首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A direct HPLC method was developed for the enantioseparation of pantoprazole using macrocyclic glycopeptide-based chiral stationary phases, along with various methods to determine the elution order without isolation of the individual enantiomers. In the preliminary screening, four macrocyclic glycopeptide-based chiral stationary phases containing vancomycin (Chirobiotic V), ristocetin A (Chirobiotic R), teicoplanin (Chirobiotic T), and teicoplanin-aglycone (Chirobiotic TAG) were screened in polar organic and reversed-phase mode. Best results were achieved by using Chirobiotic TAG column and a methanol-water mixture as mobile phase. Further method optimization was performed using a face-centered central composite design to achieve the highest chiral resolution. Optimized parameters, offering baseline separation (resolution = 1.91 ± 0.03) were as follows: Chirobiotic TAG stationary phase, thermostated at 10°C, mobile phase consisting of methanol/20mM ammonium acetate 60:40 v/v, and 0.6 mL/min flow rate. Enantiomer elution order was determined using HPLC hyphenated with circular dichroism (CD) spectroscopy detection. The online CD signals of the separated pantoprazole enantiomers at selected wavelengths were compared with the structurally analogous esomeprazole enantiomer. For further verification, the inline rapid, multiscan CD signals were compared with the quantum chemically calculated CD spectra. Furthermore, docking calculations were used to investigate the enantiorecognition at molecular level. The molecular docking shows that the R-enantiomer binds stronger to the chiral selector than its antipode, which is in accordance with the determined elution order on the column—S- followed by the R-isomer. Thus, combined methods, HPLC-CD and theoretical calculations, are highly efficient in predicting the elution order of enantiomers.  相似文献   

2.
Direct high‐performance liquid chromatographic (HPLC) separation of four bicyclo[2.2.2]octane based 2‐amino‐3‐carboxylic acid enantiomers were developed on chiral stationary phases (CSPs) containing different macrocyclic glycopeptide antibiotic selectors. The analyses were performed under reversed‐phase, polar organic and polar ionic mode on macrocyclic‐glycopeptide‐based Chirobiotic T, T2, TAG, and R columns. The effects of the mobile phase composition including the acid and base modifier, the structure of the analytes, and the temperature on the separations were investigated. Experiments were achieved at constant mobile phase compositions on different stationary phases in the temperature range 5–40°C. Thermodynamic parameters were calculated from plots of ln k or ln α versus 1/T. It was recognized that the enantioseparations in reversed‐phase and polar organic mode were enthalpically driven, but under polar‐ionic conditions entropically driven enantioseparation was observed as well. Baseline separation and determination of elution sequence were achieved in all cases. Chirality 26:200–208, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
High-performance liquid chromatographic methods were developed for the separation of the enantiomers of 12 beta-lactams. Direct separations were performed on chiral stationary phases (CSPs) containing cellulose-tris-3,5-dimethylphenyl carbamate (Chiralcel OD-RH and OD-H columns), the macrocyclic glycopeptide antibiotic teicoplanin (Chirobiotic T column), or teicoplanin aglycone (Chirobiotic TAG column) as the chiral selector. It was clearly established that, with teicoplanin-based columns, the teicoplanin aglycone was most often responsible for the enantioseparation of the beta-lactams. The difference in enantioselective free energy between the aglycone CSP and the teicoplanin CSP was in the range between 0.02 and 0.97 kJ mol(-1) for these beta-lactam stereoisomer separations. The separations were carried out with high selectivity and resolution, and the method was therefore suitable for monitoring of the enantiomeric excess after chiral synthesis. The Chirobiotic and Chiralcel columns appear to be highly complementary to one another. The best separation of this class of beta-lactam compound could be obtained using the Chirobiotic TAG in the polar-organic mode plus the Chiralcel OD-H in the normal-phase mode. The elution sequence was also determined.  相似文献   

4.
Pharmaceutical companies worldwide tend to apply chiral chromatographic separation techniques in their mass production strategy rather than asymmetric synthesis. The present work aims to investigate the predictability of chromatographic behavior of enantiomers using DryLab HPLC method development software, which is typically used to predict the effect of changing various chromatographic parameters on resolution in the reversed phase mode. Three different types of chiral stationary phases were tested for predictability: macrocyclic antibiotics‐based columns (Chirobiotic V and T), polysaccharide‐based chiral column (Chiralpak AD‐RH), and protein‐based chiral column (Ultron ES‐OVM). Preliminary basic runs were implemented, then exported to DryLab after peak tracking was accomplished. Prediction of the effect of % organic mobile phase on separation was possible for separations on Chirobiotic V for several probes: racemic propranolol with 97.80% accuracy; mixture of racemates of propranolol and terbutaline sulphate, as well as, racemates of propranolol and salbutamol sulphate with average 90.46% accuracy for the effect of percent organic mobile phase and average 98.39% for the effect of pH; and racemic warfarin with 93.45% accuracy for the effect of percent organic mobile phase and average 99.64% for the effect of pH. It can be concluded that Chirobiotic V reversed phase retention mechanism follows the solvophobic theory. Chirality 25:506–513, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
The macrocyclic antibiotics represent a relatively new class of chiral selectors in CE, HPLC, and TLC. We have examined the use of the macrocyclic antibiotic vancomycin as a chiral selector in HPLC for the separation of 1,4-dihydropyridines (DHPs) calcium antagonists (CAs). Chromatographic data of six 1,4-dihydropyridine calcium channel blockers obtained on the vancomycin chiral stationary phase (Chirobiotic V) were compared with those obtained on an alpha(1)-acid glycoprotein (AGP) HPLC stationary phase. Optimization of pH and organic modifier was carried out in order to modulate the retention properties of each system. All chiral neutral DHPs were resolved on the AGP column, whereas on Chirobiotic V only basic DHPs showed a split peak. The analytical chromatographic procedure on Chirobiotic V proved suitable for semipreparative separation, since the separation factor on the analytical column was high enough to obtain pure enantiomers with high yields.  相似文献   

6.
Villani C  Laleu B  Mobian P  Lacour J 《Chirality》2007,19(8):601-606
[4]Heterohelicenium cations 1a-c adopt a twisted helical structure that renders them chiral. They are configurationally stable and their enantiomers have been resolved, for the first time, by HPLC on Chiralcel OD-RH and Chirobiotic TAG chiral stationary phases (CSPs). Chiral cations 1a-c have been resolved by HPLC using water-based eluents containing KPF(6) as additive. The elution order of the analyte enantiomers was determined by on-line CD detection, and was found to be opposite on the two CSPs. The effect of mobile phase composition and analyte structure on retention and enantioselectivity was investigated.  相似文献   

7.
Enantiomeric resolution of teratolol was achieved on a vancomycin macrocyclic antibiotic chiral stationary phase known as Chirobiotic V with UV detection set at 220 nm. The polar ionic mobile phase (PIM) consisted of methanol-glacial acetic acid-triethylamine (100:0.01:0.015, v/v/v) has been used at a flow rate of 0.8 ml min(-1) . The calibration curves in plasma were linear over the range of 5-500 ng ml(-1) for each enantiomer with detection limit of 2 ng ml(-1) . The proposed method was validated in compliance with the international conference on harmonization (ICH) guidelines. The developed method applied for the trace analyses of tertatolol enantiomers in plasma and for the pharmacokinetic study of tertatolol enantiomers in rat plasma. The assay proved to be suitable for therapeutic drug monitoring and chiral quality control for tertatolol formulations by HPLC.  相似文献   

8.
Sharp VS  Letts MN  Risley DS  Rose JP 《Chirality》2004,16(3):153-161
Seven macrocyclic antibiotics were evaluated as chiral selectors for the enantiomeric separation of 11 dansyl amino acids using narrow-bore high-performance liquid chromatography (HPLC). The macrocyclic antibiotics were incorporated as mobile phase additives to determine the enantioselective effects on the chiral analytes. The resolution and capacity factor (k') of each analyte were assessed while varying the structure of macrocyclic antibiotic and the mobile phase buffer pH. The selectivity of the chiral selectors was measured as a function of changes in these parameters. All 11 dansyl amino acids were separated by at least one of the chiral selectors. Three-dimensional computer modeling of the more effective chiral selectors illustrated the importance of macrocyclic antibiotic structure concerning stereospecific analyte interaction.  相似文献   

9.
Chiral recognition mechanisms with macrocyclic glycopeptide selectors   总被引:2,自引:0,他引:2  
Berthod A 《Chirality》2009,21(1):167-175
Macrocyclic glycopeptide selectors are naturally occurring antibiotics produced by microorganisms. They were found to be excellent chiral selectors for a wide range of enantiomers, including amino acids. Four selectors are commercialized as chiral stationary phases (CSP) for chromatography. They are ristocetin, teicoplanin, vancomycin, and the teicoplanin aglycone (TAG). The key docking interaction for amino acid recognition was established to be a charge-charge interaction between the anionic carboxylate group of the amino acid and a cationic amine group of the macrocyclic peptidic selector basket. The carbohydrate units are responsible for secondary interactions. However, they hinder somewhat the charge-charge docking interaction. The TAG selector is more effective for amino acid enantioseparations than the other CSPs. The "sugar" units are however useful allowing for chiral recognitions of other analytes, e.g., beta-blockers, not possible with the aglycone. Thermodynamic studies established that normal phase and reversed phase enantioseparations were enthalpy-driven. With polar waterless mobile phases used in the polar ionic mode, some separations were enthalpy-driven and others were entropy-driven. The linear solvation energy method was tentatively used to gain knowledge about the chiral recognition mechanism. It appeared to be a viable approach with neutral molecules but it failed with ionizable solutes. With molecular solutes and the teicoplanin CSP, the study showed a significant role of the surface charge-induced dipole interaction and steric effects. The remarkable complementary enantioselectivity effect observed with the four CSPs is discussed.  相似文献   

10.
Jin JY  Lee W 《Chirality》2007,19(2):120-123
The liquid chromatographic separation of the enantiomers of several N-hydrazide derivatives of 2-aryloxypropionic acids was performed on a crown ether type chiral stationary phase derived from (18-crown-6)-2,3,11,12-tetracarboxylic acid. The behavior of chromatographic parameters by the change of mobile phases and additives for the resolution of these analytes was investigated. The enantiomers of all analytes were base-line resolved with a mobile phase of 100% methanol containing 20 mM H2SO4. These results are the first reported for enantiomer resolution of chiral acids of 2-aryloxypropionic acids as their N-hydrazide derivatives.  相似文献   

11.
To the best of our knowledge enantioselective chromatographic protocols on β-amino acids with polysaccharide-based chiral stationary phases (CSPs) have not yet appeared in the literature. Therefore, the primary objective of this work was the development of chromatographic methods based on the use of an amylose derivative CSP (Lux Amylose-2), enabling the direct normal-phase (NP) enantioresolution of four fully constrained β-amino acids. Also, the results obtained with the glycopeptide-type Chirobiotic T column employed in the usual polar-ionic (PI) mode of elution are compared with those achieved with the polysaccharide-based phase. The Lux Amylose-2 column, in combination with alkyl sulfonic acid containing NP eluent systems, prevailed over the Chirobiotic T one, when used under the PI mode of elution, and hence can be considered as the elective choice for the enantioseparation of this class of rigid β-amino acids. Moreover, the extraordinarily high α (up to 4.60) and R S (up to 10.60) values provided by the polysaccharidic polymer, especially when used with camphor sulfonic acid containing eluent systems, make it also suitable for preparative-scale enantioisolations.  相似文献   

12.
A sensitive and selective high-performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of bufuralol enantiomers in plasma and pharmaceutical formulations. Enantiomeric resolution was achieved on a vancomycin macrocyclic antibiotic chiral stationary phase (CSP) known as Chirobiotic V with UV detection set at 254 nm. The polar ionic mobile phase (PIM) consisting of methanol-glacial acetic acid-triethylamine (100:0.015:0.010, v/v/v) has been used at a flow rate of 0.5 ml/min. The method is highly specific where other coformulated compounds did not interfere. The stability of bufuralol enantiomers under different degrees of temperature was also studied. The results showed that the drug is stable for at least 7 days at 70 degrees C. The method was validated for its linearity, accuracy, precision and robustness. An experimental design was used during validation to evaluate method robustness. The calibration curves in plasma were linear over the range of 5-500 ng/ml for each enantiomer with detection limit of 2 ng/ml. The mean relative standard deviation (RSD) of the results of within-day precision and accuracy of the drug were 0.05) between inter- and intra-day studies for each enantiomer which confirmed the reproducibility of the assay method. The mean extraction efficiency for S-(-)- and R-(+)-bufuralol from plasma was in the range 97-102% at 15-400 ng/ml level for each enantiomer. The overall recoveries of bufuralol enantiomers from pharmaceutical formulations was in the range 99.6-102.2% with %RSD ranging from 1.06 to 1.16%. The assay method proved to be suitable as chiral quality control for bufuralol formulations by HPLC and for therapeutic drug monitoring.  相似文献   

13.
The chiral selector vancomycin was used either as mobile phase additive or bound as a chiral stationary phase (CSP) for the stereoselective separation of seven racemic nonsteroidal anti-inflammatory drugs (NSAIDs), fenoprofen, carprofen, flurbiprofen, indoprofen, flobufen, ketoprofen, and suprofen, by capillary liquid chromatography. The effect of the type of stationary phase, the chiral column Chirobiotic V or the achiral stationary phases Nucleosil 100 C8 HD and Nucleosil 100 C18 HD, and the concentration of vancomycin in the mobile phase on separation of the drug enantiomers were evaluated. All the drugs, except flobufen, were successfully enantioseparated on Nucleosil 100 C8 HD with 4 mM vancomycin present in the mobile phase (composed of methanol and buffer) in the reversed phase mode. On the vancomycin-bonded chiral stationary phase, it was difficult to get enantioseparations of the profen NSAIDs. However, flobufen gave better enantioseparation on the vancomycin CSP. The better enantioresolution of the majority of profen derivatives on the achiral columns with vancomycin added to the mobile phase can be attributed in particular to the higher separation efficiency of this capillary chromatographic system. In addition, vancomycin dimers, formed in the mobile phase, seem to offer a better steric arrangement for stereoselective interaction to these analytes than the vancomycin bonded on the CSP. These substantial differences in the CS structure significantly influence the chiral discrimination mechanism.  相似文献   

14.
A novel method for the separation and simultaneous determination of urinary D- and L-lactic acid enantiomers by high performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS) is presented. The chiral separation was optimized on a Chirobiotic teicoplanin aglyocone (TAG) column. Most interestingly, the addition of water in small volume fraction to the polar organic mobile phase was found to significantly improve the chromatography. Calibration curves were linear (r2>0.9950) over the range 3-1000 mg/L for L-lactic acid and 0.5-160.8 mg/L for D-lactic acid. The limit of detection (LOD) (S/N=3) and limit of quantification (LOQ) (S/N=10) were determined experimentally (n=3) to be 0.2 and 0.5mg/L for L-lactic acid and 0.4 and 1.3 mg/L for D-lactic acid, respectively. The normal patient range of L-lactic acid was 1-20 microg/mg creatinine with an elevated value of 85 microg/mg creatinine. For D-lactic acid, the range of normal values were between 0 and 5 microg/mg creatinine with an elevated value of 40 microg/mg creatinine. Finally, the validated method allows for rapid analysis with a total run time of 7.5 min.  相似文献   

15.
Chiral separation of glycyl- and diastereomeric dipeptides and tripeptides was performed by micro-HPLC using macrocyclic antibiotics as chiral selectors. Teicoplanin was compared with teicoplanin aglycone (TAG) regarding selectivity, efficiency and separation time. The stationary phases are based on teicoplanin and TAG chemically bonded to 3.5 mum silica gel. The material was packed into 10 cm x 1 mm stainless steel microcolumns. Different mobile phases were checked using the reversed phase mode. Both teicoplanin and TAG were found to show good chiral separation ability for dipeptides. Glycyl-dipeptides were baseline resolved and most of the diastereomeric dipeptides and tripeptides were separated into their four isomers. In this study, teicoplanin was found to be advantageous compared to TAG regarding separation time, although TAG showed the higher resolution power. Baseline resolution for some glycyl-dipeptides was obtained within 3 min, diastereomeric dipeptides were resolved in 7 min. This method was also shown to be applicable for enantiomer purity control.  相似文献   

16.
17.
A chiral anion-exchanger stationary phase based on cinchonidine (CD) was developed. Two columns were packed with and without endcapping (EC) treatment (CD-chiral stationary phase[CD-CSP(EC)] and [CD-CSP], respectively) and studied for their ability to separate N-2,4-dinitrophenyl α-amino acids (DNP-amino acids) enantiomers over a temperature range of 10-40 °C with a hydro-organic buffer mobile phase. The more hydrophobic, endcapped stationary phase showed significantly larger retentive capacity than the non-endcapped one. The apparent thermodynamic transfer parameters of the enantiomers from the mobile to both CSPs were estimated from van't Hoff plots within the cited temperature range. Similar studies with two natural quinine-based columns (QN-CSP and QN-CSP(EC)) were previously reported. In this work, a critical comparison in the chiral recognition ability to DNP-amino acids of these cinchonidine and QN-based chiral columns was drawn. It has been found that QN-based CSPs show greater chiral recognition capability towards these derivatives than CD-CSPs. The influence of the QN methoxy group on the equilibrium constants of the enantioselective interaction between these DNP-amino acids with these two cinchona CSPs could be assessed.  相似文献   

18.
We used a novel chromatographic method to rapidly and simply characterize the pharmacokinetics of benidipine enantiomers in human plasma. The stereoisomers of benidipine were extracted from plasma using diethylether under alkaline conditions. After evaporating the organic layer, the residue was reconstituted in the mobile phase (methanol:acetic acid:triethylamine, 100:0.01:0.0001, v/v/v). The enantiomers in the extract were separated on a macrocyclic antibiotic (Vancomycin) chiral stationary phase column. The mobile phase was eluted at 1 ml/min and was split by an interface. One-fifth of the eluent was used to quantify both isomers in a tandem mass spectrometer in multiple reaction-monitoring mode. The coefficient of variation of the precision of the assay was less than 8%, the assay accuracy was between 93.4 and 113.3%, and the limit of detection was 0.05 ng/ml for 1 ml of plasma. The method described above was used to measure the concentration of both benidipine enantiomers in plasma from healthy subjects who received a single oral dose of a racemate of 8 mg benidipine. The C(max) and AUC(inf) values of (+)-alpha benidipine were higher than those of (-)-alpha benidipine by 1.96- and 1.85-fold, respectively (p<0.001), whereas, the T(max) and t(1/2) for each of the benidipine stereoisomers were not significantly different.  相似文献   

19.
Zborowski K  Zuchowski G 《Chirality》2002,14(8):632-637
Complexation of alkyl derivatives of 5-ethyl-5-phenyl-2-thiobarbituric acid (2-thiophenobarbital) enantiomers by beta-cyclodextrin was investigated by the AM1 method. The inclusion complexes of beta-cyclodextrin with neutral and anionic forms of these enantiomers have been modeled and energetically optimized. The chiral discrimination of enantiomers was analyzed in terms of differences in the interaction energies. The calculated interaction energies between each enantiomer of the investigated 2-thiobarbiturates and beta-cyclodextrin confirm the ability of beta-cyclodextrin to act as a mobile phase additive in reversed-phase HPLC to separate enantiomers by liquid chromatography and rationalize their order of elution.  相似文献   

20.
A stereoselective liquid chromatography-tandem mass spectrometry assay was developed and validated for quantification of S- and R-metoprolol at concentrations of 0.5-50 microg/L in human plasma. Metoprolol was extracted from plasma by liquid-liquid extraction with ethyl acetate (82% recovery). Chromatographic separation of the enantiomers was achieved on a chiral Chirobiotic T column using an isocratic mobile phase consisting of methanol/acetic acid/ammonia (100/0.15/0.15, v/v/v). An ion trap mass spectrometer with an electrospray interface was used for detection in the positive mode, monitoring the m/z transition 268-->191 for metoprolol. Standard curves for S- and R-metoprolol fitted quadratic functions (r(2)>or=0.9995) over the range 0.5-50 microg/L in plasma, with 0.5 microg/L representing the limit of quantification. In this range, relative standard deviations were <6% for intra-day precision and <10% for inter-day precision. The accuracy was within the range of 92-105%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号