首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Photoautotrophic cultivation of Chlorococcum humicola was performed in batch and continuous modes in different cultivating system arrangements to compare biomass and carotenoids’ concentration and their productivities. Batch result from stirred tank and airlift photobioreactors indicated the positive effect of increasing light intensity on growth and carotenoid production, whereas the finding from continuous cultivation indicated that carotenoid enhancement preferred high light intensity and nitrogen-deficient environment. The highest biomass (1.31?±?0.04?g?L?1) and carotenoid (4.59?±?0.06?mg?L?1) concentration as well as the highest productivities, 0.46?g?L?1 d?1 for biomass and 1.61?mg?L?1 d?1 for carotenoids, were obtained when maintaining high light intensity of 10 klx, BG-11 medium and 2% (v/v) CO2 simultaneously, while the highest carotenoid content (4.84?mg?g?1) was associated with high light intensity and nitrogen-deficient environment, which was induced by feed-modified BG-11 growth medium containing nitrate 20 folds lower than the original medium. Finally, the cultivating system arranged into smaller stirred tank photobioreactors in series yielded approximately 2.5 folds increase in both biomass and carotenoid productivities relative to using single airlift photobioreactor with equivalent working volume and similar operating condition.  相似文献   

2.
The kinetic study of Arthrospira platensis extracellular polymeric substances (EPS) production under different trophic modes??photoautotrophy (100???mol photons m?2?s?1), heterotrophy (1.5?g/L glucose), and mixotrophy (100???mol photons m?2?s?1 and 1.5?g/L glucose)??was investigated. Under photoautotrophic and heterotrophic conditions, the maximum EPS production 219.61?±?4.73 and 30.30?±?1.97?mg/L, respectively, occurred during the stationary phase. Under a mixotrophic condition, the maximum EPS production (290.50?±?2.21?mg/L) was observed during the early stationary phase. The highest specific EPS productivity (433.62?mg/g per day) was obtained under a photoautotrophic culture. The lowest specific EPS productivity (38.33?mg/g per day) was observed for the heterotrophic culture. The effects of glucose concentration, light intensity, and their interaction in mixotrophic culture on A. platensis EPS production were evaluated by means of 32 factorial design and response surface methodology. This design was carried out with a glucose concentration of 0.5, 1.5, and 2.5?g/L and at light levels of 50, 100, and 150???mol photons m?2?s?1. Statistical analysis of the model demonstrated that EPS concentration and EPS yield were mainly influenced by glucose concentration and that conditions optimizing EPS concentration were dissimilar from those optimizing EPS yield. The highest maximum predicted EPS concentration (369.3?mg/L) was found at 150???mol photons m?2?s?1 light intensity and 2.4?g/L glucose concentration, while the highest maximum predicted EPS yield (364.3?mg/g) was recorded at 115???mol photons m?2?s?1 light intensity and 1.8?g/L glucose concentration.  相似文献   

3.
The optimisation of submerged culture conditions and nutritional requirements was studied for the production of exopolysaccharide (EPS) fromPleurotus nebrodensis. The optimal temperature and initial pH for both mycelial growth and EPS production in shake flask cultures were 25 °C and 8.0, respectively. Maltose was found the most suitable carbon source for both mycelial biomass and EPS production. Yeast extract was favourable nitrogen source for both mycelial biomass and EPS production. Optimum concentration of each medium component was determined using the orthogonal matrix method. The optimal combination of the media constituents for mycelial growth and EPS production was as follows: 200 g l?1 bran, 25 g l?1 maltose, 3 g l?1 yeast extract, 1 g l?1 KH2PO4, 1 g l?1 MgSO4 7H2O. Under the optimal conditions, the mycelial biomass (4.13 g l?1) and EPS content (2.40 g l?1) ofPleurotus nebrodensis was 2.3 and 3.6 times compared to the control with basal medium respectively.  相似文献   

4.
Dissociated cells separated from a natural colony of Nostoc flagelliforme were cultivated heterotrophically in the darkness on glucose under fed-batch culture conditions. The effects of carbon sources (glucose, fructose, xylose, and sucrose) and concentrations on cell growth and extracellular polysaccharide (EPS) production were investigated. At harvest, the culture contained 1.325 g L?1 of biomass and 117.2 mg L?1 of EPS, respectively. The gravimetric EPS production rate was 16.7 mg g?1 cell dry weight day?1, which was 2.1 times higher than previously reported. Using sigmoid model, batch fermentation of N. flagelliforme was kinetically simulated to obtain equations including substrate consumption, biomass growth, and EPS accumulation. Results from a simulation correlated well with the experimental ones, indicating that this method could be useful in studying EPS production from batch and fed-batch cultures.  相似文献   

5.
The green microalga Chlorella sp. TISTR 8990 was grown heterotrophically in the dark using various concentrations of a basal glucose medium with a carbon‐to‐nitrogen mass ratio of 29:1. The final biomass concentration and the rate of growth were highest in the fivefold concentrated basal glucose medium (25 g L?1 glucose, 2.5 g L?1 KNO3) in batch operations. Improving oxygen transfer in the culture by increasing the agitation rate and decreasing the culture volume in 500‐mL shake flasks improved growth and glucose utilization. A maximum biomass concentration of nearly 12 g L?1 was obtained within 4 days at 300 rpm, 30°C, with a glucose utilization of nearly 76% in batch culture. The total fatty acid (TFA) content of the biomass and the TFA productivity were 102 mg g?1 and 305 mg L?1 day?1, respectively. A repeated fed‐batch culture with four cycles of feeding with the fivefold concentrated medium in a 3‐L bioreactor was evaluated for biomass production. The total culture period was 11 days. A maximum biomass concentration of nearly 26 g L?1 was obtained with a TFA productivity of 223 mg L?1 day?1. The final biomass contained (w/w) 13.5% lipids, 20.8% protein and 17.2% starch. Of the fatty acids produced, 52% (w/w) were saturated, 41% were monounsaturated and 7% were polyunsaturated (PUFA). A low content of PUFA in TFA feedstock is required for producing high quality biodiesel. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1589–1600, 2017  相似文献   

6.
Aiming at the reutilizing wastewater for algal growth and biomass production, a saline water rejected from reverse osmosis (RO) facility (salinity 67.59 g L−1) was used to cultivate the pre-adapted green microalga Chlorella vulgaris. The inoculum was prepared by growing cells in modified BG-11 medium, and adaptation was performed by applying a gradual increase in salinity (56.0 g L−1 NaCl and 125 ppm FeSO4·7H2O) to the culture in 200 L photobioreactor. Experiments using the adapted alga were performed using original-rejected water (ORW) and treated rejected water (TRW) comparing with the recommended growth medium (BG-11). The initial salinity of ORW was chemically reduced to 39.1 g L−1 to obtain TRW. Vertical photobioreactors (15 L) was used for indoor growth experiments. Growth in BG-11 resulted in 1.23 g L−1, while the next adaptation growth reached 2.14 g L−1 of dry biomass. The dry weights of re-cultivated Chlorella after adaptation were 1.49 and 2.19 g L−1 from ORW and TRW; respectively. The cellular oil content was only 12% when cells grown under control conditions verses to 14.3 and 15.42% with original and treated water, respectively. Induction of stress affected the fatty acid methyl esters (FAMEs) profile and the properties of the resulting biodiesel. The present results indicated that induction of stress by high salinity improves the quality of FAMEs that can be used as a promising biodiesel fuel.  相似文献   

7.
Botryococcus braunii is a colonial green microalga with recognized potential to synthesize lipids and hydrocarbons for biofuel production. Besides this ability, this microalga also produces exopolysaccharides (EPS). Nevertheless, there are few reports about their biotechnological aspects and industrial applications. In this study, the effect of the nutritional conditions was examined by using two different culture media (BG11 and D medium). To our knowledge, the latter has not been reported before for culturing B. braunii. After 49 days of incubation, the final production of EPS was found to be statistically higher (P < 0.05) in the D medium (0.549?±?0.044 g L?1) than in BG11 (0.336?±?0.009 g L?1). On the contrary, the biomass production was found to be higher in BG11 (1.019?±?0.051 g L?1) than in the D medium (0.953?±?0.056 g L?1). However, this difference was not statistically significant. The difference in salinity and nitrogen concentration between both media is suggested as the main factor involved in the EPS and biomass results. FTIR spectra of B. braunii EPS from both media revealed presence of uronic acids and absence of amino and sulfate groups. Despite the similarity between both spectra, there were some different signals (at 1,921.52 and 720.60 cm?1) which may mean a difference in glycosyl composition.  相似文献   

8.
Northern regions are generally viewed as unsuitable for microalgal biofuel production due to unfavorable climate and solar insolation levels. However, these conditions can potentially be mitigated by coupling microalgal cultivation to industrial processes such as wastewater treatment. In this study, we have examined the biomass and lipid productivity characteristics of 14 microalgae isolates (Chlorophyta) from the Canadian province of Saskatchewan. Under both photoautotrophic and mixotrophic cultivation, a distinct linear trend was observed between biomass and lipid productivities in the 14 SK isolates. The most productive strain under cultivation in TAP media was Scenedesmus sp.-AMDD which displayed rates of biomass and fatty acid productivities of 80 and 30.7?mg?L?1?day?1, respectively. The most productive strain in B3NV media was Chlamydomonas debaryana-AMLs1b which displayed rates of biomass and fatty acid productivities of 51.7 and 5.9?mg?L?1?day?1, respectively. In 11 of the isolates tested, secondary municipal wastewater (MCWW) supported rates of biomass productivity between 21 and 33?mg?L?1?day?1 with Scenedesmus sp.-AMDD being the most productive. Three strains, Chlamydomonas debaryana-AMB1, Chlorella sorokiniana-RBD8 and Micractinium sp.-RB1b, showed large increases in biomass productivity when cultivated mixotrophically in MCWW supplemented with glycerol. High relative oleic acid content was detected in 10 of the 14 isolates when grown mixotrophically in media supplemented with acetate. There was no detectable effect on the fatty acid profiles in cells cultivated mixotrophically in glycerol-supplemented MCWW. These data indicate that biomass and lipid productivities are boosted by mixotrophic cultivation. Exploiting this response in municipal wastewater is a promising strategy for the production of environmentally sustainable biofuels.  相似文献   

9.
In this study, the effects of carbon source, nitrogen source, and metal ions on cell growth and Bacillus aryabhattai β-amylase production in recombinant Brevibacillus choshinensis were investigated. The optimal medium for β-amylase production, containing glucose (7.5?g·L?1), pig bone peptone (40.0?g·L?1), Mg2+ (0.05?mol·L?1), and trace metal elements, was determined through single-factor experiments in shake flasks. When cultured in the optimized medium, the β-amylase yield reached 925.4?U mL?1, which was 7.2-fold higher than that obtained in the initial medium. Besides, a modified feeding strategy was proposed and applied in a 3-L fermentor fed with glucose, which achieved a dry cell weight of 15.4?g L?1. Through this cultivation approached 30?°C with 0?g·L?1 initial glucose concentration, the maximum β-amylase activity reached 5371.8?U mL?1, which was 41.7-fold higher than that obtained with the initial medium in shake flask.  相似文献   

10.
The utilization of organic liquid fertilizer PAL-1 as the culture medium of the microalga Chlorella vulgaris was investigated for the purpose of biodiesel production. Cell growth and lipid accumulation in PAL-1 were evaluated and compared with those in the artificial medium BG-11. Cells showed mixotrophic growth when utilizing the organic liquid fertilizer PAL-1. The rates of cell growth (0.143 d-1) and N consumption (14.9 mg/L/d) in PAL-1 were almost the same as those in BG-11, under the presence of 2% CO2-enriched aeration and light irradiation. Lipid synthesis was triggered in PAL-1 on day 4, when nitrogen was completely consumed, and the lipid content reached up to 48% thereafter. Lipid productivity could be enhanced using repeated-batch cultivation in which cells were exposed to N limitation repeatedly, and thus lipid synthesis was induced while maintaining a sufficiently high cell density.  相似文献   

11.
《Process Biochemistry》1999,34(5):477-481
The effects of initial glucose concentration and light intensity on specific growth rate, phycocyanin concentration and cell dry weight concentration in mixotrophic batch cultivation of Spirulina platensis using both shake flask and fermenter were investigated. Based on experimental results in shake flask culture, a number of mathematical models were constructed, and the optimal initial glucose concentration and the optimal light intensity were calculated to be Sopt=2.4471 g liter−1 and Lopt=3.8632 klx. Finally, a time-dependent kinetic model for mixotrophic batch cultivation of Spirulina platensis in fermenter was also proposed. This was in good agreement with the experimental results and could be employed to predict the production of biomass and phycocyanin, and the consumption of glucose in fermenter culture.  相似文献   

12.
Sodium erythorbate (NaE) is a common antioxidant in food processing. In this study, the abilities of NaE to reduce photosynthetic oxygen accumulation in culture medium and improve microalgal growth were evaluated using the green microalga Chlorella vulgaris and glucose as a reference. NaE (from 2.0 to 16.0 g L?1) led to a lower accumulation of dissolved oxygen (DO) in a concentration-dependent manner. A significant negative correlation (p < 0.05) between the optical density (OD680) and DO level suggested that algal growth was promoted by NaE through depleting oxygen in the medium. After 12 days of cultivation, maximum OD680 and biomass were obtained with a NaE dosage of 8.0 g L?1 (respectively, 3.99 and 6.26 times greater than in the control without NaE). Compared with this dosage group which maintained an appropriate low DO level (2 to 6 mg L?1), higher dosage groups showed relatively little growth promotion due to an insufficiency of DO (<2 mg L?1). When glucose was added into mixotrophic systems for C. vulgaris, to the same total carbon amount as NaE, DO fell rapidly to less than 2 mg L?1 owing to its greater consumption (43.9%) compared to that of NaE (16.7%). Furthermore, in the NaE treatment, the pigment contents, cell density, and algal biomass were, respectively, 4.17 to 4.44 times, 2.67 times, and 1.21 times greater than in the glucose treatment. These findings indicate that algal autotrophic growth could be enhanced effectively by NaE through the moderate control of DO.  相似文献   

13.
The aim of the present study was to survey the growth and astaxanthin production of E17, an astaxanthin-rich mutant of Chlorella zofingiensis, through feeding the low-cost carbon source cane molasses. In heterotrophic batch cultivation, E17 fed with pretreated molasses achieved biomass (1.79 g L?1 day?1) and astaxanthin (1.99 mg L?1 day?1) productivities comparable to those with glucose, which were about 2- and 2.8-fold of those fed with untreated molasses, respectively. Molasses-induced astaxanthin accumulation may be attributed to the elicited expression of carotenogenic genes, in particular the genes specifically responsible for the ketolation and hydroxylation of β-carotene to form astaxanthin. A two-stage fed-batch strategy was employed to grow E17 and induce astaxathin accumulation, resulting in 45.6 g L?1 biomass and 56.1 mg L?1 astaxanthin, the highest volumetric astaxanthin yield ever reported for this alga. In addition, the astaxanthin production by E17 was tested with a semi-continuous culture method, where the directly diluted raw molasses (giving 5 g L?1 sugar) was used as the carbon source. Little growth inhibition of E17 was observed in the semi-continuous culture with a biomass productivity of 1.33 g L?1 day?1 and an astaxanthin productivity of 0.83 mg L?1 day?1. The mixotrophic semi-continuous cultures enhanced the biomass and astaxanthin productivities by 29.3 % and 42.2 %, respectively. This study highlights the potential of using the industrially cheap cane molasses towards large-scale cost-saving production of the high-value ketocarotenoid astaxanthin.  相似文献   

14.
Netrium digitus is a representative of the species-rich class Zygnematophyceae (Streptophyta). Its intensive extracellular polysaccharide (EPS) production makes this alga interesting for biotechnological applications with a focus on cosmetics and food additives. Quantitative data on growth and EPS production in suspension and, for the first time, in immobilized culture using lab-scale porous substrate bioreactors, so-called Twin-Layer (TL) systems, is presented. It is shown that the cell as well as the EPS dry weight content is increased at least sixfold in immobilized compared to suspension culture. Due to the high amount of EPS, the biofilms reach a thickness of more than 8 mm after 27 days at 70 μmol photons m?2 s?1 and with 1.5% CO2 supply. Frequent exchange of the growth medium results in a linear cell biomass increase of 2.02?±?0.09 g m?2 growth area day?1 compared to 2.99?±?0.09 g m?2 day?1, when the medium is not exchanged. Under this mode of cultivation, the EPS production is lower and a final concentration of 12.18?±?1.25 g m?2 compared to 20.76?±?0.85 g m?2, when medium was exchanged, is reached. It is clearly demonstrated that the relatively slow growing, but excessively EPS producing, microalgal species N. digitus can be grown in porous substrate bioreactors and that this culturing technique is a promising alternative to suspension culture for the Zygnematophyceae.  相似文献   

15.
In the recent years, the studies concerning the cultivation of Neochloris oleoabundans for biofuel purposes have increased, in relation to its capability to accumulate lipids when grown under nutrient starvation. Unfortunately, this cultivation mode does not allow to reach high biomass densities, which are required to improve the feasibility of the process. Increasing knowledge of the microalgal physiology is necessary to obtain new useful information for the improvement of culture performance in the perspective of large-scale cultivation. In this work, the mixotrophic cultivation of N. oleoabundans in a brackish medium added with different glucose concentrations has been tested under shaking, with the aim of stimulating growth alongside lipid accumulation inside cells. Cell morphology, glucose consumption, photosynthetic pigment content and photosynthetic efficiency were also investigated. Among all tested glucose concentrations (0–30 g L?1), it was observed that 2.5 g L?1 was the optimal concentration, allowing to obtain the best compromise between glucose supplement, biomass production and lipid accumulation. Growth was highly enhanced in mixotrophic cultures, linked to the release of cells from sporocysts. A unique feature characterising mixotrophy in N. oleoabundans was the promotion of the maximum quantum yield of Photosystem II. Moreover, when mixotrophic cells entered the stationary phase, high lipid accumulation was induced. This study shows that the addition of glucose to N. oleoabundans remarkably increases the production of biomass enriched in lipids and represents an advancement for the cultivation of this microalga for applied purposes.  相似文献   

16.
A family of 10 competing, unstructured models has been developed to model cell growth, substrate consumption, and product formation of the pyruvate producing strain Escherichia coli YYC202 ldhA::Kan strain used in fed-batch processes. The strain is completely blocked in its ability to convert pyruvate into acetyl-CoA or acetate (using glucose as the carbon source) resulting in an acetate auxotrophy during growth in glucose minimal medium. Parameter estimation was carried out using data from fed-batch fermentation performed at constant glucose feed rates of qVG=10 mL h–1. Acetate was fed according to the previously developed feeding strategy. While the model identification was realized by least-square fit, the model discrimination was based on the model selection criterion (MSC). The validation of model parameters was performed applying data from two different fed-batch experiments with glucose feed rate qVG=20 and 30 mL h–1, respectively. Consequently, the most suitable model was identified that reflected the pyruvate and biomass curves adequately by considering a pyruvate inhibited growth (Jerusalimsky approach) and pyruvate inhibited product formation (described by modified Luedeking–Piret/Levenspiel term).List of symbols cA acetate concentration (g L–1) - cA,0 acetate concentration in the feed (g L–1) - cG glucose concentration (g L–1) - cG,0 glucose concentration in the feed (g L–1) - cP pyruvate concentration (g L–1) - cP,max critical pyruvate concentration above which reaction cannot proceed (g L–1) - cX biomass concentration (g L–1) - KI inhibition constant for pyruvate production (g L–1) - KIA inhibition constant for biomass growth on acetate (g L–1) - KP saturation constant for pyruvate production (g L–1) - KP inhibition constant of Jerusalimsky (g L–1) - KSA Monod growth constant for acetate (g L–1) - KSG Monod growth constant for glucose (g L–1) - mA maintenance coefficient for growth on acetate (g g–1 h–1) - mG maintenance coefficient for growth on glucose (g g–1 h–1) - n constant of extended Monod kinetics (Levenspiel) (–) - qV volumetric flow rate (L h–1) - qVA volumetric flow rate of acetate (L h–1) - qVG volumetric flow rate of glucose (L h–1) - rA specific rate of acetate consumption (g g–1 h–1) - rG specific rate of glucose consumption (g g–1 h–1) - rP specific rate of pyruvate production (g g–1 h–1) - rP,max maximum specific rate of pyruvate production (g g–1 h–1) - t time (h) - V reaction (broth) volume (L) - YP/G yield coefficient pyruvate from glucose (g g–1) - YX/A yield coefficient biomass from acetate (g g–1) - YX/A,max maximum yield coefficient biomass from acetate (g g–1) - YX/G yield coefficient biomass from glucose (g g–1) - YX/G,max maximum yield coefficient biomass from glucose (g g–1) - growth associated product formation coefficient (g g–1) - non-growth associated product formation coefficient (g g–1 h–1) - specific growth rate (h–1) - max maximum specific growth rate (h–1)  相似文献   

17.
CYP153A6 is a well-studied terminal alkane hydroxylase which has previously been expressed in Pseudomonas putida and Escherichia coli by using the pCom8 plasmid. In this study, CYP153A6 was successfully expressed in E. coli BL21(DE3) by cloning the complete operon from Mycobacterium sp. HXN-1500, also encoding the ferredoxin reductase and ferredoxin, into pET28b(+). LB medium with IPTG as well as auto-induction medium was used to express the proteins under the T7 promoter. A maximum concentration of 1.85?μM of active CYP153A6 was obtained when using auto-induction medium, while with IPTG induction of LB cultures, the P450 concentration peaked at 0.6–0.8?μM. Since more biomass was produced in auto-induction medium, the specific P450 content was often almost the same, 0.5–1.0?μmol P450 g DCW ?1 , for both methods. Analytical scale whole-cell biotransformations of n-octane were conducted with resting cells, and it was found that high P450 content in biomass did not necessarily result in high octanol production. Whole cells from LB cultures induced with IPTG gave higher specific and volumetric octanol formation rates than biomass from auto-induction medium. A maximum of 8.7?g octanol L BRM ?1 was obtained within 24?h (0.34?g L BRM ?1 ?h?1) with IPTG-induced cells containing only 0.20?μmol P450 g DCW ?1 , when glucose (22?g L BRM ?1 ) was added for cofactor regeneration.  相似文献   

18.
Growth of Chlorella vulgaris and its lipid production were investigated under autotrophic, heterotrophic, and mixotrophic conditions. Cheap agricultural waste molasses and corn steep liquor from industries were used as carbon and nitrogen sources, respectively. Chlorella vulgaris grew remarkably under this agricultural waste medium, which resulted in a reduction in the final cost of the biodiesel production. Maximum dry weight of 2.62 g L?1 was obtained in mixotrophic growth with the highest lipid concentration of 0.86 g L?1. These biomass and lipid concentrations were, respectively, 140% and 170% higher than autotrophic growth and 300% and 1200% higher than heterotrophic growth. In mixotrophic growth, independent or simultaneous occurrence of autotrophic and heterotrophic metabolisms was investigated. The growth of the microalgae was observed to take place first heterotrophically to a minimum substrate concentration with a little fraction in growth under autotrophic metabolism, and then the cells grew more autotrophically. It was found that mixotrophic growth was not a simple combination of heterotrophic and autotrophic growth.  相似文献   

19.
Gordonia polyisoprenivorans CCT 7137 was isolated from groundwater contaminated with leachate in an old controlled landfill (São Paulo, Brazil), and cultured in GYM medium at different concentrations of sugarcane molasses (2%, 6%, and 10%). The strain growth was analyzed by monitoring the viable cell counts (c.f.u. mL?1) and optical density and EPS production was evaluated at the end of the exponential phase and 24 h after it. The analysis of the viable cell counts showed that the medium that most favored bacterial growth was not the one that favored EPS production. The control medium (GYM) was the one that most favored the strain growth, at the maximum specific growth rate of 0.232 h?1. Differences in bacterial growth when cultured at three different concentrations of molasses were not observed. Production of EPS, in all culture media used, began during the exponential phase and continued during the growth stationary phase. The highest total EPS production, after 24 h of stationary phase, was observed in 6% molasses medium (172.86 g L?1) and 10% (139.47 g L?1) and the specific total EPS production was higher in 10% molasses medium (39.03 × 10?11 g c.f.u.?1). After the exponential phase, in 2%, 6%, and 10% molasses media, a higher percentage of free exopolysaccharides (EPS) was observed, representing 88.4%, 62.4%, and 64.2% of the total, respectively. A different result was observed in pattern medium, which presented EPS made up of higher percentage of capsular EPS (66.4% of the total). This work is the first study on EPS production by G. polyisoprenivorans strain in GYM medium and in medium utilizing sugarcane molasses as the sole nutrient source and suggests its potential use for EPS production by G. polyisoprenivorans CCT 7137 aiming at application in biotechnological processes.  相似文献   

20.
The effects of supplementing the culture medium with Mg2+ on the growth, lipid production, and fatty acid composition of Monoraphidium sp. FXY-10 were studied under photoautotrophic, heterotrophic, and mixotrophic conditions. Under the photoautotrophic condition, microalgae supplemented with 100 μM Mg2+ grew significantly better than the control group and exhibited a secondary growth state. The final cell density was 1.25-fold higher than that of the control group (2.98 g L?1), and the peak lipid content reached 59.8 % (control group 52.3 %). Culture under the heterotrophic condition did not significantly increase the growth rate, but the experimental group (100 μM Mg2+ supplementation) achieved a 37.03 % lipid content compared to 28.47 % by the control group. The lipid productivity of the experimental group (100 μM Mg2+ supplementation) was higher, reaching 65.93 mg L?1 day?1 compared with 56.10 mg L?1 day?1 for the group without additional Mg2+. Under the mixotrophic condition, the experimental group achieved a final density of 3.10 g L?1, which was higher than that of the control group (2.98 g L?1). There was also no variation in fatty acid composition between the experimental group and the control group. Under the heterotrophic and mixotrophic conditions, the experimental group produced more than 50% saturated fatty and mono-unsaturated fatty acids, and the degree of unsaturation was <137. This result was relatively lower than that of the control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号