共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA motif associated with meiotic double-strand break regions in Saccharomyces cerevisiae 总被引:1,自引:0,他引:1
Meiotic recombination in yeast is initiated by DNA double-strand breaks (DSBs) that occur at preferred sites, distributed along the chromosomes. These DSB sites undergo changes in chromatin structure early in meiosis, but their common features at the level of DNA sequence have not been defined until now. Alignment of 1 kb sequences flanking six well-mapped DSBs has allowed us to define a flexible sequence motif, the CoHR profile, which predicts the great majority of meiotic DSB locations. The 50 bp profile contains a poly(A) tract in its centre and may have several gaps of unrelated sequences over a total length of up to 250 bp. The major exceptions to the correlation between CoHRs and preferred DSB sites are at telomeric regions, where DSBs do not occur. The CoHR sequence may provide the basis for understanding meiosis-induced chromatin changes that enable DSBs to occur at defined chromosomal sites. 相似文献
2.
DNA strand breaks signal the induction of DNA double-strand break repair in Saccharomyces cerevisiae
Genotoxic stress induces a checkpoint signaling cascade to generate a stress response. Saccharomyces cerevisiae shows an altered radiation response under different type of stress. Although the induction of repair has been implicated in enhanced survival after exposure to the challenging stress, the nature of the signal remains poorly understood. This study demonstrates that low doses of gamma radiation and bleomycin induce RAD52-dependent recombination repair pathway in the wild-type strain D-261. Prior exposure of cells to DNA-damaging agents (gamma radiation or bleomycin) equips them better for the subsequent damage caused by challenging doses. However, exposure to UV light, which does not cause strand breaks, was ineffective. This was confirmed by PFGE studies. This indicates that the strand breaks probably serve as the signal for induction of the recombination repair pathway while pyrimidine dimers do not. The nature of the induced repair was investigated by mutation scoring in special strain D-7, which showed that the induced repair is essentially error free. 相似文献
3.
Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break repair. 总被引:9,自引:2,他引:9 下载免费PDF全文
DNA ligases catalyse the joining of single and double-strand DNA breaks, which is an essential final step in DNA replication, recombination and repair. Mammalian cells have four DNA ligases, termed ligases I-IV. In contrast, other than a DNA ligase I homologue (encoded by CDC9), no other DNA ligases have hitherto been identified in Saccharomyces cerevisiae. Here, we report the identification and characterization of a novel gene, LIG4, which encodes a protein with strong homology to mammalian DNA ligase IV. Unlike CDC9, LIG4 is not essential for DNA replication, RAD52-dependent homologous recombination nor the repair of UV light-induced DNA damage. Instead, it encodes a crucial component of the non-homologous end-joining (NHEJ) apparatus, which repairs DNA double-strand breaks that are generated by ionizing radiation or restriction enzyme digestion: a function which cannot be complemented by CDC9. Lig4p acts in the same DNA repair pathway as the DNA end-binding protein Ku. However, unlike Ku, it does not function in telomere length homeostasis. These findings indicate diversification of function between different eukaryotic DNA ligases. Furthermore, they provide insights into mechanisms of DNA repair and suggest that the NHEJ pathway is highly conserved throughout the eukaryotic kingdom. 相似文献
4.
Yeast rad50 and mre11 nuclease mutants are hypersensitive to physical and chemical agents that induce DNA double-strand breaks (DSBs). This sensitivity was suppressed by elevating intracellular levels of TLC1, the RNA subunit of telomerase. Suppression required proteins linked to homologous recombination, including Rad51, Rad52, Rad59 and Exo1, but not genes of the nonhomologous end-joining (NHEJ) repair pathway. Deletion mutagenesis experiments demonstrated that the 5'-end of TLC1 RNA was essential and a segment containing a binding site for the Yku70/Yku80 complex was sufficient for suppression. A mutant TLC1 RNA unable to associate with Yku80 protein did not increase resistance. These and other genetic studies indicated that association of the Ku heterodimer with broken DNA ends inhibits recombination in mrx mutants, but not in repair-proficient cells or in other DNA repair single mutants. In support of this model, DNA damage resistance of mrx cells was enhanced when YKU70 was co-inactivated. Defective recombinational repair of DSBs in mrx cells thus arises from at least two separate processes: loss of Mrx nuclease-associated DNA end-processing and inhibition of the Exo1-mediated secondary recombination pathway by Ku. 相似文献
5.
Alexander Glasunov Marlis Frankenberg-Schwager Dieter Frankenberg 《Molecular genetics and genomics : MGG》1995,247(1):55-60
In this paper we study the influence of non-homology between plasmid and chromosomal DNA on the efficiency of recombinational repair of plasmid double-strand breaks and gaps in yeast. For this purpose we used different combinations of plasmids and yeast strains carrying various deletions within the yeast LYS2 gene. A 400 by deletion in plasmid DNA had no effect on recombinational plasmid repair. However, a 400 by deletion in chromosomal DNA dramatically reduced the efficiency of this repair mechanism, but recombinational repair of plasmids linearized by a double-strand break with cohesive ends still remained the dominant repair process. We have also studied the competition between recombination and ligation in the repair of linearized plasmids. Our experimental evidence suggests that recombinational repair is attempted but aborted if only one recombinogenic end with homology to chromosomal DNA is present in plasmid DNA. This situation results in a decreased probability of non-recombinational (i.e. ligation) repair of linearized plasmid DNA. 相似文献
6.
Recruitment and dissociation of nonhomologous end joining proteins at a DNA double-strand break in Saccharomyces cerevisiae 下载免费PDF全文
Nonhomologous end joining (NHEJ) is an important DNA double-strand-break (DSB) repair pathway that requires three protein complexes in Saccharomyces cerevisiae: the Ku heterodimer (Yku70-Yku80), MRX (Mre11-Rad50-Xrs2), and DNA ligase IV (Dnl4-Lif1), as well as the ligase-associated protein Nej1. Here we use chromatin immunoprecipitation from yeast to dissect the recruitment and release of these protein complexes at HO-endonuclease-induced DSBs undergoing productive NHEJ. Results revealed that Ku and MRX assembled at a DSB independently and rapidly after DSB formation. Ligase IV appeared at the DSB later than Ku and MRX and in a strongly Ku-dependent manner. Ligase binding was extensive but slightly delayed in rad50 yeast. Ligase IV binding occurred independently of Nej1, but instead promoted loading of Nej1. Interestingly, dissociation of Ku and ligase from unrepaired DSBs depended on the presence of an intact MRX complex and ATP binding by Rad50, suggesting a possible role of MRX in terminating a NHEJ repair phase. This activity correlated with extended DSB resection, but limited degradation of DSB ends occurred even in MRX mutants with persistently bound Ku. These findings reveal the in vivo assembly of the NHEJ repair complex and shed light on the mechanisms controlling DSB repair pathway utilization. 相似文献
7.
A number of studies of Saccharomyces cerevisiae have revealed RAD51-independent recombination events. These include spontaneous and double-strand break-induced recombination between repeated sequences, and capture of a chromosome arm by break-induced replication. Although recombination between inverted repeats is considered to be a conservative intramolecular event, the lack of requirement for RAD51 suggests that repair can also occur by a nonconservative mechanism. We propose a model for RAD51-independent recombination by one-ended strand invasion coupled to DNA synthesis, followed by single-strand annealing. The Rad1/Rad10 endonuclease is required to trim intermediates formed during single-strand annealing and thus was expected to be required for RAD51-independent events by this model. Double-strand break repair between plasmid-borne inverted repeats was less efficient in rad1 rad51 double mutants than in rad1 and rad51 strains. In addition, repair events were delayed and frequently associated with plasmid loss. Furthermore, the repair products recovered from the rad1 rad51 strain were primarily in the crossover configuration, inconsistent with conservative models for mitotic double-strand break repair. 相似文献
8.
Evolution of DNA double-strand break repair by gene conversion: coevolution between a phage and a restriction-modification system 总被引:1,自引:0,他引:1 下载免费PDF全文
The necessity to repair genome damage has been considered to be an immediate factor responsible for the origin of sex. Indeed, attack by a cellular restriction enzyme of invading DNA from several bacteriophages initiates recombinational repair by gene conversion if there is homologous DNA. In this work, we modeled the interaction between a bacteriophage and a bacterium carrying a restriction enzyme as antagonistic coevolution. We assume a locus on the bacteriophage genome has either a restriction-sensitive or a restriction-resistant allele, and another locus determines whether it is recombination/repair proficient or defective. A restriction break can be repaired by a co-infecting phage genome if one of them is recombination/repair proficient. We define the fitness of phage (resistant/sensitive and repair-positive/-negative) genotypes and bacterial (restriction-positive/-negative) genotypes by assuming random encounter of the genotypes, with given probabilities of single and double infections, and the costs of resistance, repair, and restriction. Our results show the evolution of the repair allele depends on b(1)/b(0), the ratio of the burst size b(1) under damage to host cell physiology induced by an unrepaired double-strand break to the default burst size b(0). It was not until this effect was taken into account that the evolutionary advantage of DNA repair became apparent. 相似文献
9.
10.
Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae. 总被引:1,自引:0,他引:1 下载免费PDF全文
During repair of a double-strand break (DSB) by gene conversion, one or both 3' ends of the DSB invade a homologous donor sequence and initiate new DNA synthesis. The use of the invading DNA strand as a primer for new DNA synthesis requires that any nonhomologous bases at the 3' end be removed. We have previously shown that removal of a 3' nonhomologous tail in Saccharomyces cerevisiae depends on the nucleotide excision repair endonuclease Rad1/Rad10, and also on the mismatch repair proteins Msh2 and Msh3. We now report that these four proteins are needed only when the nonhomologous ends of recombining DNA are 30 nucleotides (nt) long or longer. An additional protein, the helicase Srs2, is required for the RAD1-dependent removal of long 3' tails. We suggest that Srs2 acts to extend and stabilize the initial nascent joint between the invading single strand and its homolog. 3' tails shorter than 30 nt are removed by another mechanism that depends at least in part on the 3'-to-5' proofreading activity of DNA polymerase delta. 相似文献
11.
Mechanisms of checkpoint kinase Rad53 inactivation after a double-strand break in Saccharomyces cerevisiae 下载免费PDF全文
Guillemain G Ma E Mauger S Miron S Thai R Guérois R Ochsenbein F Marsolier-Kergoat MC 《Molecular and cellular biology》2007,27(9):3378-3389
In Saccharomyces cerevisiae, double-strand breaks (DSBs) activate DNA checkpoint pathways that trigger several responses including a strong G(2)/M arrest. We have previously provided evidence that the phosphatases Ptc2 and Ptc3 of the protein phosphatase 2C type are required for DNA checkpoint inactivation after a DSB and probably dephosphorylate the checkpoint kinase Rad53. In this article we have investigated further the interactions between Ptc2 and Rad53. We showed that forkhead-associated domain 1 (FHA1) of Rad53 interacts with a specific threonine of Ptc2, T376, located outside its catalytic domain in a TXXD motif which constitutes an optimal FHA1 binding sequence in vitro. Mutating T376 abolishes Ptc2 interaction with the Rad53 FHA1 domain and results in adaptation and recovery defects following a DSB. We found that Ckb1 and Ckb2, the regulatory subunits of the protein kinase CK2, are necessary for the in vivo interaction between Ptc2 and the Rad53 FHA1 domain, that Ckb1 binds Ptc2 in vitro and that ckb1Delta and ckb2Delta mutants are defective in adaptation and recovery after a DSB. Our data thus strongly suggest that CK2 is the kinase responsible for the in vivo phosphorylation of Ptc2 T376. 相似文献
12.
Saccharomyces cerevisiae LIF1: a function involved in DNA double-strand break repair related to mammalian XRCC4. 总被引:4,自引:0,他引:4 下载免费PDF全文
Saccharomyces cerevisiae DNA ligase IV (LIG4) has been shown previously to be involved in non-homologous DNA end joining and meiosis. The homologous mammalian DNA ligase IV interacts with XRCC4, a protein implicated in V(D)J recombination and double-strand break repair. Here, we report the discovery of LIF1, a S.cerevisiae protein that strongly interacts with the C-terminal BRCT domain of yeast LIG4. LIG4 and LIF1 apparently occur as a heterodimer in vivo. LIF1 shares limited sequence homology with mammalian XRCC4. Disruption of the LIF1 gene abolishes the capacity of cells to recircularize transformed linearized plasmids correctly by non-homologous DNA end joining. Loss of LIF1 is also associated with conditional hypersensitivity of cells to ionizing irradiation and with reduced sporulation efficiency. Thus, with respect to their phenotype, lif1 strains are similar to the previously described lig4 mutants. One function of LIF1 is the stabilization of the LIG4 enzyme. The finding of a XRCC4 homologue in S.cerevisiae now allows for mutational analyses of structure-function relationships in XRCC4-like proteins to define their role in DNA double-strand break repair. 相似文献
13.
Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. 总被引:13,自引:3,他引:13 下载免费PDF全文
Ku, a heterodimer of polypeptides of approximately 70 kDa and 80 kDa (Ku70 and Ku80, respectively), binds avidly to DNA double-strand breaks (DSBs). Mammalian cells defective in Ku are hypersensitive to ionizing radiation due to a deficiency in DSB repair. Here, we show that the simple inactivation of the Saccharomyces cerevisiae Ku70 homologue (Yku70p), does not lead to increased radiosensitivity. However, yku70 mutations enhance the radiosensitivity of rad52 strains, which are deficient in homologous recombination. Through establishing a rapid and reproducible in vivo plasmid rejoining assay, we show that Yku70p plays a crucial role in the repair of DSBs bearing cohesive termini. Whereas this damage is repaired accurately in YKU70 backgrounds, in yku70 mutant strains terminal deletions of up to several hundred bp occur before ligation ensues. Interestingly, this error-prone DNA repair pathway utilizes short homologies between the two recombining molecules and is thus highly reminiscent of a predominant form of DSB repair that operates in vertebrates. These data therefore provide evidence for two distinct and evolutionarily conserved illegitimate recombination pathways. One of these is accurate and Yku70p-dependent, whereas the other is error-prone and Yku70-independent. Furthermore, our studies suggest that Yku70 promotes genomic stability both by promoting accurate DNA repair and by serving as a barrier to error-prone repair processes. 相似文献
14.
The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination. 相似文献
15.
The RING finger ATPase Rad5p of Saccharomyces cerevisiae contributes to DNA double-strand break repair in a ubiquitin-independent manner 总被引:3,自引:0,他引:3 下载免费PDF全文
Tolerance to replication-blocking DNA lesions is achieved by means of ubiquitylation of PCNA, the processivity clamp for replicative DNA polymerases, by components of the RAD6 pathway. In the yeast Saccharomyces cerevisiae the ubiquitin ligase (E3) responsible for polyubiquitylation of the clamp is the RING finger protein Rad5p. Interestingly, the RING finger, responsible for the protein's E3 activity, is embedded in a conserved DNA-dependent ATPase domain common to helicases and chromatin remodeling factors of the SWI/SNF family. Here, we demonstrate that the Rad5p ATPase domain provides the basis for a function of the protein in DNA double-strand break repair via a RAD52- and Ku-independent pathway mediated by the Mre11/Rad50/Xrs2 protein complex. This activity is distinct and separable from the contribution of the RING domain to ubiquitin conjugation to PCNA. Moreover, we show that the Rad5 protein physically associates with the single-stranded DNA regions at a processed double-strand break in vivo. Our observations suggest that Rad5p is a multifunctional protein that—by means of independent enzymatic activities inherent in its RING and ATPase domains—plays a modulating role in the coordination of repair events and replication fork progression in response to various different types of DNA lesions. 相似文献
16.
Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break 总被引:1,自引:0,他引:1
Shroff R Arbel-Eden A Pilch D Ira G Bonner WM Petrini JH Haber JE Lichten M 《Current biology : CB》2004,14(19):1703-1711
BACKGROUND: In response to DNA double-strand breaks (DSBs), eukaryotic cells rapidly phosphorylate histone H2A isoform H2AX at a C-terminal serine (to form gamma-H2AX) and accumulate repair proteins at or near DSBs. To date, these events have been defined primarily at the resolution of light microscopes, and the relationship between gamma-H2AX formation and repair protein recruitment remains to be defined. RESULTS: We report here the first molecular-level characterization of regional chromatin changes that accompany a DSB formed by the HO endonuclease in Saccharomyces cerevisiae. Break induction provoked rapid gamma-H2AX formation and equally rapid recruitment of the Mre11 repair protein. gamma-H2AX formation was efficiently promoted by both Tel1p and Mec1p, the yeast ATM and ATR homologs; in G1-arrested cells, most gamma-H2AX formation was dependent on Tel1 and Mre11. gamma-H2AX formed in a large (ca. 50 kb) region surrounding the DSB. Remarkably, very little gamma-H2AX could be detected in chromatin within 1-2 kb of the break. In contrast, this region contains almost all the Mre11p and other repair proteins that bind as a result of the break. CONCLUSIONS: Both Mec1p and Tel1p can respond to a DSB, with distinct roles for these checkpoint kinases at different phases of the cell cycle. Part of this response involves histone phosphorylation over large chromosomal domains; however, the distinct distributions of gamma-H2AX and repair proteins near DSBs indicate that localization of repair proteins to breaks is not likely to be the main function of this histone modification. 相似文献
17.
In response to DNA damage, the Saccharomyces cerevisiae securin Pds1 blocks anaphase promotion by inhibiting ESP1-dependent degradation of cohesins. PDS1 is positioned downstream of the MEC1- and RAD9-mediated DNA damage-induced signal transduction pathways. Because cohesins participate in postreplicative repair and the pds1 mutant is radiation sensitive, we identified DNA repair pathways that are PDS1-dependent. We compared the radiation sensitivities and recombination phenotypes of pds1, rad9, rad51 single and double mutants, and found that whereas pds1 rad9 double mutants were synergistically more radiation sensitive than single mutants, pds1 rad51 mutants were not. To determine the role of PDS1 in recombinational repair pathways, we measured spontaneous and DNA damage-associated sister chromatid exchanges (SCEs) after exposure to X rays, UV and methyl methanesulfonate (MMS) and after the initiation of an HO endonuclease-generated double-strand break (DSB). The rates of spontaneous SCE and frequencies of DNA damage-associated SCE were similar in wild type and pds1 strains, but the latter exhibited reduced viability after exposure to DNA damaging agents. To determine whether pds1 mutants were defective in other pathways for DSB repair, we measured both single-strand annealing (SSA) and non-homologous end joining (NHEJ) in pds1 mutants. We found that the pds1 mutant was defective in SSA but efficient at ligating cohesive ends present on a linear plasmid. We therefore suggest that checkpoint genes control different pathways for DSB repair, and PDS1 and RAD9 have different roles in recombinational repair. 相似文献
18.
Fine-resolution mapping of spontaneous and double-strand break-induced gene conversion tracts in Saccharomyces cerevisiae reveals reversible mitotic conversion polarity. 总被引:6,自引:2,他引:6 下载免费PDF全文
D B Sweetser H Hough J F Whelden M Arbuckle J A Nickoloff 《Molecular and cellular biology》1994,14(6):3863-3875
Spontaneous and double-strand break (DSB)-induced gene conversion was examined in alleles of the Saccharomyces cerevisiae ura3 gene containing nine phenotypically silent markers and an HO nuclease recognition site. Conversions of these alleles, carried on ARS1/CEN4 plasmids, involved interactions with heteroalleles on chromosome V and were stimulated by DSBs created at HO sites. Crossovers that integrate plasmids into chromosomes were not detected since the resultant dicentric chromosomes would be lethal. Converted alleles in shuttle plasmids were easily transferred to Escherichia coli and analyzed for marker conversion, facilitating the characterization of more than 400 independent products from five crosses. This analysis revealed several new features of gene conversions. The average length of DSB-induced conversion tracts was 200 to 300 bp, although about 20% were very short (less than 53 bp). About 20% of spontaneous tracts also were also less than 53 bp, but spontaneous tracts were on average about 40% longer than DSB-induced tracts. Most tracts were continuous, but 3% had discontinuous conversion patterns, indicating that extensive heteroduplex DNA is formed during at least this fraction of events. Mismatches in heteroduplex DNA were repaired in both directions, and repair tracts as short as 44 bp were observed. Surprisingly, most DSB-induced gene conversion tracts were unidirectional and exhibited a reversible polarity that depended on the locations of DSBs and frameshift mutations in recipient and donor alleles. 相似文献
19.
In our recently published study, we provided in vitro as well as in vivo data demonstrating the involvement of TRM2/RNC1 in homologous recombination based repair (HRR) of DNA double strand breaks (DSBs), in support of such claims reported earlier.
To further validate its role in DNA DSB processing, our present study revealed that the trm2 single mutant displays higher sensitivity to persistent induction of specific DSBs at the MAT locus by HO-endonuclease with
higher sterility rate among the survivors compared to wild type (wt) or exo1 single mutants. Intriguingly, both sensitivity and sterility rate increased dramatically in trm2exo1 double mutants lacking both endo-exonucleases with a progressively increased sterility rate in trm2exo1 double mutants with short-induction periods, reaching a very high level of sterility with persistent DSB inductions. Mutation
analysis of the mating type (MAT) locus among the sterile survivors with persistent HO-induction in trm2 and exo1 single mutants as well as in trm2exo1 double mutants revealed a similar small insertions and deletions events, characteristic of non-homologous end joining (NHEJ)
that might have occurred due to the lack of proper processing function in these mutants. In addition, trm2ku80 and trm2rad52 double mutants also displayed significantly higher sterility with persistent DSB induction compared to ku80 and rad52 single mutants, respectively, exhibiting a mutation spectra that shifted from base substitution (in ku80 and rad52 single mutants) to small insertions and deletions in the double mutants (in trm2ku80 and trm2rad52 mutants). These data indicate a defective processing in absence of TRM2, with a synergistic effect of TRM2, and EXO1 in such processing. 相似文献
20.
In most organisms, the segregation of chromosomes during the first meiotic division is dependent upon at least one crossover (CO) between each pair of homologous chromosomes. COs can result from chromosome double-strand breaks (DSBs) that are induced and preferentially repaired using the homologous chromosome as a template. The PCH2 gene of budding yeast is required to establish proper meiotic chromosome axis structure and to regulate meiotic interhomolog DSB repair outcomes. These roles appear conserved in the mouse ortholog of PCH2, Trip13, which is also involved in meiotic chromosome axis organization and the regulation of DSB repair. Using a combination of genetic and physical assays to monitor meiotic DSB repair, we present data consistent with pch2Δ mutants showing defects in suppressing intersister DSB repair. These defects appear most pronounced in dmc1Δ mutants, which are defective for interhomolog repair, and explain the previously reported observation that pch2Δ dmc1Δ cells can complete meiosis. Results from genetic epistasis analyses involving spo13Δ, rad54Δ, and mek1/MEK1 alleles and an intersister recombination reporter assay are also consistent with Pch2 acting to limit intersister repair. We propose a model in which Pch2 is required to promote full Mek1 activity and thereby promotes interhomolog repair. 相似文献