首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Ageing of potato tuber discs markedly increases the rate of phosphate uptake. This increase is partially prevented by the presence of indoleacetic acid (IAA: 50 μ M ) in the ageing medium. 32P distribution among the various phosphorylated fractions (P1, organic soluble phosphate, acid-insoluble phosphate) was carried out after 24 h of ageing in the presence of IAA. An equal inhibition of the labelling rates of each of the different fractions is induced by the hormone. No important effect on respiration and ATP content was observed. Moreover, IAA neither changes the total phospholipid content nor the relative distribution of 32P between the components. These results support the hypothesis that IAA acts specifically on the development of uptake mechanisms during the ageing period.  相似文献   

2.
Action of some phytohormones on the respiration and on the absorption of phosphate by aging potato tuber discs. Discs of potato tuber incubated in aerated medium show an increase of the rates of respiration and phosphate absorption with aging time; the rates increase by two and nine respectively during the time period between 5 and 24 h of aging. Adenine or some N-6 substituted adenines [benzylaminopurine (BAP), furfurylaminopurine (FAP), methylaminopurine (MAP)], which present variable degrees of cytokinin activity, partially inhibit the increase of the rate of phosphate absorption and, to a lesser extent, the increase of the rate of respiration. Also abscisic acid (ABA), indole 3-acetic acid (IAA), and gibberellic acid (GA3) produce inhibition of the increase of the rate of phosphate absorption with varied effects on the respiration. With regard to phosphate uptake, the effects of ABA, 1AA and GA3 were additive to those of BAP. The effects on respiration were different from the effects on phosphate uptake, so that there is no direct relationship between inhibition of respiration and inhibition of phosphate uptake.  相似文献   

3.
Respiration rate of foliarPelargonium discs was insensitive to ageing. The addition of BAP or GA3 to the ageing medium did not produce any effect. The presence of GA3 or BAP in the ageing medium induced an increase (27 %) or a decrease (45 %) of the phosphate uptake. The analysis of phosphorylated compound labelling showed that these two hormones decreased32P incorporation in the non-acid soluble fraction and increased32P incorporation in the acid soluble organic fraction. GA3 and BAP had little effect on the distribution of radioactivity between the different acid soluble compounds, but they increased the ATP level. These results suggest that both GA3 and BAP increase the basal metabolism, but they seem to act differently on the development of the uptake mechanism during ageing.  相似文献   

4.
The incorporation of 32P and 14C into organic compounds by Ankistrodesmus is strongly inhibited by X-rays. In the same phosphorylated compounds 32P-incorporation apparently is more severely inhibited by X-rays than the 14C-labelling. The 32P-incorporation into organic compounds is more strongly inhibited than 32P-labelling of inorganic phosphate in the cell. The inhibition of 32P-incorporation into a number of compounds is strikingly uniform. It is concluded that the inhibition of 32P-incorporation and of 14C-incorporation into phosphorylated compounds in vivo is due to an uncoupling by X-rays of photophosphorylation as in vitro. The difference in X-ray sensitivity of 14C- and 32P-incorporation into one organic phosphorous compound is attributed to a dual action of X-rays on 32P-incorporation in organic compounds (both via the uncoupling of photophosphorylation) and only a single effect on 14C-incorporation and 32P-labelling of inorganic phosphate. The effect of X-rays on 14C-incorporation into organic compounds included inhibition in most cases but also stimulation as in the case of glycolic acid. These differences may be due to interference in the intercellular regulations following the application of X-rays. The inhibition of 14C-incorporation in many cases exhibits different behaviour at low (<200 krad) and high doses. These changes are discussed on the assumption that at the lower doses X-rays cause uncoupling of photophosphorylation and at the higher doses an additional inhibition of electron transport.  相似文献   

5.
The kinetics of [32P]phosphate uptake has been studied in different types of Saccharomyces cerevisiae mitochondria. Mitochondria were isolated from yeast grown aerobically on 2% lactate (Lac-mitochondria), 2% galactose (Gal-mitochondria), 5.4% glucose (Glu-mitochondria) or from yeast grown anaerobically on 2% galactose (Promitochondria). The effect of chloramphenicol was also studied by adding it to the growth medium of yeast grown aerobically on 2% galactose (chloramphenicol-mitochondria).[32P]Phosphate uptake followed an oscillatory pattern in Lac, Gal-mitochondria and Promitochondria.Saturation kinetics were detected in fully differenciated mitochondria and in Promitochondria, but not in chloramphenicol-mitochondria.Glu-mitochondria did not translocate phosphate as shown both by lack of [32P]phosphate uptake and lack of swelling in isoosmotic potassium solution.Repressed yeast cells were incubated in a resting cell medium and mitochondria were isolated at different times of incubation. The rate of respiration and the oligomycin-sensitive ATPase increased during the course of the incubation. After 2h, a mitochondrial mersalyl-sensitive swelling in an isoosmotic potassium phosphate solution was detected.As expected, no increase of the rate of respiration was observed when chloramphenicol was added in the derepression medium. But the oligomycin-sensitive ATPase decreased. Chloramphenicol did not affect the phosphate transport activity as measured by the swelling of mitochondria, but the [32P]phosphate uptake did not follow saturation kinetics. A complete derepression of the inorganic phosphate-carrier activity was achieved by a 4 h incubation of the repressed cells in the presence of chloramphenicol, followed by a 6 h incubation in presence of cycloheximide.These data strongly suggest that the mitochondrial protein-synthesis system is required for the normal function of the inorganic phosphate-carrier.  相似文献   

6.
Rapid Effects of Abscisic Acid on Ion Uptake in Sunflower Roots   总被引:1,自引:0,他引:1  
Short-term effects of ABA, ABA + kinetin and kinetin on ion (86Rb-potassium and phosphate) and water uptake in sunflower plants (Helianthus annuus var. californicus) were examined with a continuous-recording technique. Ion uptake in the roots and transport to the shoots were also investigated by conventional tracer uptake experiments and by sap bleeding experiments with excised roots. After addition of 5 × 10?6-4 × 10?5M ABA to the root medium there was an immediate decrease (30–70%) in the rate of ion uptake which lasted 30–70 min. The rate of water uptake was not significantly affected as measured with this method. Ion transport to the shoots and to the bleeding sap of excised roots was decreased by ABA. ABA-induced inhibition of ion uptake was abolished by the presence of kinetin, and uptake was slightly stimulated by 2 × 10?5M kinetin alone. We suggest that concentration gradients of ABA or rapid changes in the ABA-kinetin balance in the roots affect ion uptake and transport.  相似文献   

7.
Summary A linear displacement transducer has been used to monitor the growth of a column of Avena coleoptile segments in flowing solution. IAA at 10-5M in phosphate buffer of pH7 promotes growth after a latent period of 10.9 min, the initial maximum growth rate occurring after 25 min. Simultaneous treatment with 10-5 M ABA does not affect either the latent period or the initial maximum growth rate in response to the IAA treatment, but subsequently gives rise to an inhibition of growth detectable after 30 min. In contrast, pretreatment with ABA for 100 min increases the duration of the latent period and reduces the initial maximum growth rate. Removal of the ABA rapidly relieves the inhibition of IAA-induced growth but a growth rate comparable to that of material treated only with IAA is never attained. Studies using 2-[14C]ABA and 1-[14C]IAA suggest that the latent period before ABA inhibition of growth is detectable is not due to a lag in ABA uptake, and that ABA is not acting by reducing IAA uptake.  相似文献   

8.
Summary The effect of abscisic acid (ABA) on uptake of potassium (86Bb+ or 42K+) by Avena sativa L. coleoptile sections was investigated. ABA lowered the potassium uptake rate within 30 min after its application and inhibition reached a maximum (ca. 75%) after 2 h. The inhibition of K+ uptake increased with ABA concentration over a range of 0.03 to 10 g/ml ABA. At a higher K+ concentration (20 mM) the percentage inhibition decreased. The percentage inhibition of K+ uptake by ABA remained constant with external K+ varied from 0.04 to 1.0 mM. After a loading period in 20 mM K+ (86Rb+), apparent efflux of potassium was only slightly increased by ABA. Experiments in which growth was greatly reduced by mannitol or by omission of indole-3-acetic acid from the medium indicated there was no simple quantitative correspondence between ABA inhibition of coleoptile elongation and ABA inhibition of K+ uptake. Chloride uptake was also inhibited by ABA but to a smaller degree than was K+ uptake. No specificity for counterions was observed for K+ uptake. Uptake of 3,0-methylglucose and proline were inhibited by ABA to a much smaller extent (14 and 11%) than that of K+, a result which suggests that ABA acts on specific ion uptake mechanisms.  相似文献   

9.
Sugar uptake by potato tuber discs was studied. Discs were used “fresh” or after a 24-h ageing period. It was shown that ageing increases (by 3 to 4 times) the rate of glucose and sucrose uptake. Sucrose uptake by fresh tissues was insensitive to the presence of glucose or fructose while a competitive effect was observed after ageing. This indicates the development of an invertase activity, which was inhibited by tris-buffer. Sucrose and glucose uptake by aged discs was dependent on cellular metabolism as shown by the sensitivity to low temperature and metabolic inhibitors (NaCN, DNP, CCCP). Involvement of thiol groups was demonstrated by the inhibition with NEM and PCMBS. Orthovanadate, which decreases phosphate uptake by 85 % (Poderet al. 1986) did not produce any effect on glucose and sucrose uptake by aged tissues. Fusicoccin produced only a slight stimulation (15 %). These results argue in favour of the involvement of specific ATPases in ion and sugar uptake. No involvement of a redox system was observed. ABA and BAP inhibited the uptake induced by ageing but had no effect on the endogenous sugar content. BAP would act by its effect on the amount of ATP while ABA would act at the membrane level. The results are discussed in relation to the mechanisms of transfer of glucosyl groups and to the transport of sucrose by the symplasmic pathway. Reçule  相似文献   

10.
W. R. Ullrich 《Planta》1970,90(3):272-285
Summary Short time incorporation of 32P was carried out with synchronised algae (young cells) depleted of phosphate. For the separation and determination of the acid-insoluble phosphate fractions of the cells an improved fractionation procedure was applied. In order to exclude competition by carbon dioxide all experiments were done in the absence of CO2.Compared with nitrogen, CO2-free air produces an increase in the labelling of phosphorylated compounds in the light. In strong white light, at high pH, air effects a remarkable increase of 32P in the acid-insoluble phosphate (P u), mainly in inorganic polyphosphates (P ul), whereas the total phosphate uptake remains almost unchanged. The increase in labelling of acid-insoluble phosphate is, therefore, accompanied by a substantial decrease in the labelling of acid-soluble compounds (P l). In weak white light or in far-red light, at low pH even in strong white or red light, an increase of phosphate uptake and an increased labelling of the acid-stable organic acid-soluble fraction (P os) is observed instead. The effect of oxygen increases somewhat with increasing light intensity up to light saturation, and it increases markedly with increasing oxygen concentration.An essential contribution by oxidative phosphorylation to this oxygen effect can be ruled out on account of its much higher sensitivity to oxygen. Pseudocyclic photophosphorylation is also not regarded as the main force because of its higher oxygen affinity. Occurrence of photorespiration has not been clearly established so far in related algae (Chlorella), and its use for phosphorylation is unknown. A better, although not complete explanation is given by comparing the oxygen effect with the well-known inhibition of photosynthesis by oxygen (Warburg effect), which leads to an increase in glycolate formation and a simultaneous decrease in the pool sizes of carbon reduction cycle intermediates, even in the absence of CO2. Since the photophosphorylation process, as well as the photosynthetic electron flow, seem unaffected by high oxygen concentrations whereas the formation of organic phosphate compounds is partially inhibited, excess ATP may be available for polyphosphate synthesis. This explanation would be consistent with the assumption that polyphosphate-ADP kinase mediates an equilibrium between ATP and polyphosphates, mainly at higher pH. At low pH and in other cases the excess ATP might be available for an increased phosphate uptake and for phosphorylation of endogenous carbohydrates.

Herrn Prof. Dr. W. Simonis zum 60. Geburtstag gewidmet.  相似文献   

11.
Protein phosphorylation was studied during fertilization of Urechis caupo oocytes both in vivo, by measuring [32P]phosphate incorporation into 32P preloaded oocytes and in vitro, by measuring endogenous protein kinase and phosphatase activities in homogenates. During fertilization (and maturation) the rate of protein phosphorylation is dramatically increased. No change in the [32P]phosphate uptake, or the nucleotide levels was observed at fertilization, so the increase cannot be attributed to changes in substrate availability. In vitro enzyme assays showed changes in protein kinase activity which approximately mirrored the changes in the in vivo phosphorylation pattern. As there were no changes in protein phosphatase activity, these results suggest the phosphorylation change results from an increase in protein kinase activity. The pattern of change, investigated by SDS-polyacrylamide gel electrophoresis, shows that proteins that were phosphorylated in the unfertilized egg become phosphorylated to a greater degree after fertilization. One protein (48 kd) undergoes an increase followed by a decrease of its phosphorylation level.  相似文献   

12.
The oxidation of ethanol by the liver produces acetaldehyde, which is a highly reactive compound. Low concentrations of acetaldehyde inhibited mitochondrial respiration with glutamate, β-hydroxybutyrate, or α-ketoglutarate as substrates, but not with succinate or ascorbate. High concentrations led to respiratory inhibition with all substrates. Inhibition of succinate- and ascorbate-linked oxidation by acetaldehyde correlates with the inhibition of the activities of succinic dehydrogenase and cytochrome oxidase. A site more sensitive to acetaldehyde appears to be localized prior to the NADH-ubiquinone oxidoreductase segment of the respiratory chain. Acetaldehyde inhibits energy production by the mitochondria, as evidenced by its inhibition of respiratory control, oxidative phosphorylation, the rate of phosphorylation, and the ATP-32P exchange reaction. Energy utilization is also inhibited, in view of the decrease in both substrate- and ATP-supported Ca2+ uptake, and the reduction in Ca2+-stimulated oxygen uptake and ATPase activity. The malate-aspartate, α-glycerophosphate, and fatty acid shuttles for the transfer of reducing equivalents, and oxidation by mitochondria, were highly sensitive to acetaldehyde. Acetaldehyde also inhibited the uptake of anions which participate in the shuttles. The inhibition of the shuttles is apparently caused by interference with NAD+-dependent state 3 respiration and anion entry and efflux. Ethanol (6–80 mm) had no significant effect on oxygen consumption, anion uptake, or mitochondrial energy production and utilization. The data suggest that acetaldehyde may be implicated in some of the toxic effects caused by chronic ethanol consumption.  相似文献   

13.
The uptake of Ca2+ and Sr2+ by the yeast Saccharomyces cerevisiae is energy dependent, and shows a deviation from simple Michaelis-Menten kinetics. A model is discussed that takes into account the effect of the surface potential and the membrane potential on uptake kinetics.The rate of Ca2+ and Sr2+ uptake is influenced by the cell pH and by the medium pH. The inhibition of uptake at low concentrations of Ca2+ and Sr2+ at low pH may be explained by a decrease of the surface potential.The inhibition of Ca2+ and Sr2+ uptake by monovalent cations is independent of the divalent cation concentration. The inhibition shows saturation kinetics, and the concentration of monovalent cation at which half-maximal inhibition is observed, is equal to the affinity constant of this ion for the monovalent cation transport system. The inhibition of divalent cation uptake by monovalent cations appears to be related to depolarization of the cell membrane.Phosphate exerts a dual effect on uptake of divalent cations: and initial inhibition and a secondary stimulation. The inhibition shows saturation kinetics, and the inhibition constant is equal to the affinity constant of phosphate for its transport mechanism. The secondary stimulation can only partly be explained by a decrease of the cell pH, suggesting interaction of intracellular phosphate, or a phosphorylated compound, with the translocation mechanism.  相似文献   

14.
N-Methy-4-piperidy1-diphenyl glycolate (N-methy1-4-piperidy1 benzilate), an anticholinergic drug, was shown to stimulate 32P-incorporation into total phospholipids of rat brain cortex slices. Analysis of the total phospholipids showed stimulation in phosphatidic acid, phosphatidylinositol and phosphatidylethanolamine. Stimulated 32P-incorpora-tion was accompanied by a decrease in the Qo2 (μ1 O2/mg dry tissue) value. The effects of the drug were compared with those of some other CNS-active drugs known to interfere with the ACh content of brain; tremorine, oxotremorine and atropine; and in the presence of eserine, with that of the neurotransmitter acetylcholine. Increase of the outer K+-concentration resulted in increased Qo2 and 32P-incorporation into the slices. The effect of the glycolate and perhaps that of atropine tended to increase in this medium. Subcellular fractionation of slices showed that the glycolate stimulated 32P-incorporation occurred mainly in the nerve end fraction. The total amount of the individual phospholipids was not changed, but the specific activity had significantly increased in phosphatidic acid and phosphatidylinositol. The possibility that glycolate-induced stimulated 32P-incorporation into nerve end phospholipids is due to increased glycolysis is discussed.  相似文献   

15.
With the use of 32P-labeled phosphate and 42K2CO3 the effect of diphenyl on permeability and uptake properties of the cytoplasmic membrane in wild type and diphenyl-tolerant mutant conidia of Fusarium solani f. cucurbitae was studied. No general damage to the membrane with unspecific leakage of cell constituents was demonstrated under conditions in which diphenyl prevents germination of wild type conidia. The fresh conidia do not require exogenous supply of energy for the uptake of phosphate or of potassium. In the wild type the entry of 32P is inhibited but that of 42K strikingly stimulated by diphenyl. Independently of the tolerant mutant gene present, the mutant conidia are significantly less sensitive to the phosphate uptake inhibition and not affected at all by diphenyl with respect to the uptake of potassium. The latter difference from the wild type seems to indicate genetic control of some property of the potassium transport system in this fungus.  相似文献   

16.
32P was applied to a Laminaria digitata thallus and the pattern of 32P phosphorylated compounds was studied, as a function of time, in the different tissues involved in translocation, i.e. source, pathway and sinks. The results showed that, 3 hours after absorption by the uptake region (lamina), the bulk of the radioactivity was incorporated into organic compounds (70 to 80% of total 32P taken up), hexose monophosphates being the heaviest labelled. Further change in that region was marked by an accumulation of 32P in the inorganic pool (65 to 70% after 13 days). Conversely, the 32P pattern in the medulla of the stipe, which initially showed a similar pattern to the uptake region, did not vary during translocation. The pattern of 32P distribution into sinks (growing stipe peripheral tissue or hapteron) leads to accumulation of the radioactive element in inorganic and acid-insoluble fractions. These results are discussed in terms of comparative distribution of 32P in the different parts of the thallus and suggest that phosphate moves as Pi in that alga.Abbreviations TCA trichloroacetic acid - Po organic phosphate - Po sol acid-soluble organic phosphate fraction - Po insol acidinsoluble organic phosphate fraction - Pi morganic phosphate fraction - P lip lipidic phosphate - Np protein nitrogen - ATP adenosine triphosphate - ADP adenosine diphosphate - PEP phosphoenolpyruvic acid - PGA phosphoglyceric acid - G-1-P glucose-1-phosphate - G-6-P glucose-6-phosphate - UDPG uridine diphosphoglucose  相似文献   

17.
Abstract

Protein phosphorylation is an important regulator of the properties or functions of many proteins and is associated with the platelet activation response to a number of chemically and functionally different agents such as thrombin, plateletactivating factor, serotonin and collagen. The physiological responses of platelets to these agents are similar, and the common intracellular messenger for activation is an elevated concentration of calcium. Platelets possess alpha-2-receptors, and treatment with epinephrine produces an elevation in platelet cytosolic free calcium concentrations. Methods are described for studying hormone sensitive shape change and protein phosphorylation in washed human platelets. Epinephrine induces platelet shape change, and this process is independent of extracellular calcium. Treatment of [32P]-orthophosphate-labelled platelets with epinephrine produces an increase in 32P-incorporation into two platelet proteins with molecular weights of 47000 and 20000. This phosphorylation response is both dose and time dependent. Extracellular calcium is not absolutely essential for epinephrine-induced phosphorylation, but does enhance the maximum levels of 32P-incorporation. Epinephrine sensitive phosphorylation is completely inhibited following pretreatment with verapamil or nitrendipine. Shape change in response to epinephrine occurs in the absence of enhanced protein phosphorylation. The data suggest that epinephrine mobilizes intracellular calcium, and induces platelet shape change and phosphorylation responses characteristic of platelet activation.  相似文献   

18.
1. The terminal phosphate of (gamma-32P)ATP is rapidly incorporated into cardiac sarcoplasmic reticulum membranes (0.7--1.3 mumol/g protein) in the presence of calcium and magnesium. Cardiac sarcoplasmic reticulum membranes catalize an ATP-ADP phosphate exchange in the presence of calcium and magnesium. 2. Half-maximum activation of the phosphoprotein formation and ATP-ADP phosphate exchange is reached at an ionized calcium concentration of about 0.3 muM. The Hill coefficients are 1.3. 3. Transphosphorylation and ATP-ADP phosphate exchange require magnesium and are maximally activated at magnesium concentrations close to or equal to the ATP concentration. 4. The phosphoprotein level is reduced to about 45% at an ADP/ATP ratio of 0.1. The rate of calcium-dependent ATP splitting declines, whilst the rate of the calcium-dependent ATP-ADP phosphate exchange increases when the ADP/ATP ratio is varied from 0.1 to 1. The sum of both, the rate of ATP splitting and the rate of ADP-ATP phosphate exchange remains constant. 5. Phosphoprotein formation and ATP-ADP phosphate exchange are not affected by azide, dinitrophenol, dicyclohexyl carbodiimide and oubain, whilst both activities are reduced by blockade of -SH groups localized on the outside of the sarcoplasmic reticulum membrane. 6. The isolated phosphoprotein is acid stable. The trichloroacetic acid denatured 32P-labelled membrane complex is dephosphorylated by hydroxylamine, which might indicate that the phosphorylated protein is an acyl-phosphate. 7. Polyacrylamide gel elctrophoresis (performed with phenol/acetic acid/water) of phosphorylated sarcoplasmic reticulum fractions demonstrates that the 32P-incorporation occurs into a protein of about 100000 molecular weight. 8. It is suggested that the phosphoprotein represents a phosphorylated intermediate of the calcium-dependent ATPase which formation occurs as an early step in the reaction sequence of calcium translocation by cardiac sarcoplasmic reticulum similar as in skeletal muscle.  相似文献   

19.
Summary An inhibition of root growth, a decrease in the amount of potassium (as 86Rb) and phosphate (32P) accumulation by the root, and a partial depolarization of transmembrane electropotential were observed to develop with a similar time course and to a similar extent when intact maize (Zea mays L.) roots were treated with 10-5 M abscisic acid (ABA). Potassium uptake was inhibited by ABA when excised, low-salt roots were bathed in KCl, KH2PO4, or K2SO4. ABA did not affect the ATP content of the tissues, the activity of isolated mitochondria, nor the activity of microsomal K+-stimulated ATPases.  相似文献   

20.
Newly synthesized neurofilament proteins become highly phosphorylated within axons. Within 2 days after intravitreously injecting normal adult mice with [32P]orthophosphate, we observed that neurofilaments along the entire length of optic axons were radiolabeled by a soluble32P-carrier that was axonally transported faster than neurofilaments.32P-incorporation into neurofilament proteins synthesized at the time of injection was comparatively low and minimally influenced the labeling pattern along axons.32P-incorporation into axonal neurofilaments was considerably higher in the middle region of the optic axons. This characteristic non-uniform distribution of radiolabel remained nearly unchanged for at least 22 days. During this interval, less than 10% of the total32P-labeled neurofilaments redistributed from the optic nerve to the optic tract. By contrast, newly synthesized neurofilaments were selectively pulse-labeled in ganglion cell bodies by intravitreous injection of [35S]methionine and about 60% of this pool translocated by slow axoplasmic transport to the optic tract during the same time interval. These findings indicate that the steady-state or resident pool of neurofilaments in axons is not identical to the newly synthesized neurofilament pool, the major portion of which moves at the slowest rate of axoplasmic transport. Taken together with earlier studies, these results support the idea that, depending in part on their phosphorylation state, transported neurofilaments can interact for short or very long periods with a stationary but dynamic neurofilament lattice in axons.Special issue dedicated to Dr. Sidney Ochs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号