首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This article considers three nonparametric estimators of the joint distribution function for a survival time and a continuous mark variable when the survival time is interval censored and the mark variable may be missing for interval-censored observations. Finite and large sample properties are described for the nonparametric maximum likelihood estimator (NPMLE) as well as estimators based on midpoint imputation (MIDMLE) and coarsening the mark variable (CMLE). The estimators are compared using data from a simulation study and a recent phase III HIV vaccine efficacy trial where the survival time is the time from enrollment to infection and the mark variable is the genetic distance from the infecting HIV sequence to the HIV sequence in the vaccine. Theoretical and empirical evidence are presented indicating the NPMLE and MIDMLE are inconsistent. Conversely, the CMLE is shown to be consistent in general and thus is preferred.  相似文献   

3.
4.
Sternberg MR  Satten GA 《Biometrics》1999,55(2):514-522
Chain-of-events data are longitudinal observations on a succession of events that can only occur in a prescribed order. One goal in an analysis of this type of data is to determine the distribution of times between the successive events. This is difficult when individuals are observed periodically rather than continuously because the event times are then interval censored. Chain-of-events data may also be subject to truncation when individuals can only be observed if a certain event in the chain (e.g., the final event) has occurred. We provide a nonparametric approach to estimate the distributions of times between successive events in discrete time for data such as these under the semi-Markov assumption that the times between events are independent. This method uses a self-consistency algorithm that extends Turnbull's algorithm (1976, Journal of the Royal Statistical Society, Series B 38, 290-295). The quantities required to carry out the algorithm can be calculated recursively for improved computational efficiency. Two examples using data from studies involving HIV disease are used to illustrate our methods.  相似文献   

5.
6.
7.
FRYDMAN  HALINA 《Biometrika》1995,82(4):773-789
The nonparametric estimation of the cumulative transition intensityfunctions in a threestate time-nonhomogeneous Markov processwith irreversible transitions, an ‘illness-death’model, is considered when times of the intermediate transition,e.g. onset of a disease, are interval-censored. The times of‘death’ are assumed to be known exactly or to beright-censored. In addition the observed process may be left-truncated.Data of this type arise when the process is sampled periodically.For example, when the patients are monitored through periodicexaminations the observations on times of change in their diseasestatus will be interval-censored. Under the sampling schemeconsidered here the Nelson–Aalen estimator (Aalen, 1978)for a cumulative transition intensity is not applicable. Inthe proposed method the maximum likelihood estimators of someof the transition intensities are derived from the estimatorsof the corresponding subdistribution functions. The maximumlikelihood estimators are shown to have a self-consistency property.The self-consistency algorithm is developed for the computationof the estimators. This approach generalises the results fromTurnbull (1976) and Frydman (1992). The methods are illustratedwith diabetes survival data.  相似文献   

8.
9.
"Stochastic survival models which adjust for covariate information have been developed by Beck (1979). These models can include one or two living states and several competing death states. The transitions between stages are assumed irreversible and the transition intensity functions are assumed to be independent of time but dependent upon the covariates." Explicit solutions of the maximum likelihood equations for such models when there are one or two dichotomous covariates are presented. Applications of these models to the case of heart transplants and lung cancer are discussed, and survival in two or four groups is compared. (summary in FRE)  相似文献   

10.
11.
Jiang H  Fine JP  Chappell R 《Biometrics》2005,61(2):567-575
Studies of chronic life-threatening diseases often involve both mortality and morbidity. In observational studies, the data may also be subject to administrative left truncation and right censoring. Because mortality and morbidity may be correlated and mortality may censor morbidity, the Lynden-Bell estimator for left-truncated and right-censored data may be biased for estimating the marginal survival function of the non-terminal event. We propose a semiparametric estimator for this survival function based on a joint model for the two time-to-event variables, which utilizes the gamma frailty specification in the region of the observable data. First, we develop a novel estimator for the gamma frailty parameter under left truncation. Using this estimator, we then derive a closed-form estimator for the marginal distribution of the non-terminal event. The large sample properties of the estimators are established via asymptotic theory. The methodology performs well with moderate sample sizes, both in simulations and in an analysis of data from a diabetes registry.  相似文献   

12.
13.
Frydman H  Szarek M 《Biometrics》2009,65(1):143-151
Summary .  In many clinical trials patients are intermittently assessed for the transition to an intermediate state, such as occurrence of a disease-related nonfatal event, and death. Estimation of the distribution of nonfatal event free survival time, that is, the time to the first occurrence of the nonfatal event or death, is the primary focus of the data analysis. The difficulty with this estimation is that the intermittent assessment of patients results in two forms of incompleteness: the times of occurrence of nonfatal events are interval censored and, when a nonfatal event does not occur by the time of the last assessment, a patient's nonfatal event status is not known from the time of the last assessment until the end of follow-up for death. We consider both forms of incompleteness within the framework of an "illness–death" model. We develop nonparametric maximum likelihood (ML) estimation in an "illness–death" model from interval-censored observations with missing status of intermediate transition. We show that the ML estimators are self-consistent and propose an algorithm for obtaining them. This work thus provides new methodology for the analysis of incomplete data that arise from clinical trials. We apply this methodology to the data from a recently reported cancer clinical trial ( Bonner et al., 2006 , New England Journal of Medicine 354, 567–578) and compare our estimation results with those obtained using a Food and Drug Administration recommended convention.  相似文献   

14.
ANDERSON  J. A.; BLAIR  V. 《Biometrika》1982,69(1):123-136
  相似文献   

15.
16.
Tian  Lu; Cai  Tianxi 《Biometrika》2006,93(2):329-342
  相似文献   

17.
AimThe aim of the present study is to evaluate and quantify the bias of competing risks in an Italian oncologic cohort comparing results from different statistical analysis methods.BackgroundCompeting risks are very common in randomized clinical trials and observational studies, in particular oncology and radiotherapy ones, and their inappropriate management causes results distortions widely present in clinical scientific articles.Materials and methodsThis is a single-institution phase II trial including 41 patients affected by prostate cancer and undergoing radiotherapy (IMRT-SIB) at the University Hospital of Udine.Different outcomes were considered: late toxicities, relapse, death.Death in the absence of relapse or late toxicity was considered as a competing event.ResultsThe Kaplan Meier method, compared to cumulative incidence function method, overestimated the probability of the event of interest (toxicity and biochemical relapse) and of the competing event (death without toxicity/relapse) by 9.36%. The log-rank test, compared to Gray's test, overestimated the probability of the event of interest by 5.26%.The Hazard Ratio's and cause specific hazard's Cox regression are not directly comparable to subdistribution hazard's Fine and Gray's modified Cox regression; nonetheless, the FG model, the best choice for prognostic studies with competing risks, found significant associations not emerging with Cox regression.ConclusionsThis study confirms that using inappropriate statistical methods produces a 10% overestimation in results, as described in the literature, and highlights the importance of taking into account the competing risks bias.  相似文献   

18.
In many clinical trials, multiple time‐to‐event endpoints including the primary endpoint (e.g., time to death) and secondary endpoints (e.g., progression‐related endpoints) are commonly used to determine treatment efficacy. These endpoints are often biologically related. This work is motivated by a study of bone marrow transplant (BMT) for leukemia patients, who may experience the acute graft‐versus‐host disease (GVHD), relapse of leukemia, and death after an allogeneic BMT. The acute GVHD is associated with the relapse free survival, and both the acute GVHD and relapse of leukemia are intermediate nonterminal events subject to dependent censoring by the informative terminal event death, but not vice versa, giving rise to survival data that are subject to two sets of semi‐competing risks. It is important to assess the impacts of prognostic factors on these three time‐to‐event endpoints. We propose a novel statistical approach that jointly models such data via a pair of copulas to account for multiple dependence structures, while the marginal distribution of each endpoint is formulated by a Cox proportional hazards model. We develop an estimation procedure based on pseudo‐likelihood and carry out simulation studies to examine the performance of the proposed method in finite samples. The practical utility of the proposed method is further illustrated with data from the motivating example.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号