.
A determination was made of the nucleotide sequence of the 2719 bp region of a ribosomal protein gene cluster (PfeL32-PfeL19-PfL18-PfS5-PfL30) containing a 5S rRNA binding protein L18 homolog of hyperthermophilic archaea Pyrococcus furiosus. The organization of the archaeal ribosomal protein gene cluster is similar to that in the spc-operon of Escherichia coli (L6-L18-S5-L30-L15) but has two additional genes, namely those encoding PfeL32 and PfeL19, which were identified as extra proteins that are apparently not present in bacterial E. coli. Using an inducible expression system, P. furiosus mature PfL18 protein and a mutant PfL18 with the basic N-terminal amino acid region deleted were produced in large amounts in E. coli and Northwestern analysis showed the N-terminal region of PfL18, including the conserved arginine-rich region, to have a significant role in 5S rRNA-PfL18 interaction.  相似文献   

16.
Polymerases from the Pol-I family which are able to efficiently use ddNTPs have demonstrated a much improved performance when used to sequence DNA. A number of mutations have been made to the gene coding for the Pol-II family DNA polymerase from the archaeon Pyrococcus furiosus with the aim of improving ddNTP utilisation. ‘Rational’ alterations to amino acids likely to be near the dNTP binding site (based on sequence homologies and structural information) did not yield the desired level of selectivity for ddNTPs. However, alteration at four positions (Q472, A486, L490 and Y497) gave rise to variants which incorporated ddNTPs better than the wild type, allowing sequencing reactions to be carried out at lowered ddNTP:dNTP ratios. Wild-type Pfu–Pol required a ddNTP:dNTP ratio of 30:1; values of 5:1 (Q472H), 1:3 (L490W), 1:5 (A486Y) and 5:1 (Y497A) were found with the four mutants; A486Y representing a 150-fold improvement over the wild type. A486, L490 and Y497 are on an α-helix that lines the dNTP binding groove, but the side chains of the three amino acids point away from this groove; Q472 is in a loop that connects this α-helix to a second long helix. None of the four amino acids can contact the dNTP directly. Therefore, the increased selectivity for ddNTPs is likely to arise from two factors: (i) small overall changes in conformation that subtly alter the nucleotide triphosphate binding site such that ddNTPs become favoured; (ii) interference with a conformational change that may be critical both for the polymerisation step and discrimination between different nucleotide triphosphates.  相似文献   

17.
Highly washed membrane preparations from cells of the hyperthermophilic archaeon Pyrococcus furiosus contain high hydrogenase activity (9.4 micromol of H(2) evolved/mg at 80 degrees C) using reduced methyl viologen as the electron donor. The enzyme was solubilized with n-dodecyl-beta-D-maltoside and purified by multistep chromatography in the presence of Triton X-100. The purified preparation contained two major proteins (alpha and beta) in an approximate 1:1 ratio with a minimum molecular mass near 65 kDa and contained approximately 1 Ni and 4 Fe atoms/mol. The reduced enzyme gave rise to an electron paramagnetic resonance signal typical of the so-called Ni-C center of mesophilic NiFe-hydrogenases. Neither highly washed membranes nor the purified enzyme used NAD(P)(H) or P. furiosus ferredoxin as an electron carrier, nor did either catalyze the reduction of elemental sulfur with H(2) as the electron donor. Using N-terminal amino acid sequence information, the genes proposed to encode the alpha and beta subunits were located in the genome database within a putative 14-gene operon (termed mbh). The deduced sequences of the two subunits (Mbh 11 and 12) were distinctly different from those of the four subunits that comprise each of the two cytoplasmic NiFe-hydrogenases of P. furiosus and show that the alpha subunit contains the NiFe-catalytic site. Six of the open reading frames (ORFs) in the operon, including those encoding the alpha and beta subunits, show high sequence similarity (>30% identity) with proteins associated with the membrane-bound NiFe-hydrogenase complexes from Methanosarcina barkeri, Escherichia coli, and Rhodospirillum rubrum. The remaining eight ORFs encode small (<19-kDa) hypothetical proteins. These data suggest that P. furiosus, which was thought to be solely a fermentative organism, may contain a previously unrecognized respiratory system in which H(2) metabolism is coupled to energy conservation.  相似文献   

18.
19.
A novel metallocarboxypeptidase (PfuCP) has been purified to homogeneity from the hyperthermophilic archaeon, Pyrococcus furiosus, with its intended use in C-terminal ladder sequencing of proteins and peptides at elevated temperatures. PfuCP was purified in its inactive state by the addition of ethylenediaminetetraacetic acid (EDTA) and dithiothreitol (DTT) to purification buffers, and the activity was restored by the addition of divalent cobalt (K, = 24 +/- 4 microM at 80 degrees C). The serine protease inhibitor phenylmethylsulfonyl fluoride (PMSF) had no effect on the activity. The molecular mass of monomeric PfuCP is 59 kDa as determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 58 kDa by SDS-PAGE analysis. In solution, PfuCP exists as a homodimer of approximately 128 kDa as determined by gel filtration chromatography. The activity of PfuCP exhibits a temperature optimum exceeding 90 degrees C under ambient pressure, and a narrow pH optimum of 6.2-6.6. Addition of Co2+ to the apoPfuCP at room temperature does not alter its far-UV circular dichroism (CD) or its intrinsic fluorescence spectrum. Even when the CoPfuCP is heated to 80 degrees C, its far-UV CD shows a minimal change in the global conformation and the intrinsic fluorescence of aromatic residues shows only a partial quenching. Changes in the intrinsic fluorescence appear essentially reversible with temperature. Finally, the far-UV CD and intrinsic fluorescence data suggest that the overall structure of the holoenzyme is extremely thermostable. However, the activities of both the apo and holo enzyme exhibit a similar second-order decay over time, with 50% activity remaining after approximately 40 min at 80 degrees C. The N-blocked synthetic dipeptide, N-carbobenzoxy-Ala-Arg (ZAR), was used in the purification assay. The kinetic parameters at 80 degrees C with 0.4 mM CoCl2 were: Km, 0.9 +/- 0.1 mM; Vmax, 2,300 +/- 70 U mg(-1); and turn over number, 600 +/- 20 s(-1). Activity against other ZAX substrates (X = V, L, I, M, W, Y, F, N, A, S, H, K) revealed a broad specificity for neutral, aromatic, polar, and basic C-terminal residues. This broad specificity was confirmed by the C-terminal ladder sequencing of several synthetic and natural peptides, including porcine N-acetyl-renin substrate, for which we have observed (by MALDI-TOF MS) stepwise hydrolysis by PfuCP of up to seven residues from the C-terminus: Ac-Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu-Leu-Val-Tyr-Ser.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号