首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bray RC  Adams B  Smith AT  Richards RL  Lowe DJ  Bailey S 《Biochemistry》2001,40(33):9810-9820
The bis-molybdopterin enzyme dimethylsulfoxide reductase (DMSOR) from Rhodobacter capsulatus catalyzes the conversion of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS), reversibly, in the presence of suitable e(-)-donors or e(-)-acceptors. The catalytically significant intermediate formed by reaction of DMSOR with DMS ('the DMS species') and a damaged enzyme form derived by reaction of the latter with O(2) (DMS-modified enzyme, DMSOR(mod)D) have been investigated. Evidence is presented that Mo in the DMS species is not, as widely assumed, Mo(IV). Formation of the DMS species is reversed on removing DMS or by addition of an excess of DMSO. Equilibrium constants for the competing reactions of DMS and DMSO with the oxidized enzyme (K(d) = 0.07 +/- 0.01 and 21 +/- 5 mM, respectively) that control these processes indicate formation of the DMS species occurs at a redox potential that is 80 mV higher than that required, according to the literature, for reduction of Mo(VI) to Mo(IV) in the free enzyme. Specificity studies show that with dimethyl selenide, DMSOR yields a species analogous to the DMS species but with the 550 nm peak blue-shifted by 27 nm. It is concluded from published redox potential data that this band is due to metal-to-ligand charge transfer from Mo(V) to the chalcogenide. Since the DMS species gives no EPR signal in the normal or parallel mode, a free radical is presumed to be in close proximity to the metal, most likely on the S. The species is thus formulated as Mo(V)-O-S(*)Me(2). Existing X-ray crystallographic and Raman data are consistent with this structure. Furthermore, 1e(-) oxidation of the DMS species with phenazine ethosulfate yields a Mo(V) form without an -OH ligand, since its EPR signal shows no proton splittings. This form presumably arises via dissociation of DMSO. The structure of DMSOR(mod)D has been determined by X-ray crystallography. All four thiolate ligands and Ogamma of serine-147 remain coordinated to Mo, but there are no terminal oxygen ligands and Mo is Mo(VI). Thus, it is a dead-end species, neither oxo group acceptance nor e(-)-donation being possible. O(2)-dependent formation of DMSOR(mod)D represents noncatalytic breakdown of the DMS species by a pathway alternative to that in turnover, with oxidation to Mo(VI) presumably preceding product release. Steps in the forward and backward catalytic cycles are discussed in relation to earlier stopped-flow data. The finding that in the back-assay the Mo(IV) state may at least in part be by-passed via two successive 1e(-) reactions of the DMS species with the e(-)-acceptor, may have implications in relation to the existence of separate molybdopterin enzymes catalyzing DMSO reduction and DMS oxidation, respectively.  相似文献   

2.
Conditions for heterologous expression of Rhodobacter sphaeroides biotin sulfoxide reductase in Escherichia coli were modified, resulting in a significant improvement in the yield of recombinant enzyme and enabling structural studies of the molybdenum center. Quantitation of the guanine and the molybdenum as compared to that found in R. sphaeroides DMSO reductase demonstrated the presence of the bis(MGD)molybdenum cofactor. UV-visible absorption spectra were obtained for the oxidized, NADPH-reduced, and dithionite-reduced enzyme. EPR spectra were obtained for the Mo(V) state of the enzyme. X-ray absorption spectroscopy at the molybdenum K-edge has been used to probe the molybdenum coordination of the enzyme. The molybdenum site of the oxidized protein possesses a Mo(VI) mono-oxo site (Mo=O at 1.70 A) with additional coordination by approximately four thiolate ligands at 2.41 A and probably one oxygen or nitrogen at 1.95 A. The NADPH- and dithionite-reduced Mo(IV) forms of the enzyme are des-oxo molybdenum sites with approximately four thiolates at 2.33 A and two different Mo-O/N ligands at 2.19 and 1.94 A.  相似文献   

3.
B Adams  A T Smith  S Bailey  A G McEwan  R C Bray 《Biochemistry》1999,38(26):8501-8511
Improved assays for the molybdenum enzyme dimethylsulfoxide reductase (DMSOR) with dimethyl sulfoxide (DMSO) and with dimethyl sulfide (DMS) as substrates are described. Maximum activity was observed at pH 6.5 and below and at 8.3, respectively. Rapid-scan stopped-flow spectrophotometry has been used to investigate the reduction of the enzyme by DMS to a species previously characterized by its UV-visible spectrum [McAlpine, A. S., McEwan, A. G., and Bailey, S. (1998) J. Mol. Biol. 275, 613-623], and its subsequent reoxidation by DMSO. Both these two-electron reactions were faster than enzyme turnover under steady-state conditions, indicating that one-electron reactions with artificial dyes were rate-limiting. Second-order rate constants for the two-electron reduction and reoxidation reactions at pH 5.5 were (1.9 +/- 0.1) x 10(5) and (4.3 +/- 0.3) x 10(2) M-1 s-1, respectively, while at pH 8.0, the catalytic step was rate-limiting (62 s-1). Kinetically, for the two-electron reactions, the enzyme is more effective in DMS oxidation than in DMSO reduction. Reduction of DMSOR by DMS was incomplete below approximately 1 mM DMS but complete at higher concentrations, implying that the enzyme's redox potential is slightly higher than that of the DMS-DMSO couple. In contrast, reoxidation of the DMS-reduced state by DMSO was always incomplete, regardless of the DMSO concentration. Evidence for the existence of a spectroscopically indistinguishable reduced state, which could not be reoxidized by DMSO, was obtained. Brief reaction (less than approximately 15 min) of DMS with DMSOR was fully reversible on removal of the DMS. However, in the presence of excess DMS, a further slow reaction occurred aerobically, but not anaerobically, to yield a stable enzyme form having a lambdamax at 660 mn. This state (DMSORmod) retained full activity in steady-state assays with DMSO, but was inactive toward DMS. It could however be reconverted to the original resting state by reduction with methyl viologen radical and reoxidation with DMSO. We suggest that in this enzyme form two of the dithiolene ligands of the molybdenum have dissociated and formed a disulfide. The implications of this new species are discussed in relation both to conflicting published information for DMSOR from X-ray crystallography and to previous spectroscopic data for its reduced forms.  相似文献   

4.
Raman spectroscopy has been used to investigate the structure of the molybdenum cofactor in DMSO reductase from Rhodobacter capsulatus. Three oxidized forms of the enzyme, designated 'redox cycled', 'as prepared', and DMSOR(mod)D, have been studied using 752 nm laser excitation. In addition, two reduced forms of DMSO reductase, prepared either anaerobically using DMS or using dithionite, have been characterized. The 'redox cycled' form has a single band in the Mo=O stretching region at 865 cm(-1) consistent with other studies. This oxo ligand is found to be exchangeable directly with DMS(18)O or by redox cycling. Furthermore, deuteration experiments demonstrate that the oxo ligand in the oxidized enzyme has some hydroxo character, which is ascribed to a hydrogen bonding interaction with Trp 116. There is also evidence from the labeling studies for a modified dithiolene sulfur atom, which could be present as a sulfoxide. In addition to the 865 cm(-1) band, an extra band at 818 cm(-1) is observed in the Mo=O stretching region of the 'as prepared' enzyme which is not present in the 'redox cycled' enzyme. Based on the spectra of unlabeled and labeled DMS reduced enzyme, the band at 818 cm(-1) is assigned to the S=O stretch of a coordinated DMSO molecule. The DMSOR(mod)D form, identified by its characteristic Raman spectrum, is also present in the 'as prepared' enzyme preparation but not after redox cycling. The complex mixture of forms identified in the 'as prepared' enzyme reveals a substantial degree of active site heterogeneity in DMSO reductase.  相似文献   

5.
The 1.82-Å X-ray crystal structure of the oxidised (Mo(VI)) form of the enzyme dimethylsulfoxide reductase (DMSOR) isolated from Rhodobacter capsulatus is presented. The structure has been determined by building a partial model into a multiple isomorphous replacement map and fitting the crystal structure of DMSOR from Rhodobacter sphaeroides to the partial model. The enzyme structure has been refined, at 1.82-Å resolution, to an R factor of 14.8% (R free?=?18.4%). The molybdenum is coordinated by seven ligands: four dithiolene sulfurs, Oγ of Ser147 and two oxo groups. The four sulfur ligands, at a metal-sulfur distance of 2.4?Å or 2.5?Å, are contributed by the two molybdopterin guanine dinucleotide (MGD) cofactors. The coordination sphere of the molybdenum is different from that in previously reported structures of DMSOR from R. sphaeroides and R. capsulatus. The 2.8-Å structure of DMSOR, reduced by addition of sodium dithionite, is also described and differs from the structure of the oxidised enzyme by the removal of a single oxo ligand from the molybdenum coordination sphere. A structure, at 2.5-Å resolution, has also been obtained from crystals soaked in mother liquor buffered at pH?7.0. No differences are observed in the structure at pH?7 when compared with the native crystal structure at pH?5.5.  相似文献   

6.
Comparative EPR studies were made on two high-spin Fe(III) porphine model systems and mammalian liver microsomal cytochromes P-450, all of which exhibit approximately the same degrees of rhombicity in their EPR spectra. Comparison of g values and linewidths as a function of temperature, and of the microwave power saturation demonstrated that EPR characteristics of P-450 are more similar to the Fe(III) porphines having the thiolate axial ligand than in the other model systems, the mixed crystals of Fe(III) porphine with the corresponding free base porphine, in which no thiolate ligand is involved. There is, however, a discrepancy between P-450 and the model thiolates with respect to the size of the zero-field parameter D. These observations indicate that P-450 heme has essential structural features in common with thiolates but the Fe-S bond of P-450 may be modified from its normal orientation in model thiolates, probably as a result of the constraints imposed by the protein structure.  相似文献   

7.
A fully defined in vitro system has been developed for studying the mechanism of assembly of the bis(molybdopterin guanine dinucleotide)molybdenum cofactor in Rhodobacter sphaeroides dimethyl sulfoxide reductase (DMSOR). R. sphaeroides DMSOR expressed in a mobA(-) Escherichia coli strain lacks molybdopterin and molybdenum but contains a full complement of guanine in the form of GMP and GDP. Escherichia coli MobA, molybdopterin-Mo, GTP, and MgCl(2) are required and sufficient for the in vitro activation of purified DMSOR expressed in the absence of MobA. High levels of MobA inhibit the in vitro activation. A chaperone is not required for the in vitro activation process. The reconstituted DMSOR can exhibit up to 73% of the activity observed in recombinant DMSOR purified from a wild-type strain. The use of radiolabeled GTP has demonstrated incorporation of the guanine moiety from the GTP into the activated DMSOR. No role was observed for E. coli MobB in the in vitro activation of apo-DMSOR. This work also represents the first time that the MobA-mediated conversion of molybdopterin to molybdopterin guanine dinucleotide has been demonstrated directly without using the activation of a molybdoenzyme as an indicator for cofactor formation.  相似文献   

8.
The hypocrellin B (HB)-sensitized photodamage on Na(+)-K+ ATPase and sodium permeability of human erythrocytes by means of NMR and biochemical techniques was studied in this paper. The decrease of the enzyme activity and increase of intracellular sodium concentration were usually observed simultaneously. The evidences suggested that the integrality of membrane phospholipid played an important role in maintaining the physiological sodium content of erythrocytes. The loss of the enzyme activity was a sensitive index compared with the increase of intracellular Na+ concentration during the photosensitization. From the comparison tests among HB, HA, protoporphyrin and bilirubin, we found that HB had more ability to increasing intracellular Na+ concentration than the other photosensitization even though the photodamage on the enzyme activity caused by HB, HA, and protoporphyrin were nearly the same. Besides the photoinactivation of Na(+)-K+ ATPase induced by HB and light, the enzyme was also inactivated in the medium containing HB in absence of light. The active oxygen radicals generated though HB mediated redox-cycling might be involved in the dark inactivation of the enzyme.  相似文献   

9.
The crystal structure of Cnx1G, an enzyme involved in the biosynthesis of the molybdenum cofactor (Moco) in Arabidopsis thaliana, revealed the remarkable feature of a copper ion bound to the dithiolene unit of a molybdopterin intermediate (Kuper et al. Nature 430:803-806, 2004). To characterize further the role of copper in Moco biosynthesis, we examined the in vivo and/or in vitro activity of two Moco-dependent enzymes, dimethyl sulfoxide reductase (DMSOR) and nitrate reductase (NR), from cells grown under a variety of copper conditions. We found the activities of DMSOR and NR were not affected when copper was depleted from the media of either Escherichia coli or Rhodobacter sphaeroides. These data suggest that while copper may be utilized during Moco biosynthesis when it is available, copper does not appear to be strictly required for Moco biosynthesis in these two organisms.  相似文献   

10.
Dimethyl sulfoxide reductase (DMSOR), trimethylamine-N-oxide reductase (TMAOR), and biotin sulfoxide reductase (BSOR) are members of a class of bacterial oxotransferases that contain the bis(molybdopterin guanine dinucleotide)molybdenum cofactor. The presence of a Tyr residue in the active site of DMSOR and BSOR that is missing in TMAOR has been implicated in the inability of TMAOR, unlike DMSOR and BSOR, to utilize S-oxides. To test this hypothesis, Escherichia coli TMAOR was cloned and expressed at high levels, and site-directed mutagenesis was utilized to generate the Tyr-114 --> Ala and Phe variants of Rhodobacter sphaeroides DMSOR and insert a Tyr residue into the equivalent position in TMAOR. Although all of the mutants turn over in a manner similar to their respective wild-type enzymes, mutation of Tyr-114 in DMSOR results in a decreased specificity for S-oxides and an increased specificity for trimethylamine-N-oxide (Me(3)NO), with a greater change observed for DMSOR-Y114A. Insertion of a Tyr into TMAOR results in a decreased preference for Me(3)NO relative to dimethyl sulfoxide. Kinetic analysis and UV-visible absorption spectra indicate that the ability of DMSOR to be reduced by dimethyl sulfide is lost upon mutation of Tyr-114 and that TMAOR does not exhibit this activity even in the Tyr insertion mutant.  相似文献   

11.
The molybdenum cofactor prepared by denaturing xanthine oxidase by heat treatment or other methods was partially purified by anaerobic gel filtration in the presence of sodium dithionite, with little loss of activity. A range of products with different elution volumes was obtained. This behaviour is apparently related to association of the molybdenum cofactor with various residual peptides. E.p.r. signals from molybdenum (V) in the active cofactor, present either in crude preparations or in purified fractions, may be generated in dimethyl sulphoxide solution by controlled oxidation carried out on the molybdenum cofactor alone or in the presence of added thiols. The g-values of the spectra suggest that in the oxidized cofactor molybdenum has one terminal oxygen ligand and four ligands from thiolate groups. It is proposed that two of these are from the organic part of the cofactor and two from cysteine residues in the protein or in residual peptides. A signal generated in high yield with little loss of cofactor activity in the presence of thiophenol has g parallel = 2.0258 and g = 1.9793. It is suggested that in this species two cysteine residues have been replaced by two thiophenol molecules. The possible usefulness of the thiophenol complex in further purification of the molybdenum cofactor is discussed.  相似文献   

12.
Comparative EPR studies were made on two high-spin Fe(III) porphine model systems and mammalian liver microsomal cytochromes P-450, all of which exhibit approximately the same degrees of rhombicity in their EPR spectra. Comparison of g values and linewidths as a function of temperature, and of the microwave power saturation demonstrated that EPR characteristics of P-450 are more similar to the Fe(III) porphines having the thiolate axial ligand than in the other model systems, the mixed crystals of Fe(III) porphine with the corresponding free base porphine, in which no thiolate ligand is involved.There is, however, a discrepancy between P-450 and the model thiolates with respect to the size of the zero-field parameter D. These observations indicate that P-450 heme has essential structural features in common with thiolates but the Fe-S bond of P-450 may be modified from its normal orientation in model thiolates, probably as a result of the constraints imposed by the protein stucture.  相似文献   

13.
All of the nine cysteine residues in dimethyl sulfoxide reductase(OMSOR) exist in reduced thiol form. The unfolded form, whichwas previously detected in DMSOR proteins secreted by spheroplastsprepared from a molybdenum cofactor-deficient mutant, was alsodetected in spheroplasts from a wild type strain when iodoacetamidewas present, suggesting that DMSOR is secreted first in a reducedand unfolded form. In spheroplasts from the mutant, a new foldingintermediate migrating between the unfolded and native formswas additionally detected on non-denaturing gel. This intermediatecontained no disulfide bonds, but had a folded compact conformationsimilar to that of the native form. (Received October 4, 1996; Accepted September 4, 1997)  相似文献   

14.
Studies on model complexes have supported the presence of a mercaptide as the fifth ligand of cytochrome P-450 monooxygenases. When alcohol or thiol ligands are added to the sixth coordination position of a five-coordinated 4-nitrobenzene thiolate complex of FeIII protoporphyrin IX dimethyl ester chloride low spin complexes with optical and EPR-spectra very similar to cytochrome P-450 are obtained. From a comparison with all ligands of cytochrome P-450 and the model complexes it is concluded that a hard ligands must occupy the sixth coordination position of cytochrome P-450. An imidazole group is less likely, also in view of the ligand field parameters. The significance of the fifth and sixth ligand of cytochrome P-450 is discussed with respect to the monooxygenase mechanism.  相似文献   

15.
The exchange-inert tetra-ammino-chromium complex of ATP [Cr(NH3)4ATP], unlike the analogous cobalt complex Co(NH3)4ATP, inactivated Na+/K(+)-ATPase slowly by interacting with the high-affinity ATP binding site. The inactivation proceeded at 37 degrees C with an inactivation rate constant of 1.34 x 10(-3) min-1 and with a dissociation constant of 0.62 microM. To assess the potential role of the water ligands of metal in binding and inactivation, a kinetic analysis of the inactivation of Na+/K(+)-ATPase by Cr(NH3)4ATP, and its H2O-substituted derivatives Cr(NH3)3(H2O)ATP, Cr(NH3)2(H2O)2ATP and Cr(H2O)4ATP was carried out. The substitution of the H2O ligands with NH3 ligands increased the apparent binding affinity and decreased the inactivation rate constants of the enzyme by these complexes. Inactivation by Cr(H2O)4ATP was 29-fold faster than the inactivation by Cr(NH3)4ATP. These results suggested that substitution to Cr(III) occurs during the inactivation of the enzyme. Additionally hydrogen bonding between water ligands of metal and the enzyme's active-site residues does not seem to play a significant role in the inactivation of Na+/K(+)-ATPase by Cr(III)-ATP complexes. Inactivation of the enzyme by Rh(H2O)nATP occurred by binding of this analogue to the high-affinity ATP site with an apparent dissociation constant of 1.8 microM. The observed inactivation rate constant of 2.11 x 10(-3) min-1 became higher when Na+ or Mg2+ or both were present. The presence of K+ however, increased the dissociation constant without altering the inactivation rate constant. High concentrations of Na+ reactivated the Rh(H2O)nATP-inactivated enzyme. Co(NH3)4ATP inactivates Na+/K(+)-ATPase by binding to the low-affinity ATP binding site only at high concentrations. However, inactivation of the enzyme by Cr(III)-ATP or Rh(III)-ATP complexes was prevented when low concentrations of Co(NH3)4ATP were present. This indicates that, although Co(NH3)4ATP interacts with both ATP sites, inactivation occurs only through the low-affinity ATP site. Inactivation of Na+/K(+)-ATPase was faster by the delta isomer of Co(NH3)4ATP than by the delta isomer. Co(NH3)4ATP, but not Cr(H2O)4ATP or adenosine 5'-[beta,gamma-methylene]triphosphate competitively inhibited K(+)-activated p-nitrophenylphosphatase activity of Na+/K(+)-ATPase, which is assumed to be a partial reaction of the enzyme catalyzed by the low-affinity ATP binding site.  相似文献   

16.
Circular dichroism (CD) spectroscopy has been used to probe the active site of bacterial ferric cytochrome P-450CAM. The endogenous sixth ligand to the heme iron has been displaced by an extensive series of exogenous oxygen, nitrogen, sulfur and other neutral and anionic donor ligands in an attempt to examine systematically the steric and electronic factors that influence the coupling of the heme chromophore to its protein environment. General trends for each ligand class are reported and discussed. Both the wavelengths and the intensities of the CD bands vary with ligand type and structure. All but one of the complexes exhibit negative CD maxima in their delta and Soret bands. Comparison to ferric myoglobin-thiolate complexes indicates that the negative sign observed for the cytochrome P-450 spectra is not a property of the thiolate fifth ligand, but rather arises from a different interaction of the cytochrome P-450 heme with its protein environment. Complexes with neutral oxygen donors display CD spectra that most closely resemble the spectrum of the native low-spin enzyme. Hyperporphyrin (split Soret) cytochrome P-450 complexes with thiolates, phosphines and cyanide trans to cysteinate have complex CD spectra, reflecting the intrinsic non-degeneracy of the Soret pi pi transitions. The extensive work presented herein provides an empirical foundation for use in analyzing the interaction of heme chromophores with their protein surroundings, not only for the cytochrome P-450 monooxygenases but also for heme proteins in general.  相似文献   

17.
Ojha S  Wu J  LoBrutto R  Banerjee R 《Biochemistry》2002,41(14):4649-4654
Human cystathionine beta-synthase is a hemeprotein that catalyzes a pyridoxal phosphate (PLP)-dependent condensation of serine and homocysteine into cystathionine. Biophysical characterization of this enzyme has led to the assignment of the heme ligands as histidine and cysteinate, respectively, which has recently been confirmed by crystal structure determination of the catalytic core of the protein. Using site-directed mutagenesis, we confirm that C52 and H65 represent the thiolate and histidine ligands to the heme. Conversion of C52 to alanine or serine results in spectral properties of the resulting hemeprotein that are consistent with the loss of a thiolate ligand. Thus, the Soret peak blue-shifts from 428 to 415 and 417 nm in the ferric forms of the C52S and C52A mutants, respectively, and from 450 to 423 nm in the ferrous states of both mutants. Addition of CO to the dithionite-reduced ferrous C52 mutants results in spectra with Soret peaks at 420 nm. EPR spectroscopy of the ferric C52 variants reveals the predominance of a high-spin species. The H65R mutant, a variant described in a homocystinuric patient, has Soret peaks at 424, 421, and 420 nm in the ferric, ferrous, and ferrous CO states, respectively. EPR spectroscopy reveals predominance of the low-spin species. Both C52A and C52S mutations lead to protein with substoichiometric heme (19% with respect to wild type); however, the PLP content is comparable to that of wild-type enzyme. The heme and PLP contents of the H65R mutant are 40% and 75% that of wild-type enzyme. These results indicate that heme saturation does not dictate PLP saturation in these mutant enzymes. Both H65 and C52 variants display low catalytic activity, revealing that changes in the heme binding domain modulate activity, consistent with a regulatory role for this cofactor.  相似文献   

18.
In dimethylsulfoxide reductase of Rhodobacter capsulatus tryptophan-116 forms a hydrogen bond with a single oxo ligand bound to the molybdenum ion. Mutation of this residue to phenylalanine affected the UV/visible spectrum of the purified Mo(VI) form of dimethylsulfoxide reductase resulting in the loss of the characteristic transition at 720 nm. Results of steady-state kinetic analysis and electrochemical studies suggest that tryptophan 116 plays a critical role in stabilizing the hexacoordinate monooxo Mo(VI) form of the enzyme and prevents the formation of a dioxo pentacoordinate Mo(VI) species, generated as a consequence of the dissociation of one of the dithiolene ligands of the molybdopterin cofactor from the Mo ion.  相似文献   

19.
Homogenization of rat liver in Hepes (N-2-hydroxyethylpiperazine-N′-2-ethane-sulfonic acid), MOPS (2-[N-morpholino]ethanesulfonic acid), Na phosphate, Pipes (piperazine-N,N′-bis[2-ethanesulfonic acid]), TEA (triethanolamine), TES (N-tris[hydroxymethyl]-methyl-2-aminoethanesulfonic acid), Tricine (N-tris-[hydroxymethyl]methylglycine), or Tris (tris[hydroxymethyl]aminomethane), and subsequent assay for supernatant total and holo tyrosine aminotransferase activity using these buffers yields apparent enzyme concentrations which vary depending upon the buffer composition, the ionic strength, and the fold-dilution of the supernatant. A precipitous decrease in the apparent holoenzyme concentration results from a slight dilution of the supernatant with most of the buffers. Some of the dilution effects may be due to dissociation of pyridoxal phosphate from the apoenzyme or to competition between the buffer and pyridoxal phosphate for association with the enzyme. The percentage of the apparent total enzyme which exists as holoenzyme varies from 3% for supernatant prepared in Na phosphate buffer up to 94% for that prepared in Hepes. Inactivation of total enzyme activity occurs to a similar extent resulting from incubation of liver homogenates prepared with Na phosphate, Hepes, or Pipes. The residual apparent holoenzyme activity observed when assayed in the presence of Na phosphate may be due to reaction of an enzyme other than tyrosine aminotransferase. The data provide a basis for explaining the large variation in reported percentage holoenzyme and should also serve as a warning for other holoenzyme assays which use pyridoxal phosphate as a cofactor.  相似文献   

20.
Fatty acid utilization during development of the rat   总被引:5,自引:4,他引:1  
The effects of dimethyl sulphoxide and glycerol on ox brain microsomal Na(+)+K(+)-stimulated adenosine triphosphatase (EC 3.6.1.3), K(+)-stimulated p-nitrophenyl phosphatase and K(+)-dependent muscle pyruvate kinase (EC 2.7.1.40) were studied. Dimethyl sulphoxide at concentrations below 20% (v/v) was found to stimulate the p-nitrophenyl phosphatase and pyruvate kinase by increasing their affinity for K(+) but to inhibit the Na(+)+K(+)-stimulated adenosine triphosphatase. The latter enzyme activity was also inhibited by glycerol, which like dimethyl sulphoxide, stimulated the K(+)-activated p-nitrophenyl phosphatase at a wide range of concentrations. The solvent effects were promptly reversed by dilution. Similarity was found between glycerol and dimethyl sulphoxide, on one hand, and ATP, on the other, in their stimulatory effect and their ability to increase the ouabain- and oligomycin-sensitivity of the K(+)-stimulated p-nitrophenyl phosphatase. However, only the solvents, not the ATP, increased the binding of K(+) by the microsomes. From the above findings it is suggested that solvents may act on K(+)-dependent enzymes by altering the state of solvation of the activating cation as well as by changing the enzyme structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号