首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This highlight article describes three Alzheimer's disease (AD) studies presented at the 5th General Meeting of the International Proteolysis Society that address enzymatic mechanisms for producing neurotoxic beta-amyloid (Abeta) peptides. One group described the poor kinetics of BACE 1 for cleaving the wild-type (WT) beta-secretase site of APP found in most AD patients. They showed that cathepsin D displays BACE 1-like specificity and cathepsin D is 280-fold more abundant in human brain than BACE 1. Nevertheless, as BACE 1 and cathepsin D show poor activity towards the WT beta-secretase site, they suggested continuing the search for additional beta-secretase(s). The second group reported cathepsin B as an alternative beta-secretase possessing excellent kinetic efficiency and specificity for the WT beta-secretase site. Significantly, inhibitors of cathepsin B improved memory, with reduced amyloid plaques and decreased Abeta(40/42) in brains of AD animal models expressing amyloid precursor protein containing the WT beta-secretase site. The third group addressed isoaspartate and pyroglutamate (pGlu) posttranslational modifications of Abeta. Results showed that cathepsin B, but not BACE 1, efficiently cleaves the WT beta-secretase isoaspartate site. Furthermore, cyclization of N-terminal Glu by glutaminyl cyclase generates highly amyloidogenic pGluAbeta(3-40/42). These presentations suggest cathepsin B and glutaminyl cyclase as potential new AD therapeutic targets.  相似文献   

2.
Generation and accumulation of the amyloid beta peptide (Abeta) following proteolytic processing of the amyloid precursor protein (APP) by BACE-1 (Beta-site APP Cleaving Enzyme-1, beta-secretase) and gamma-secretase is a main causal factor of Alzheimer's disease (AD). Consequently, inhibition of BACE-1, a rate-limiting enzyme in the production of Abeta, is an attractive therapeutic approach for the treatment of AD. In this study, we discovered that natural flavonoids act as non-peptidic BACE-1 inhibitors and potently inhibit BACE-1 activity and reduce the level of secreted Abeta in primary cortical neurons. In addition, we demonstrated the calculated docking poses of flavonoids to BACE-1 and revealed the interactions of flavonoids with the BACE-1 catalytic center. We firstly revealed novel pharmacophore features of flavonoids by using cell-free, cell-based and in silico docking studies. These results contribute to the development of new BACE-1 inhibitors for the treatment of AD.  相似文献   

3.
4.
Yeon SW  Jeon YJ  Hwang EM  Kim TY 《Peptides》2007,28(4):838-844
One of the hallmarks of Alzheimer's disease (AD) is the deposition of beta-amyloid (Abeta) peptides in neuritic plaques. Abeta peptides are derived from sequential cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. beta-APP cleaving enzyme-1 (BACE1) has been shown to be the major beta-secretase and is a primary therapeutic target for AD. We report here novel BACE1 inhibitory peptidomimetics, which are derived from catalytic domains of BACE1 themselves, instead of APP cleavage sites and are structurally modified by myristoylation in N-terminus for efficient cell permeability. The peptides not only inhibited the formation of APPbeta (a soluble N-terminal fragment of APP cleaved by beta-secretase), but also significantly reduced Abeta40 production. Our results suggest a new approach for identifying inhibitory agents for the treatment of AD.  相似文献   

5.
We describe an assay system for the identification of site-specific proteases. The assay is based on a protein substrate that is immobilized on ceramic beads. After incubation with cell homogenates, the beads are washed and digested with endoproteinase Lys-C to liberate a defined set of peptides. The peptide fragments are identified by mass spectrometry. The assay was used to screen for beta-secretase, the protease that cleaves amyloid precursor protein (APP) at the beta-site. Cathepsin D was identified as the enzyme responsible for beta-secretase-like activity in two cell lines. Subsequent analysis of the related aspartic protease, cathepsin E, revealed almost identical cleavage specificity. Both enzymes are efficient in cleaving Swedish mutant APP at the beta-site but show almost no reactivity with wild-type APP. Treatment of cell lines with pepstatin inhibited the production of amyloid peptide (Abeta) when they were transfected with a construct bearing the Swedish APP mutant. However, when the cells were transfected with wild-type APP, the generation of Abeta was increased. This suggests that more than one enzyme is capable of generating Abeta in vivo and that an aspartic protease is involved in the processing of Swedish mutant APP.  相似文献   

6.
The deposition of beta-amyloid peptides (A beta42 and A beta40) in neuritic plaques is one of the hallmarks of Alzheimer's disease (AD). A beta peptides are derived from sequential cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. BACE-1 has been shown to be the major beta-secretase and is a primary therapeutic target for AD. In this article, two novel assays for the characterization of BACE-1 inhibitors are reported. The first is a sensitive 96-well HPLC biochemical assay that uses a unique substrate containing an optimized peptide cleavage sequence, NFEV, spanning from the P2-P2' positions This substrate was processed by BACE-1 approximately 10 times more efficiently than was the widely used substrate containing the Swedish (NLDA) sequence. As a result, the concentration of the enzyme required for the assay can be as low as 100 pM, permitting the evaluation of inhibitors with subnanomolar potency. The assay has also been applied to related aspartyl proteases such as cathepsin D (Cat D) and BACE-2. The second assay is a homogeneous electrochemiluminescence assay for the evaluation of BACE-1 inhibition in cultured cells that assesses the level of secreted amyloid EV40_NF from HEK293T cells stably transfected with APP containing the novel NFEV sequence. To illustrate the use of these assays, the properties of a potent, cell-active BACE-1 inhibitor are described.  相似文献   

7.
The phosphotyrosine binding domain of the neuronal protein X11alpha/mint-1 binds to the C-terminus of amyloid precursor protein (APP) and inhibits catabolism to beta-amyloid (Abeta), but the mechanism of this effect is unclear. Coexpression of X11alpha or its PTB domain with APPswe inhibited secretion of Abeta40 but not APPsbetaswe, suggesting inhibition of gamma- but not beta-secretase. To further probe cleavage(s) inhibited by X11alpha, we coexpressed beta-secretase (BACE-1) or a component of the gamma-secretase complex (PS-1Delta9) with APP, APPswe, or C99, with and without X11alpha, in HEK293 cells. X11alpha suppressed the PS-1Delta9-induced increase in Abeta42 secretion generated from APPswe or C99. However, X11alpha did not impair BACE-1-mediated proteolysis of APP or APPswe to C99. In contrast to impaired gamma-cleavage of APPswe, X11alpha or its PTB domain did not inhibit gamma-cleavage of NotchDeltaE to NICD (the Notch intracellular domain). The X11alpha PDZ-PS.1Delta9 interaction did not affect gamma-cleavage activity. In a cell-free system, X11alpha did not inhibit the catabolism of APP C-terminal fragments. These data suggest that X11alpha may inhibit Abeta secretion from APP by impairing its trafficking to sites of active gamma-secretase complexes. By specifically targeting substrate instead of enzyme X11alpha may function as a relatively specific gamma-secretase inhibitor.  相似文献   

8.
Elucidation of Abeta-lowering agents that inhibit processing of the wild-type (WT) beta-secretase amyloid precursor protein (APP) site, present in most Alzheimer disease (AD) patients, is a logical approach for improving memory deficit in AD. The cysteine protease inhibitors CA074Me and E64d were selected by inhibition of beta-secretase activity in regulated secretory vesicles that produce beta-amyloid (Abeta). The regulated secretory vesicle activity, represented by cathepsin B, selectively cleaves the WT beta-secretase site but not the rare Swedish mutant beta-secretase site. In vivo treatment of London APP mice, expressing the WT beta-secretase site, with these inhibitors resulted in substantial improvement in memory deficit assessed by the Morris water maze test. After inhibitor treatment, the improved memory function was accompanied by reduced amyloid plaque load, decreased Abeta40 and Abeta42, and reduced C-terminal beta-secretase fragment derived from APP by beta-secretase. However, the inhibitors had no effects on any of these parameters in mice expressing the Swedish mutant beta-secretase site of APP. The notable efficacy of these inhibitors to improve memory and reduce Abeta in an AD animal model expressing the WT beta-secretase APP site present in the majority of AD patients provides support for CA074Me and E64d inhibitors as potential AD therapeutic agents.  相似文献   

9.
Generation and deposition of the amyloid beta (Abeta) peptide following proteolytic processing of the amyloid precursor protein (APP) by BACE-1 and gamma-secretase is central to the aetiology of Alzheimer's disease. Consequently, inhibition of BACE-1, a rate-limiting enzyme in the production of Abeta, is an attractive therapeutic approach for the treatment of Alzheimer's disease. We have designed a selective non-peptidic BACE-1 inhibitor, GSK188909, that potently inhibits beta-cleavage of APP and reduces levels of secreted and intracellular Abeta in SHSY5Y cells expressing APP. In addition, we demonstrate that this compound can effectively lower brain Abeta in vivo. In APP transgenic mice, acute oral administration of GSK188909 in the presence of a p-glycoprotein inhibitor to markedly enhance the exposure of GSK188909 in the brain decreases beta-cleavage of APP and results in a significant reduction in the level of Abeta40 and Abeta42 in the brain. Encouragingly, subchronic dosing of GSK188909 in the absence of a p-glycoprotein inhibitor also lowers brain Abeta. This pivotal first report of central Abeta lowering, following oral administration of a BACE-1 inhibitor, supports the development of BACE-1 inhibitors for the treatment of Alzheimer's disease.  相似文献   

10.
Human beta-secretase (BACE-1) is a type I integral membrane aspartic protease that catalyzes the internal cleavage of the amyloid precursor protein (APP), generating the N-terminus of the Abeta peptide. The generation and subsequent extracellular deposition of Abeta(1-42) peptide into amyloid plaques in the brain constitute one of the hallmarks of Alzheimer's disease (AD), a common debilitating neurodegenerative disorder. Inhibition of BACE-1 is considered an excellent therapeutic strategy against AD. To generate pure enzyme for protein crystallography and subsequent structure-based drug design, we have expressed a soluble, unglycosylated, 6xHis-tagged form of proBACE-1 in insect cells using baculovirus infection. To avoid production of a mixture of the pro-enzyme form and the mature form of BACE-1, the proprotein convertase furin was coexpressed with proBACE-1, leading to almost complete proteolytic activation of the recombinant enzyme. The mature enzyme was secreted in the conditioned medium of BACE-1/furin coinfected HighFive insect cells. Secreted BACE-1 protein was purified to homogeneity from the medium using subsequent Ni-chelate affinity chromatography, anion-exchange chromatography, hydrophobic interaction chromatography, and gel filtration. To avoid autoproteolysis, all purification steps were performed at pH values outside the activity range of BACE-1. The purified, biologically active enzyme was homogeneous on SDS/PAGE and had the expected sequence and molecular mass determined by N-terminal amino acid sequencing and mass spectrometry, respectively. Moreover, the preparation showed a single peak of the expected size with only 17% polydispersity using dynamic light scattering analysis. The yield of BACE-1 from fermentation cultures was approximately 0.1mg pure enzyme per liter of cell culture medium. The purified protein was successfully used to generate BACE-1/inhibitor co-crystals and to determine the crystal structure of the complex by X-ray analysis. The availability of substantial quantities of active, homogeneous enzyme will be of great help in future structure-based drug design efforts in the search for efficient protease inhibitor drugs to treat AD.  相似文献   

11.
The beta-amyloid peptide (Abeta) is a major component of toxic amyloid plaques found in the brains of patients with Alzheimer's disease. Abeta is liberated by sequential cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. The level of Abeta depends directly on the hydrolytic activity of beta-secretase. Therefore, beta-secretase is an excellent target for drug design. An approach based on RNA-cleaving ribozymes was developed to control expression of beta-secretase. Two sites of mRNA coding beta-site APP cleaving enzyme were chosen as target sequences for endogenously delivered ribozymes. The ribozyme cassette was designed to constitute a catalytic hammerhead core and substrate recognition arms, flanked at the 5'-terminus by tRNAVal and at the 3'-terminus by constitutive transport element sequences. Ribozyme cassettes were cloned into a pUC19 plasmid and used for transient transfection of HEK293 cells. We demonstrate that such ribozymes efficiently inhibit beta-secretase gene expression at both the mRNA (up to 95%) and the protein (up to 90%) levels. Inhibition of beta-site APP cleaving enzyme activity directly influences the intra- and extracellular population of Abeta peptide. Therefore, such ribozymes may be considered as molecular tools for silencing the beta-secretase activity, and further, as therapeutic agents for anti-amyloid treatment.  相似文献   

12.
Extracellular deposits of aggregated amyloid-beta (Abeta) peptides are a hallmark of Alzheimer disease; thus, inhibition of Abeta production and/or aggregation is an appealing strategy to thwart the onset and progression of this disease. The release of Abeta requires processing of the amyloid precursor protein (APP) by both beta- and gamma-secretase. Using an assay that incorporates full-length recombinant APP as a substrate for beta-secretase (BACE), we have identified a series of compounds that inhibit APP processing, but do not affect the cleavage of peptide substrates by BACE1. These molecules also inhibit the processing of APP and Abeta by BACE2 and selectively inhibit the production of Abeta(42) species by gamma-secretase in assays using CTF99. The compounds bind directly to APP, likely within the Abeta domain, and therefore, unlike previously described inhibitors of the secretase enzymes, their mechanism of action is mediated through APP. These studies demonstrate that APP binding agents can affect its processing through multiple pathways, providing proof of concept for novel strategies aimed at selectively modulating Abeta production.  相似文献   

13.
beta-Amyloid peptides (Abeta) that form the senile plaques of Alzheimer disease consist mainly of 40- and 42-amino acid (Abeta 40 and Abeta 42) peptides generated from the cleavage of the amyloid precursor protein (APP). Generation of Abeta involves beta-secretase and gamma-secretase activities and is regulated by membrane trafficking of the proteins involved in Abeta production. Here we describe a new small molecule, EHT 1864, which blocks the Rac1 signaling pathways. In vitro, EHT 1864 blocks Abeta 40 and Abeta 42 production but does not impact sAPPalpha levels and does not inhibit beta-secretase. Rather, EHT 1864 modulates APP processing at the level of gamma-secretase to prevent Abeta 40 and Abeta 42 generation. This effect does not result from a direct inhibition of the gamma-secretase activity and is specific for APP cleavage, since EHT 1864 does not affect Notch cleavage. In vivo, EHT 1864 significantly reduces Abeta 40 and Abeta 42 levels in guinea pig brains at a threshold that is compatible with delaying plaque accumulation and/or clearing the existing plaque in brain. EHT 1864 is the first derivative of a new chemical series that consists of candidates for inhibiting Abeta formation in the brain of AD patients. Our findings represent the first pharmacological validation of Rac1 signaling as a target for developing novel therapies for Alzheimer disease.  相似文献   

14.
Biogenesis and metabolism of Alzheimer's disease Abeta amyloid peptides   总被引:10,自引:0,他引:10  
Evin G  Weidemann A 《Peptides》2002,23(7):1285-1297
Biochemical and genetic evidence indicates the balance of biogenesis/clearance of Abeta amyloid peptides is altered in Alzheimer's disease. Abeta is derived, by two sequential cleavages, from the receptor-like amyloid precursor protein (APP). The proteases involved are beta-secretase, identified as the novel aspartyl protease BACE, and gamma-secretase, a multimeric complex containing the presenilins (PS). Gamma-secretase can release either Abeta40 or the more aggregating and cytotoxic Abeta42. Secreted Abeta peptides become either degraded by the metalloproteases insulin-degrading enzyme (IDE) and neprilysin or metabolized through receptor uptake mediated by apolipoprotein E. Therapeutic approaches based on secretase inhibition or amyloid clearance are currently under development.  相似文献   

15.
beta-Secretase, a beta-site amyloid precursor protein (APP) cleaving enzyme (BACE), participates in the secretion of beta-amyloid peptides (Abeta), the major components of the toxic amyloid plaques found in the brains of patients with Alzheimer's disease (AD). According to the amyloid hypothesis, accumulation of Abeta is the primary influence driving AD pathogenesis. Lowering of Abeta secretion can be achieved by decreasing BACE activity rather than by down-regulation of the APP substrate protein. Therefore, beta-secretase is a primary target for anti-amyloid therapeutic drug design. Several approaches have been undertaken to find an effective inhibitor of human beta-secretase activity, mostly in the field of peptidomimetic, non-cleavable substrate analogues. This review describes strategies targeting BACE mRNA recognition and its down-regulation based on the antisense action of small inhibitory nucleic acids (siNAs). These include antisense oligonucleotides, catalytic nucleic acids - ribozymes and deoxyribozymes - as well as small interfering RNAs (siRNAs). While antisense oligonucleotides were first used to identify an aspartyl protease with beta-secretase activity, all the strategies now demonstrate that siNAs are able to inhibit BACE gene expression in a sequence-specific manner, measured both at the level of its mRNA and at the level of protein. Moreover, knock-down of BACE reduces the intra- and extracellular population of Abeta40 and Abeta42 peptides. An anti-amyloid effect of siNAs is observed in a wide spectrum of cell lines as well as in primary cortical neurons. Thus targeting BACE with small inhibitory nucleic acids may be beneficial for the treatment of Alzheimer's disease and for future drug design.  相似文献   

16.
PS1 deficiency and expression of PS1 with substitutions of two conserved transmembrane aspartate residues ("PS1 aspartate variants") leads to the reduction of Abeta peptide secretion and the accumulation of amyloid precursor protein (APP) C-terminal fragments. To define the nature of the "dominant negative" effect of the PS1 aspartate variants, we stably expressed PS1 harboring aspartate to alanine substitutions at codons 257 (D257A) or 385 (D385A), singly or in combination (D257A/D385A), in mouse neuroblastoma, N2a cells. Expression of the PS1 aspartate variants resulted in marked accumulation of intracellular and cell surface APP C-terminal fragments. While expression of the D385A PS1 variant reduced the levels of secreted Abeta peptides, we now show that neither the PS1 D257A nor D257A/D385A variants impair Abeta production. Surprisingly, the stability of both immature and mature forms of APP is dramatically elevated in cells expressing PS1 aspartate variants, commensurate with an increase in the cell surface levels of APP. These findings lead us to conclude that the stability and trafficking of APP can be profoundly modulated by coexpression of PS1 with mutations at aspartate 257 and aspartate 385.  相似文献   

17.
The proteolytic enzyme beta-secretase (BACE-1) produces amyloid beta (Abeta) peptide, the primary constituent of neurofibrillary plaques, implicated in Alzheimer's disease, by cleavage of the amyloid precursor protein. A small molecule inhibitor of BACE-1, (diaminomethylene)-2,5-diphenyl-1H-pyrrole-1-acetamide (1, BACE-1 IC(50)=3.7 microM), was recently described, representing a new small molecule lead. Initial SAR investigation demonstrated the potential of accessing the nearby S(3) and S(1)(') substrate binding pockets of the BACE-1 enzyme by building substituents off one of the phenyl substituents and guanidinyl functional group. We report here the optimization of guanidinyl functional group substituents on 1, leading to potent submicromolar BACE-1 inhibitors.  相似文献   

18.
A non-amyloidogenic function of BACE-2 in the secretory pathway   总被引:6,自引:0,他引:6  
beta-Site amyloid precursor protein cleavage enzyme (BACE)-1 and BACE-2 are members of a novel family of membrane-bound aspartyl proteases. While BACE-1 is known to cleave beta-amyloid precursor protein (betaAPP) at the beta-secretase site and to be required for the generation of amyloid beta-peptide (Abeta), the role of its homologue BACE-2 in amyloidogenesis is less clear. We now demonstrate that BACE-1 and BACE-2 have distinct specificities in cleavage of betaAPP in cultured cells. Radiosequencing of the membrane-bound C-terminal cleavage product revealed that BACE-2 cleaves betaAPP in the middle of the Abeta domain between phenylalanines 19 and 20, resulting in increased secretion of APPs-alpha- and p3-like products and reduced production of Abeta species. This cleavage can occur in the Golgi and later secretory compartments. We also demonstrate that BACE-1-mediated cleavage of betaAPP at Asp1 of the Abeta domain can occur as early as in the endoplasmic reticulum, while cleavage at Glu11 occurs in later compartments. These data indicate that the distinct specificities of BACE-1 and BACE-2 in their cleavage of betaAPP differentially affect the generation of Abeta.  相似文献   

19.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. The major component of the plaques, amyloid beta peptide (Abeta), is generated from amyloid precursor protein (APP) by beta- and gamma-secretase-mediated cleavage. Because beta-secretase/beta-site APP cleaving enzyme 1 (BACE1) knockout mice produce much less Abeta and grow normally, a beta-secretase inhibitor is thought to be one of the most attractive targets for the development of therapeutic interventions for AD without apparent side-effects. Here, we report the in vivo inhibitory effects of a novel beta-secretase inhibitor, KMI-429, a transition-state mimic, which effectively inhibits beta-secretase activity in cultured cells in a dose-dependent manner. We injected KMI-429 into the hippocampus of APP transgenic mice. KMI-429 significantly reduced Abeta production in vivo in the soluble fraction compared with vehicle, but the level of Abeta in the insoluble fraction was unaffected. In contrast, an intrahippocampal injection of KMI-429 in wild-type mice remarkably reduced Abeta production in both the soluble and insoluble fractions. Our results indicate that the beta-secretase inhibitor KMI-429 is a promising candidate for the treatment of AD.  相似文献   

20.
We found previously by fluorescence resonance energy transfer experiments that amyloid precursor protein (APP) homodimerizes in living cells. APP homodimerization is likely to be mediated by two sites of the ectodomain and a third site within the transmembrane sequence of APP. We have now investigated the role of the N-terminal growth factor-like domain in APP dimerization by NMR, biochemical, and cell biological approaches. Under nonreducing conditions, the N-terminal domain of APP formed SDS-labile and SDS-stable complexes. The presence of SDS was sufficient to convert native APP dimers entirely into monomers. Addition of an excess of a synthetic peptide (APP residues 91-116) containing the disulfide bridge-stabilized loop inhibited cross-linking of pre-existing SDS-labile APP ectodomain dimers. Surface plasmon resonance analysis revealed that this peptide specifically bound to the N-terminal domain of APP and that binding was entirely dependent on the oxidation of the thiol groups. By solution-state NMR we detected small chemical shift changes indicating that the loop peptide interacted with a large protein surface rather than binding to a defined pocket. Finally, we studied the effect of the loop peptide added to the medium of living cells. Whereas the levels of alpha-secretory APP increased, soluble beta-cleaved APP levels decreased. Because Abeta40 and Abeta42 decreased to similar levels as soluble beta-cleaved APP, we conclude either that beta-secretase binding to APP was impaired or that the peptide allosterically affected APP processing. We suggest that APP acquires a loop-mediated homodimeric state that is further stabilized by interactions of hydrophobic residues of neighboring domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号