首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed morphometric study has been made of the air-sacs of this air-breathing catfish using whole mounts, light and electron microscopy, of six specimens, body weight 40±2 g. Measurements of surface areas of the gas exchange and non-respiratory surfaces have taken into account foldings of the surface at macro and ultramicroscopic levels. Area of the gas exchange surface was estimated as 23.915cm2 (=0.598cm2/g) which is 67%of the total surface area of the two air-sacs. Significant differences were found in some morphometric parameters which were related to the three antero-posterior regions into which air-sacs were divided. Harmonic mean thickness of the tissue component of the air/blood barrier was estimated for the whole air-sac as 0.342 μ m. These and other measurements enabled the diffusing capacity for the air-sacs to be calculated as 0.0638 m1O2/min/mmHg/kg.
These results show that Heteropneustes has an air-breathing organ which is superior to that of Amphipnous cuchia , similar to that of Lepidosiren , but less well developed than that of Protopterus . In addition, Heteropneustes is well adapted to obtain oxygen directly from water by means of its gills and skin as indicated by both morphometric and physiological measurements which also correlate with its life in ponds and streams which are Iiable to dry up.  相似文献   

2.
The lungs of four adult specimens of the vervet monkey (Cercopithecus aethiops) have been examined by transmission and scanning electron microscopy. A morphometric evaluation of the structural components directly involved in gas exchange has been carried out and the data have been modelled to estimate the anatomical diffusing capacity of the lung. The upper air-conducting airways of the lung were lined by an epithelium characterized by ciliated cells among which were dispersed goblet cells. The alveolar surface was lined by squamous type I pneumocytes and cuboidal type II granular pneumocytes. The blood-gas (tissue) barrier consisted of an epithelial cell, a common basal lamina, and an endothelial cell in the thin parts of the interalveolar septum. In the thicker parts of the septum, an interstitial space interposed between the basal laminae of the epithelial and endothelial cells contained supportive elements such as collagen, elastic tissue, and fibrocytes. The alveoli, the blood capillaries, and septal tissue composed 73%, 16%, and 11%, respectively, of the parenchyma. The harmonic and arithmetic mean thicknesses of the blood-gas (tissue) barrier were 0.311 micron and 1.048 microns; the surface area of the blood-gas (tissue) barrier per unit body weight was 50 cm2g-1, and the surface density was 117 mm2.mm3-1. The weight-specific total morphometric diffusing capacity was 0.11 mlO2 (sec.mbar.kg)-1. In comparison, the pulmonary morphometric characteristics of vervet monkey lung were superior to those of the other primates (Macaca irus, M. mulatta, and Homo sapiens) for which equivalent data are available. The gas-exchange potential of the lungs of the nonhuman primates as revealed by morphometric studies surpasses that of man, a feature that can be attributed to the relatively less energetic human lifestyle.  相似文献   

3.
G. M. Hughes    B. R. Singh  G. Guha    S. C. Dube    J. S. Datta  Munshi 《Journal of Zoology》1974,172(2):215-232
The surface area of the gills, air sacs and skin have been measured in specimens of different body size and their relationship to body weight fits the equation: area= aWb . The slopes ( b ) of the double logarithmic plots are 0.746 (gills), 0.662 (air sacs) and 0.684 (skin). The gills are poorly developed and their average weight specific area is less than figures obtained for sluggish marine fishes. The skin has an area about 70% of the total respiratory surfaces (gills+air sac+skin). Nevertheless the greater thickness of the skin leads to a smaller diffusing capacity of the tissue barrier ( Dt ) as compared with the gills and air sac. The air sac area for each ml of air that it contains is about 10.5 cm2 which is much lower than figures obtained for lungs of other air-breathing fish and for tetrapods.  相似文献   

4.
1. The lungs of four species of bats, Phyllostomus hastatus (PH, mean body mass, 98 g), Pteropus lylei (PL, 456 g), Pteropus alecto (PA, 667 g), and Pteropus poliocephalus (PP, 928 g) were analysed by morphometric methods. These data increase fivefold the range of body masses for which bat lung data are available, and allow more representative allometric equations to be formulated for bats. 2. Lung volume ranged from 4.9 cm3 for PH to 39 cm3 for PP. The volume density of the lung parenchyma (i.e. the volume proportion of the parenchyma in the lung) ranged from 94% in PP to 89% in PH. Of the components of the parenchyma, the alveoli composed 89% and the blood capillaries about 5%. 3. The surface area of the alveoli exceeded that of the blood-gas (tissue) barrier and that of the capillary endothelium whereas the surface area of the red blood cells as well as that of the capillary endothelium was greater than that of the tissue barrier. PH had the thinnest tissue barrier (0.1204 microns) and PP had the thickest (0.3033 microns). 4. The body mass specific volume of the lung, that of the volume of pulmonary capillary blood, the surface area of the blood-gas (tissue) barrier, the diffusing capacity of the tissue barrier, and the total morphometric pulmonary diffusing capacity in PH all substantially exceeded the corresponding values of the pteropid species (i.e. PL, PA and PP). This conforms with the smaller body mass and hence higher unit mass oxygen consumption of PH, a feature reflected in the functionally superior gas exchange performance of its lungs. 5. Morphometrically, the lungs of different species of bats exhibit remarkable differences which cannot always be correlated with body mass, mode of flight and phylogeny. Conclusive explanations of these pulmonary structural disparities in different species of bats must await additional physiological and flight biomechanical studies. 6. While the slope, the scaling factor (b), of the allometric equation fitted to bat lung volume data (b = 0.82) exceeds the value for flight VO2max (b = 0.70), those for the surface area of the blood-gas (tissue) barrier (b = 0.74), the pulmonary capillary blood volume (b = 0.74), and the total morphometric lung diffusing capacity for oxygen (b = 0.69) all correspond closely to the VO2max value. 7. Allometric comparisons of the morphometric pulmonary parameters of bats, birds and non-flying mammals reveal that superiority of the bat lung over that of the non-flying mammal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Comprehensive pulmonary morphometric data from 42 species of birds representing ten orders were compared with those of other vertebrates, especially mammals, relating the comparisons to the varying biological needs of these avian taxa. The total lung volume was strongly correlated with body mass. The volume density of the exchange tissue was lowest in the charadriiform and anseriform species and highest in the piciform, cuculiform and passeriform species. The surface area of the blood-gas (tissue) barrier, the volume of the pulmonary capillary blood and the total morphometric pulmonary diffusing capacity were all strongly correlated with body mass. The harmonic mean thickness of both the blood-gas (tissue) barrier and the plasma layer were weakly correlated with body mass. The mass-specific surface area of the blood-gas (tissue) barrier (surface area per gram body mass) and the surface density of the blood-gas (tissue) barrier (i.e. its surface area per unit volume of exchange tissue) were inversely correlated (though weakly) with body mass. The passeriform species exhibited outstanding pulmonary morphometric adaptations leading to a high specific total diffusing capacity per gram body mass, consistent with the comparatively small size and energetic mode of life which typify passeriform birds. The relatively inactive, ground-dwelling domestic fowl (Gallus gallus) had the lowest pulmonary diffusing capacity per gram body mass. The specific total lung volume is about 27% smaller in birds than in mammals but the specific surface area of the blood-gas (tissue) barrier is about 15% greater in birds. The ratio of the surface area of the tissue barrier to the volume of the exchange tissue was also much greater in the birds (170-305%). The harmonic mean thickness of the tissue barrier was 56-67% less in the birds, but that of the plasma layer was about 66% greater in the birds. The pulmonary capillary blood volume was also greater (22%) in the birds. Except for the thickness of the plasma layer, these morphometric parameters all favour the gas exchange capacity of birds. Consequently, the total specific mean morphometric pulmonary diffusing capacity for oxygen was estimated to be about 22% greater in birds than in mammals of similar body mass. This estimate was obtained by employing oxygen permeation constants for mammalian tissue, plasma and erythrocytes, as avian constants were not then available.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Abstract. Measurements of the water-relation parameters of the giant subepidermal cells (volume, V = 0.119 to 1.658 mm3; = 0.53±0.35 mm3, SD, n = 23) and the smaller mesocarp parenchyma cells ( V = 0.10 to 0.79×10−3 mm3; = 0.36±0.27×10−3 mm3, SD, n = 6) of the inner pericarp surface of Capsicum annuum L. were made using the Jülich pressure probe. The volumetric elastic modulus ɛ for the large cells was between 1.5 and 27 MPa for a pressure range of 0.09 to 0.41 MPa. For the small cells ɛ was 0.1 to 0.6 MPa for a pressure range of 0.22 to 0.39 MPa. The turgor pressure P , the half-time of water exchange T 1/2, and the hydraulic conductivity L p were as follows, with SD and number of replicates: large cells, P = 0.27±0.06 MPa (23), T 1/2=2.7±2.2 s (46), L p=5.8±3.7 pm s−1 Pa (46); small cells, P = 0.33±0.07 MPa (6), T 1/2= 33±10s (12), L p=0.21±0.07 pm s−1 Pa−1 (12). The determination of these basic water-relation parameters is considered as a prerequisite for future ecotoxicological and phytopathological studies. The differences between the large and the small cells are discussed in relation to a desirable biophysical definition of succulence. Further, for the large cells a pressure and volume dependence of ɛ was demonstrated.  相似文献   

7.
Abstract. The uptake and accumulation of inorganic carbon has been investigated in Chlorella ellipsoidea cells grown at acid or alkaline pH. Carbonic anhydrase (CA) was detected in ceil extracts but not in intact cells and CA activity in acid-grown cells was considerably less than that in alkali-grown cells. Both cell types demonstrates low K1/2 (CO2) values in the range pH 7.0–8.0 and these were unaffected by O2 concentration. The CO2 compensation concentrations of acid- and alkali-grown cells suspended in aqueous media were not significantly different in the range of pH 6.0–8.0, but at pH 5.0, the CO2 compensation concentrations of acid-grown cells (57.4cm3 m−3) were lower than those of alkali-grown cells (79.2cm3 m−3). The rate of photo-synthetic O2 evolution in the range pH 7.5–8.0 exceeded the calculated rate of CO2 supply two- to three-fold, in both acid- and alkali-grown cells, indicating that HCO3 was taken up by the cells. Accumulation of inorganic carbon was measured at pH 7.5 by silicone-oil centri-fugation, and the concentration of unfixed inorganic carbon was found to be 5.1 mol m−3 in acid-grown and 6.4mol m−3 in alkali-grown cells. These concentrations were 4.6- and 5.9-fold greater than in the external medium. These results indicate that photorespiration is suppressed in both acid- and alkali-grown cells by an intracellular accumulation of inorganic carbon due, in part, to an active uptake of bicarbonate.  相似文献   

8.
Stereological data on the lungs of ground-dwelling birds are restricted to a few, mainly galliform, species. Data are presented for the non-galliform, white-breasted water-hen. The volume densities of the main parts of the lung and exchange tissue and the surface areas and thicknesses of the components of the blood-gas pathway were estimated by point counting. The anatomical diffusing capacities of the pathway were then estimated. The main parameters determining gas exchange were normalized with body mass and compared with those of other avian species. The anatomical diffusing capacity of the water-hen was inferior to that of passerine and trochilid species, similar to that of non-passerine species reliant on continuous powered flight (mallard) or soaring and gliding (gull), superior to that of domestic galliform species, and strongly superior to that of the flightless emu. It is concluded that selection pressures evolve a lung with a capacity for gas exchange sufficient for the energetic requirements of a particular strategy.  相似文献   

9.
When acclaimated for two months at 26 C the social Mashona mole-rat Cryptomys hottentotus darlingi (±S.D.) resting metabolic rate (RMR) of 0·98±0.·14cm2O2g -1 h-1 ( n =21), within a thermal neutral zone (TNZ) of 28 31·5 C ambient temperature (Ta). The body temperature (Tb) of the mole-rat is very low. 33·3±0·5 C, and remained stable between 25 31·5 C ( n =28). Above 33 C. Tb increased to a mean of 34·±0· C (n=28) (Ta range 33 39 C). Below Ta 25 C. Tb showed strong poikilothermic tendencies, with Tb dropping to a mean of 26·8±1·16 C. whereas above Ta25 C. Tb varied in a typically endothermic pattern. The conductance is high 0·19±0·03 cm2 O2g1 C 1 (n=28) at the lower limit of thermoneutrality. The mean RMR at 18 C (the lowest Ta tested) was 2·63 ± 0·55 cm3 O2g 1 h 1 (n=7) which is 2·6 times that of the resting metabolic rate in the TNZ.  相似文献   

10.
The Cape golden mole, Chrysochloris asiatica is an insectivore which excavates superficial foraging burrows as it searches for its food. It has a mean (±S.D.) resting metabolic rate (RMR) when newly captured of 1–17±0.17 cm3 O2g-1 h-1 ( n = 14), within the thermoneutral zone (TNZ) of 30–32°C.
The body temperature (Tb) of the mole in the TNZ is low 32.9 ± 0.36 ( n = 14) and remains stable at ambient temperatures (Tas) from 28–32°C. Above 32°C (range 34–37°C), Tb increases albeit slightly to 36 ± 1.75°C ( n = 14). The conductance is high 0.27 ± 006cm3 O2g-1 h-l°C-1 ( n = 46) at the lower limit of thermoneutrality. The mean RMR at 9°C (the lowest Ta tested) was 4.82±11 cm3 O2g-1h-1, which is 4.1 times that of the RMR in the TNZ.
At an ambient temperature of 9°C, three of the golden moles entered a state of torpor where the RMR was reduced from 5.9±0.56 to 10 1.0 ± 0.69cm3O2g-1h-1.  相似文献   

11.
The effect of dissolved oxygen partial pressure on the accumulation of astaxanthin in the green alga Haematococcus lacustris ( Gir.) Rostaf (UTEX16) was studied in N-limited continuous chemostat cultures. The steady-state astaxanthin content measured against culture volume, cell number, and biomass dry weigh of Haematococcus cultures was proportional to the dissolved O2 partial pressure in the culture medium, over the range of 0–50% O2 The steady-state biomass dry weight concentrations remained at between 0.52 and 0.57 g. L-1 over the range of dissolved O2 partial pressure studied. Steady-state cell densities at dissolved O2 partial pressures above the air saturation level (1.13–1.58 × 105 cells.mL-1) were about half of that measured at lower dissolved O2 partial pressures (2.42–2.63 × 105 cells.mL-1). Both biflagellated zoospores and nonmotile aplanospores were found at steady state. The fraction of nonmotile cells was higher at dissolved O2 partial pressures above the air saturation level (94.44–98.01%) than at dissolved O2 partial pressure below the air level (79.64–86.12 and 91.75% ).  相似文献   

12.
Aquatic and aerial respiration of the amphibious fishes Lipophrys pholis and Periophthalmus barbarus were examined using a newly designed flow-through respirometer system. The system allowed long-term measurements of oxygen consumption and carbon dioxide release during periods of aquatic and aerial respiration. The M o 2 of L. pholis , measured at 15° C, was 2·1 μmol O2 g–1 h–1 during aquatic and 1·99 μmol O2 g–1 h–1 during aerial exposure. The corresponding values of the M co2 were 1.67 and 1.59 μmol O2 g–1 h–1 respectively, giving an aquatic respiratory exchange ratio (RER) of 0·80 and an aerial RER of 0·79. The M o2 of P. barbarus , measured at 28°C, was 4·05 μmol O2 g–1 h–1 during aquatic and 3·44 μmol O2 g–1 h–1 during aerial exposure. The corresponding values of the Mco2 were 3·29 μmol CO2 g–1 h–1 and 2·63 μmol CO2 g–1 h–1 respectively, giving an aquatic RER of 0·81 and an aerial RER of 0·77. While exposed to air for at least 10 h, both species showed no decrease in metabolic rate or carbon dioxide release. The RER of these fishes equalled their respiratory quotient. After re-immersion an increased oxygen consumption, due to the payment of an oxygen debt, could not be detected.  相似文献   

13.
Oxygen and the regulation of nitrogen fixation in legume nodules   总被引:3,自引:0,他引:3  
In N2-fixing legume nodules, O2 is required in large amounts for aerobic respiration, yet nitrogenase, the bacterial enzyme that fixes N2, is O2 labile. A high rate of O2 consumptition and a cortical barrier to gas diffusion work together to maintain a low, non-inhibitory O2 concentration in the central, infected zone of the nodule. At this low O2 concentration, cytosolic leghemoglobin is required to facilitate the diffusion of O2 through the infected cell to the bacteria. The resistance of the cortical diffusion barrier is variable and is used by legume nodules to regulate the O2 concentration in the infected cells such that it limits aerobic respiration and N2 fixation at all times. The resistance of the diffusion barrier and therefore the degree of O2 limitation seems to be regulated in response to changes in the O2 concentration of the central infected zone, the supply of phloem sap to the nodule, and the rate of N assimilation into the end products of fixation.  相似文献   

14.
Cells of the green alga Selenastrum minutum display a high capacity for extra-mitochondrial O2 consumption in the presence of effectors such as salicylhydroxamic acid and/or NADH. We provide evidence that this O2 consumption is mediated by extracellular peroxidase. Peroxidase capacity, measured as the potential for stimulation of O2 consumption by a combination of salicylhydroxamic acid and NADH, changed over a 10-day time course. Maximal stimulation of O2 consumption occurred at day three, at which point the capacity for peroxidase-mediated O2 consumption was three-to four-fold higher than that of the control O2 consumption rate. Peroxidase-mediated O2 consumption was sensitive to inhibition by 50 m M ascorbate and by cyanide. Cyanide titration curves indicated that O2 consumption by peroxidase was much more sensitive to inhibition by cyanide than was O2 consumption by cytochrome oxidase (I50 < 1.6 μ M and I50= 18.3 μ M cyanide, respectively). By using evidence from a combination of cyanide titration curves and ascorbate inhibition, we concluded that despite a large capacity for peroxidase-mediated O2 consumption, peroxidase did not measurably contribute to control rates of O2 consumption. In the absence of effectors, O2 consumption was mediated primarily by cytochrome oxidase.  相似文献   

15.
Routine oxygen consumption rates of bonnethead sharks, Sphyrna tiburo , increased from 141·3±29·7 mg O2 kg−1 h−1 during autumn to 218·6±64·2 mg O2 kg−1 h−1 during spring, and 329·7±38·3 mg O2 kg−1 h−1 during summer. The rate of routine oxygen consumption increased over the entire seasonal temperature range (20–30° C) at a Q 10=2·34.  相似文献   

16.
Rates of CO2 production and O2 consumption from aged disks of carrot ( Daucus carota L.) root tissues were measured for 4 h after they were transferred from 21% to 0, 1, 2, 4 or 8% O2 in gas mixtures. A transient peak in the rate of CO2 production started 5 to 7 min after transfer to 2% or lower O2 mixtures and peaked at 50 min. After the peaks in CO2 production from the 0, 1 and 2% O2 treatments and after the stable production from the 4 and 8% O2 treatments, the rate of CO2 production from all low O2 treatments started to decline at 50 min, reaching stable rates by 160 to 240 min. Concentrations of lactate and ethanol that were significantly higher than the 21% O2 controls had started to accumulate in disks between 10 and 50 min after exposure to atmospheres containing 2% or less O2. Production of CO2 started to increase 5 to 7 min after transfer to 0, 1 and 2% O2, while the initial decline and then rise in pH and the accumulation of ethanol did not occur until 30 min after the change in atmosphere. Ethanol accumulation paralleled the increase in pH; first at 0.4 μmol g−1 h−1 from 30 to 60 min as the pH shifted from 5.97 to 6.11, and then at 0.08 μmol g−1 h−1 from 60 to 100 min as the pH stablized around 6.12. The peak at 50 min in CO2 production roughly coincided with the shift from the rapid to the slow change in pH and ethanol accumulation.  相似文献   

17.
During starch degradation in intact isolated chloroplasts from Chlamydomonas reinhardtii gas exchange was studied with a mass spectrometer. Oxygen uptake by intact chloroplasts in the dark never exceeded 1.5% of the starch degradation rate [maximum 15 nmol O2 (mg Chl)−1 h−1 consumed. 1 000 nmol glucose (mg Chl)−1h−1 degraded]. Evolution of CO2 under aerobic conditions [9.8–28 nmol (mg Chl)−1 h−1] was stimulated by addition of 0.1–0.5 m M oxaloacetate [393–425 nmol CO2 (mg Chl)−1 h−1]. Pyridoxal phosphate (5 m M ) inhibited starch degradation by more than 80%, but had no effect on O2 uptake. Starch degradation rates and CO2 evolution did not differ under acrobic and anaerobic conditions. Increasing Pi in the reaction medium from 0.5 m M to 5.0 m M stimulated starch degradation by 230 and 260% under aerobic and anaerobic conditions, respectively. A rapid autooxidation of reduced ferredoxin was observed in a reconstituted system consisting of purified Chlamydomonas ferredoxin, purified Chlamydomonas NADP-ferredoxin oxidoreductase (EC 1.6.7.1) and NADPH. Addition of isolated thylakoids from C. reinhardtii did not affect the rate of O2 uptake. Our results clearly indicate the absence of any oxygen requirement during starch degradation in isolated chloroplasts.  相似文献   

18.
The diel rhythms in metabolic rate ( MR ) and activity level ( AL ) were measured for single post-hatching dogfish (weight range, 2.76–10.61 g) at 15° C by the indirect calorimetric method of rate of oxygen consumption ( V O2) and by video-observation respectively, over a period of 72 b. The mean VO 2 increased from 62.0 (s.e. 2.9) mg O2 kg−1 h−1 in the daylight hours to 85.5 (s.e. 3.1) mg O2 kg−1 h−1 during the dark (light regíme, 12 h L: 12 h D). The simultaneous measurement of A L also showed mean night elevation from 0.6 (s.e. 0.2) min h−1 in the light phase to 14.5 (s.e. 1.6) min h−1 during the darkness. Bimodal nocturnal activity (BNA) was exhibited by the post-hatching dogfish within the 12 h dark period, with V O2 increasing from 71.4 (s.e. 2.8) mg O2 kg−1 h−1 before 01.00 hours to 99.5 (s.e. 4.2) mg O2 kg−1 h−1 after 01.00 hours. Similarly, A L also increased from 8.9 (s.e. I.7)min h−1 before 01.00 hours to 21.1 (s.e. 2.8) min h−1 after 01.00 hours. The importance of the results presented to the natural behavioural ecology of the hatching dogfish are discussed.  相似文献   

19.
Abstract A diatom biofilm was grown in a chamber developed for culture of biofilms in chemical gradients. The diatoms grew on a polycarbonate membrane filter which separated a sterile reservoir, with added phosphate, from a reservoir without phosphate. Within 3 weeks of inoculation, a thick biofilm developed on the surface of the filter. The biofilms were homogeneous and therefore suitable for calculations of O2 diffusion fluxes from concentration profiles of O2. Profiles of O2, pH, and gross photosynthesis at different light intensities and liquid medium concentrations of dissolved inorganic carbon and O2 were measured with microelectrodes. Respiratory activity in a layer of the biofilm was determined as the difference between gross photosynthesis and outflux of O2 from that layer. The photosynthetic activity in a well-developed biofilm grown at 360 μEinst m−2 s−1 and 2.4 mM HCO3 was limited by the supply of inorganic carbon. Exposure to light above 360 μEinst m−2 s−1 stimulated gross photosynthesis as well as respiratory processes without affecting net outflux of O2. Higher concentrations of inorganic carbon, on the other hand, enhanced gross photosynthesis without concurrent increase in respiratory rate, resulting in an increased outflux of O2. High concentrations of O2 in the liquid medium decreased the net outflux of O2 with little effect on the gross photosynthesis. The effects of inorganic carbon and O2 on the metabolic activities of the biofilm were consistent with the presence of photorespiratory activity.  相似文献   

20.
Unfertilised cod eggs showed a mean oxygen uptake rate at 5°C of 0.089 μl O2, dry wt.−1 h−1; this gradually rose to 0.768 μl O2 mg dry wt.−1 h−1 in eggs about to hatch. From hatching to complete yolk absorption larvae respired at 1.6 μl O2, mg dry wt.−1 h−1. During starvation following yolk absorption, uptake fell significantly to 1.1 μl O2, mg dry −1 h−1. Much of this decrease in oxygen consumption was shown to be caused by reduction in activity. Loss of weight during the embryo and larval phases could not easily be reconciled with total oxygen consumption; it is suggested that cod embryos and larvae may not rely solely upon endogenous energy reserves during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号