首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The architecture of a flower is tightly linked to the way a plant pollinates, making it one of the most physiologically and ecologically important traits of angiosperms. Floral organ development is proposed to be governed by the activity of three different classes of organ identity genes (the ABC model), and the expression of those genes are regulated by a number of meristem identity genes. Here we use a transgenetic strategy to elucidate the role of one floral meristem identify gene,LEAFY (LFY), in the evolution of floral organogenesis of a self pollinatorIdahoa scapigera and a obligatory out-crosserLeavenworthia crassa in the mustard family, Brassicaceae. By introducing theLFY genes from these two types of pollination habit into the genetic model speciesArabidopsis thaliana, we provide evidence that changes inLFY influenced flower architecture probably by controlling the downstream organ identity genes.  相似文献   

3.
The Arabidopsis floral homeotic gene AGAMOUS (AG) is a regulator of early flower development. The ag mutant phenotypes suggest that AG has two functions in flower development: (1) specifying the identity of stamens and carpels, and (2) controlling floral meristem determinacy. To dissect these two AG functions, we have generated transgenic Arabidopsis plants carrying an antisense AG construct. We found that all of the transgenic plants produced abnormal flowers, which can be classified into three types. Type I transgenic flowers are phenocopies of the ag-1 mutant flowers, with both floral meristem indeterminacy and floral organ conversion; type II flowers are indeterminate and have partial conversion of the reproductive organs; and type III flowers have normal stamens and carpels, but still have an indeterminate floral meristem inside the fourth whorl of fused carpels. The existence of type III flowers indicates that AG function can be perturbed to affect only floral meristem determinacy, but not floral organ identity. Furthermore, the fact that floral meristem determinacy is affected in all transformants, but floral organ identity only in a subset of them, suggests that the former may required a higher level of AG activity than the latter. This hypothesis is supported by the levels of AG'mRNA detected in different transformants with different frequencies of distinct types of abnormal antisense AG transgenic flowers. Finally, since AG inhibits the expression of another floral regulatory gene AP1, we examined AP1 expression in antisense AG flowers, and found that AP1 is expressed at a relatively high level in the center of type II flowers, but very little or below detectable levels in the inner whorls of type III flowers. These results provide further insights into the interaction of AG and AP1 and how such an interaction may control both organ identity and floral meristem determinacy.  相似文献   

4.
5.
6.
The cell-cycle duration and the growth fraction were estimated in the shoot meristem of Sinapis alba L. during the transition from the vegetative to the floral condition. Compared with the vegetative meristem, the cell-cycle length was reduced from 86 to 32 h and the growth fraction, i.e. the proportion of rapidly cycling cells, was increased from 30–40% to 50–60%. These changes were detectable as early as 30 h after the start of the single inductive long day. The faster cell cycle in the evoked meristem was achieved by a shortening of the G1 (pre-DNA synthesis), S (DNA synthesis) and G2 (post-DNA synthesis) phases of the cycle. In both vegetative and evoked meristems, both-the central and peripheral zones were mosaics of rapidly cycling and non-cycling cells, but the growth fraction was always higher in the peripheral zone.Abbreviations G1 pre-DNA synthesis phase - G2 post-DNA synthesis phase - GF growth fraction - M mitosis phase - PLM percentage-labelled-mitoses method - S DNA synthesis phase - TdR thymidine  相似文献   

7.
We modified a video digitizer system to allow short-term high-resolution measurements of root elongation in intact seedlings ofArabidopsis thaliana (L.) Heynh. We used the system to measure the kinetics of promotion and inhibition of root elongation by applied auxin and to determine the dose-response relationship for auxin action on elongation in roots of wild-type seedlings and seedlings of mutants (axr1,aux1, andaxr2) with altered auxin responsiveness. Roots of the mutants showed less inhibition in the presence of inhibitory concentrations of auxin than did roots of the wild type. The latent period preceding the change in elongation rate after auxin application was the same foraxr1 andaxr2 as for the wild type whereas the latent period foraux1 was about twice as long as for the wild type. Low concentrations (ca. 10–11 M) of auxin induced substantial promotion of root elongation in the wild type and inaxr2.We thank Linda Young and Roger Hangarter for helping to develop the system for mountingArabidopsis seedlings and Wendy Hankie, Julia Hufford, and Ruperto Villella for doing some of the experiments. We thank Roger Hangarter for valuable discussions of the data. This work was supported by National Science Foundation Grant No. DCB-9105807 and by National Aeronautics and Space Administration Grant No. NAG10-0084  相似文献   

8.
The formation of flowers starts when floral meristems develop on the flanks of the inflorescence meristem. In Arabidopsis the identity of floral meristems is promoted and maintained by APETALA1 (AP1) and CAULIFLOWER (CAL). In the ap1 cal double mutant the meristems that develop on the flanks of the inflorescence meristem are unable to establish floral meristem identity and develop as inflorescence meristems on which new inflorescence meristems subsequently proliferate. We demonstrate in contrast to previous models that AGAMOUS-LIKE 24 (AGL24) and SHORT VEGETATIVE PHASE (SVP) are also floral meristem identity genes since the ap1-10 agl24-2 svp-41 triple mutant continuously produces inflorescence meristems in place of flowers. Furthermore, our results explain how AP1 switches from a floral meristem identity factor to a component that controls floral organ identity.  相似文献   

9.
10.
The major storage proteins isolated from wild-type seeds of Arabidopsis thaliana (L.) Heynh., strain Columbia, were studied by sucrose gradient centrifugation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Both the hypocotyl and cotyledons of mature embryos contained abundant 12 S (cruciferin) and 2 S (arabin) proteins that appeared similar in size and subunit composition to the cruciferin (12 S) and napin (1.7 S) seed-storage proteins of Brassica napus. The 12 S protein from Arabidopsis was resolved by SDS-PAGE into two groups of subunits with approximate relative molecular weights of 22–23 kDa (kilodalton) and 30–34 kDa. These polypeptides accumulated late in embryo development, disappeared early in germination, and were not detected in other vegetative or reproductive tissues. Accumulation of the 12 S proteins in aborted seeds from nine embryo-lethal mutants with different patterns of abnormal development was studied to determine the extent of cellular differentiation in arrested embryos from each mutant line. Abundant 12 S proteins were found in arrested embryos from two mutants with late lethal phases, but not in seven other mutants with lethal phases ranging from the globular to the cotyledon stages of embryo development. These results indicate that the accumulation of seed-storage proteins in wild-type embryos of Arabidopsis is closely tied to morphogenetic changes that occur during embryo development. Embryo-lethal mutants may therefore be useful in future studies on the developmental regulation of storage-protein synthesis.Abbreviations kDa kilodalton - Mr relative molecular weight - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

11.
Flowers of an alloplasmic male-sterile tobacco line, comprised of the nuclear genome of Nicotiana tabacum and the cytoplasm of Nicotiana repanda, develop short, poorly-pigmented petals and abnormal sterile stamens that often are fused with the carpel wall. The development of flower organ primordia and establishment of boundaries between the different zones in the floral meristem were investigated by performing expression analysis of the tobacco orthologs of the organ identity genes GLO, AG and DEF. These studies support the conclusion that boundary formation was impaired between the organs produced in whorls 3 and 4 resulting in partial fusions between anthers and carpels. According to the investigations cell divisions and floral meristem size in the alloplasmic line were drastically reduced in comparison with the male-fertile tobacco line. The reduction in cell divisions leads to a discrepancy between cell number and cell determination at the stage when petal and stamen primordia should be initiated. At the same stage expression of the homeotic genes was delayed in comparison with the male-fertile line. However, the abnormal organ development was not due to a failure in the spatial expression of the organ identity genes. Instead the aberrant development in the floral organs of whorls 2, 3 and 4 appears to be caused by deficient floral meristem development at an earlier stage. Furthermore, defects in cell proliferation in the floral meristem of the alloplasmic male-sterile line correlates with presence of morphologically modified mitochondria. The putative causes of reduced cell number in the floral meristem and the consequences for floral development are discussed.  相似文献   

12.
Comparative floral anatomy and ontogeny in Magnoliaceae   总被引:4,自引:0,他引:4  
Floral anatomy and ontogeny are described in six species of Magnoliaceae, representing the two subfamilies Liriodendroideae (Liriodendron chinese and L. tulipifera) and Magnolioideae, including species with terminal flowers (Magnolia championi, M. delavayi, M. grandiflora, M. paenetalauma) and axillary flowers (Michelia crassipes). The sequence of initiation of floral organs is from proximal to distal. The three distinct outermost organs are initiated in sequence, but ultimately form a single whorl; thus their ontogeny is consistent with a tepal interpretation. Tepals are initiated in whorls, and the stamens and carpels are spirally arranged, though the androecium shows some intermediacy between a spiral and whorled arrangement. Carpels are entirely free from each other both at primordial stages and maturity. Ventral closure of the style ranges from open in Magnolia species examined to partially closed in Michelia crassipes and completely closed in Liriodendron, resulting in a reduced stigma surface. Thick-walled cells and tannins are present in all species except Michelia crassipes. Oil cells are normally present. Floral structure is relatively homogeneous in this family, although Liriodendron differs from other Magnoliaceae in that the carpels are entirely closed at maturity, resulting in a relatively small stigma, in contrast to the elongate stigma of most species of Magnolia. The flower of Magnolia does not terminate in an organ or organ whorl but achieves determinacy by gradual diminution.  相似文献   

13.
14.
We have taken a mutational approach to identify genes important for male fertility in Arabidopsis thaliana and have isolated a number of nuclear male/ sterile mutants in which vegetative growth and female fertility are not altered. Here we describe detailed developmental analyses of four mutants, each of which defines a complementation group and has a distinct developmental end point. All four mutants represent premeiotic developmental lesions. In ms3, tapetum and middle layer hypertrophy result in the degeneration of microsporocytes. In ms4, microspore dyads persist for most of anther development as a result of impaired meiotic division. In ms5, degeneration occurs in all anther cells at an early stage of development. In ms15, both the tapetum and microsporocytes degenerate early in anther development. Each of these mutants had shorter filaments and a greater number of inflorescences than congenic male-fertile plants. The differences in the developmental phenotypes of these mutants, together with the non-allelic nature of the mutations indicate that four different genes important for pollen development, have been identified.  相似文献   

15.
The inflorescence meristem produces floral primordia that remain undifferentiated during the first stages of flower development. Genes controlling floral meristem identity include LEAFY (LFY), APETALA1 (AP1), CAULIFLOWER (CAL), LATE MERISTEM IDENTITY 1 (LMI1), SHORT VEGETATIVE PHASE (SVP) and AGAMOUS-LIKE24 (AGL24). The lfy mutant shows partial reversions of flowers into inflorescence shoot-like structures and this phenotype is enhanced in the lfy ap1 double mutant. Here we show that combining the lfy mutant with agl24 and svp single mutants or with the agl24 svp double mutant enhances the lfy phenotype and that the lfy agl24 svp triple mutant phenocopies the lfy ap1 double mutant. Analysis of the molecular interactions between LFY, AGL24 and SVP showed that LFY is a repressor of AGL24 and SVP, whereas LMI1 is a positive regulator of these genes. Moreover, AGL24 and SVP positively regulate AP1 and LFY by direct binding to their regulatory regions. Since all these genes are important for establishing floral meristem identity, regulatory loops are probably important to maintain the correct relative expression levels of these genes.  相似文献   

16.
17.
Mutations associated with floral organ number in rice   总被引:14,自引:0,他引:14  
How floral organ number is specified is an interesting subject and has been intensively studied in Arabidopsis thaliana. In rice (Oryza sativa L.), mutations associated with floral organ number have been identified. In three mutants of rice, floral organ number 1 (fon1) and the two alleles, floral organ number 2-1 (fon2-1) and floral organ number 2-2 (fon2-2), the floral organs were increased in number centripetally. Lodicules, homologous to petals, were rarely affected, and stamens were frequently increased from six to seven or eight. Of all the floral organs the number of pistils was the most frequently increased. Among the mutants, fon1 showed a different spectrum of organ number from fon2 -1 and fon2 -2. Lodicules were the most frequently affected in fon1, but pistils of more than half of fon1 flowers were unaffected; in contrast, the pistils of most flowers were increased in fon2 -1 and fon2-2. Homeotic conversion of organ identity was also detected at a low frequency in ectopically formed lodicules and stamens. Lodicules and stamens were partially converted into anthers and stigmas, respectively. Concomitant with the increased number of floral organs, each mutant had an enlarged apical meristem. Although meristem size was comparable among the three mutants and wild type in the early phase of flower development, a significant difference became apparent after the lemma primordium had differentiated. In these mutants, the size of the shoot apical meristem in the embryo and in the vegetative phase was not affected, and no phenotypic abnormalities were detected. These results do not coincide with those for Arabidopsis in which clavatal affects the sizes of both shoot and floral meristems, leading to abnormal phyllotaxis, inflorescence fasciation and increased floral organs. Accordingly, it is considered that FON1 and FON2 function exclusively in the regulation of the floral meristem, not of the vegetative meristem.Abbreviation DIC differential interference contrast This work was supported in part by Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science and Culture of Japan.  相似文献   

18.
Vegetative plants of Sinapis alba L. grown under short days were induced to flower by exposure to one long day or continuous long days. Irrespective of the number of long days, the first flower primordia were initiated by the shoot apical meristem 60 h after the start of the inductive treatment. An indirect histoimmunofluorescence technique was used to search in the apical meristem for three antigenic proteins which had been previously detected by immunodiffusion tests in the whole apical bud (Pierard et al. (1977) Physiol. Plant. 41, 254–258). One protein called protein A, present in the vegetative meristem, increased in concentration during the first 48 h following the start of the inductive treatment. It stayed constant up to 96 h and disappeared completely at a later time. Two other proteins called B and C, absent in the vegetative meristem, appeared in the meristem of induced plants between 30 and 36 h after the start of the inductive treatment and progressively accumulated at later times up to 240 h. These proteins appeared 8 h before the irreversible commitment of the meristem to produce flower primordia (point of no return) was reached and 24 h before start of flower production. These observations support an interpretation of floral evocation as consisting, at least partially, of an early and qualitative change in gene expression.Abbreviations AVB anti-vegetative-bud antiserum - ARB antireproductive-bud antiserum - IgG immunoglobulins G - TRITC tetramethylrhodamine isothiocyanate - GAR IgG goat antirabbit IgG - S0 IgG non-immune rabbit IgG  相似文献   

19.
APETALA1 (AP1) and its homologue SQUAMOSA (SQUA) are key regulatory genes specifying floral meristem identity in the model plants Arabidopsis and Antirrhinum. Despite many similarities in their sequence, expression and functions, only AP1 appears to have the additional role of specifying sepal and petal identity. No true AP1/SQUA-functional homologues from any other plant species have been functionally studied in detail, therefore the question of how the different functions of AP1-like genes are conserved between species has not been addressed. We have isolated and characterized PEAM4, the AP1/SQUA-functional homologue from pea, a plant with a different floral morphology and inflorescence architecture to that of Arabidopsis or Antirrhinum. PEAM4 encodes for a polypeptide 76% identical to AP1, but lacks the C-terminal prenylation motif, common to AP1 and SQUA, that has been suggested to control the activity of AP1. Nevertheless, constitutive expression of PEAM4 caused early flowering in tobacco and Arabidopsis. In Arabidopsis, PEAM4 also caused inflorescence-to-flower transformations similar to constitutive AP1 expression, and was able to rescue the floral organ defects of the strong ap1-1 mutant. Our results suggest that the control of both floral meristem and floral organ identity by AP1 is not restricted to Arabidopsis, but is extended to species with diverse floral morphologies, such as pea.  相似文献   

20.
M. Lay-Yee  R. M. Sachs  M. S. Reid 《Planta》1987,171(1):104-109
Floral induction in seedlings of Pharbitis nil Choisy cv. Violet, with one cotyledon removed, was manipulated by applying various photoperiodic treatments to the remaining cotyledon. Populations of polyadenylated RNA from treated cotyledons were examined to identify messages specifically involved in floral induction. The RNA was translated in vitro using a wheat-germ system, and the resulting translation products were analysed by two-dimensional polyacrylamide gel electrophoresis. Substantial qualitative and quantitative differences were found between mRNA from cotyledons of seedlings kept in continuous light (non-induced) and of seedlings given a 16-h dark period (induced). In contrast, inhibition of flowering with a night-break resulted only in one detectable, quantitative difference in mRNA.Abbreviations CL continuous light - kDa kilodalton - NB 16 h darkness+10 min red-light break, 8 h into the dark period - poly(A)+ RNA polyadenylated RNA (isolated by binding to a cellulose oligodeoxythymidine affinity column) - SD short day (16 h dark) - SDP short-day plant - SDS sodium dodecyl sulfate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号