首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Orthodontic treatment induces various biological responses, including tooth movement and remodeling of alveolar bone. Although some studies have investigated the contribution of orthodontic procedures to changes in saliva conditions, little is known about the effects of different treatment durations on the saliva proteome. To identify the discriminating protein profiles in unstimulated whole saliva of orthodontic patients with different treatment durations, we used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) combined with magnetic bead, and peptide mass fingerprints were created by scanning MS signals. Saliva samples from 40 patients (10 in each of four groups: the group without an appliance and groups under treatment for 2, 7, and 12 months) were analyzed. The results showed eight mass peaks with significant differences. Furthermore, mass peak intensities at proteins 1817.7, 2010.7, 2744 and 2710.2 Da represented a steady time-dependent increasing trend, whereas protein 4134 Da exhibited a decreasing tendency. Differential expression of the peptidome profile also occurred in the multiple comparisons, and we established a fitting model. Thus, the potential discriminating biomarkers investigated in this study reflected the complicated changes in periodontal tissues during orthodontic treatment and indicated dynamic interactions between orthodontic treatment and the saliva proteome. The results provide novel insights into alterations in salivary proteins due to different orthodontic treatment durations and may lead to the development of a therapeutic monitoring strategy for orthodontics.  相似文献   

3.
4.
5.
Sunghwan Kim  Hara Kang 《BMB reports》2013,46(11):550-554
The platelet-derived growth factor (PDGF) signaling pathway is essential for inducing a dedifferentiated state of vascular smooth muscle cells (VSMCs). Activation of PDGF inhibits smooth muscle cell (SMC)-specific gene expression and increases the rate of proliferation and migration, leading to dedifferentiation of VSMCs. Recently, microRNAs have been shown to play a critical role in the modulation of the VSMC phenotype in response to extracellular signals. However, little is known about microRNAs regulated by PDGF in VSMCs. Herein, we identify microRNA-15b (miR-15b) as a mediator of VSMC phenotype regulation upon PDGF signaling. We demonstrate that miR-15b is induced by PDGF in pulmonary artery smooth muscle cells and is critical for PDGF-mediated repression of SMC-specific genes. In addition, we show that miR-15b promotes cell proliferation. These results indicate that PDGF signaling regulates SMC-specific gene expression and cell proliferation by modulating the expression of miR-15b to induce a dedifferentiated state in the VSMCs. [BMB Reports 2013; 46(11): 550-554]  相似文献   

6.
The focal adhesion (FAK) non-receptor protein-tyrosine kinase (PTK) links both extracellular matrix/integrin and growth factor stimulation to intracellular signals promoting cell migration. Here we show that both transient and stable overexpression of the FAK C-terminal domain termed FRNK (FAK-related non-kinase) inhibits serum and platelet-derived growth factor (PDGF)-BB-induced vascular smooth muscle cell (SMC) migration in wound healing and in vitro Boyden Chamber chemotaxis assays, respectively. Expression of FRNK, but not a point mutant of FRNK (FRNK L1034S), disrupted the formation of a complex containing both FAK and the activated PDGF-beta receptor and resulted in reduced tyrosine phosphorylation of endogenous FAK at the Tyr-397 binding site for Src family PTKs. As demonstrated using FAK-deficient and FAK-reconstituted fibroblasts, FAK positively contributed to PDGF-BB-stimulated ERK2/MAP kinase activity, and in SMCs, ERK2/MAP kinase activity was required for PDGF-BB-stimulated chemotaxis. Stable expression of FRNK but not FRNK L1034S expression in SMCs lowered the extent and duration of stimulated ERK2/MAP kinase activation at low but not at high PDGF-BB concentrations. Importantly, stable expression of FRNK in SMCs did not affect SMC morphology or proliferation in culture. Because the increased migration of vascular SMCs in response to extracellular matrix proteins and growth factors contributes to neointima formation, our results show that FAK inhibition by FRNK expression may provide a novel approach to regulate abnormal vascular SMC migration in vivo.  相似文献   

7.
8.
The cyclin-dependent kinase inhibitors interact with cyclin-cdk complexes to arrest mitogen-stimulated transit through the cell cycle, but these proteins have recently been shown to have positive regulatory effects on cyclin-cdk complex activity as well. Most of the previous work in this area has focussed on the finding that overexpressed p21(Waf1/Cip1) causes growth arrest. However, mice lacking p21(Waf1/Cip1) showed normal development with no aberrancy in their cell cycles, and antisense p21(Waf1/Cip1) has only been shown to prevent cell cycle arrest, leading to the conclusion that the cyclin kinase inhibitors may not be required for cell cycle progression. We found that transfection of several lines of vascular smooth muscle cells with antisense oligodeoxynucleotide specific to p21(Waf1/Cip1) correlates with decreased cyclin D1/cdk 4, but not cyclin E/cdk 2, association, yet, unexpectedly, results in dose-dependent inhibition of platelet-derived growth factor-BB-stimulated DNA synthesis and cell proliferation. Our finding that p21(Waf1/Cip1) exhibits permissive effects on growth factor-induced vascular smooth muscle cell cycle progression, such that its presence is required for growth factor-induced proliferation, is the first such report and opens up a fertile area of research relevant to diseases involving vascular cell proliferation.  相似文献   

9.
The mechanisms that regulate the diverse responses to estrogen (E2) are unknown. Loss of function of the tuberous sclerosis 2 gene (TSC2), a tumor suppressor gene, has been associated with a growth-promoting effect of E2. We hypothesized that tuberin, the protein product of TSC2, binds to estrogen receptors (ER) and regulates the growth effect of E2. An in vivo association between full-length tuberin and ERalpha was observed in HEK 293 cells and ELT-3 smooth muscle cells. In contrast, poor association was observed between tuberin and ERbeta. Complex formation with ERalpha and the C-terminal end of tuberin was also observed in vivo and in vitro, indicating that binding between ERalpha and tuberin occurs at the C-terminal end of the tuberin molecule. We examined the effect of tuberin expression in ELT-3 smooth muscle cells on the growth response to E2. The growth-promoting effect of E2 in tuberin-null ELT-3 smooth muscle cells was ERalpha-specific, associated with up-regulation and activation of platelet-derived growth factor receptor-beta (PDGFRbeta) and activation of the signaling intermediate, extracellular signal-regulated kinase-1/-2 (ERK-1/2). In contrast, the expression of tuberin in ELT-3 smooth muscle cells resulted in significant abrogation of E2-stimulated growth. In parallel with this observation, the expression of tuberin in ELT-3 cells also resulted in significant inhibition of PDGFRbeta and ERK-1/2 activation in response to E2. These results demonstrate that tuberin binds specifically to ERalpha and inhibits E2-induced proliferation of ELT-3 cells. Furthermore, the opposing effects of tuberin on estrogen-induced activation of PDGFRbeta and ERK-1/-2 suggest a pivotal role for tuberin in directing the signaling events that dictate the growth response to E2.  相似文献   

10.
Control of the growth and differentiation of neural stem cells is fundamental to brain development and is largely dependent on the Notch signaling pathway. The mechanism by which the activity of Notch is regulated during brain development has remained unclear, however. Fbxw7 (also known as Fbw7, SEL-10, hCdc4, or hAgo) is the F-box protein subunit of an Skp1-Cul1-F-box protein (SCF)-type ubiquitin ligase complex that plays a central role in the degradation of Notch family members. We now show that mice with brain-specific deletion of Fbxw7 (Nestin-Cre/Fbxw7(F/F) mice) die shortly after birth with morphological abnormalities of the brain and the absence of suckling behavior. The maintenance of neural stem cells was sustained in association with the accumulation of Notch1 and Notch3, as well as up-regulation of Notch target genes in the mutant mice. Astrogenesis was also enhanced in the mutant mice in vivo, and the differentiation of neural progenitor cells was skewed toward astrocytes rather than neurons in vitro, with the latter effect being reversed by treatment of the cells with a pharmacological inhibitor of the Notch signaling pathway. Our results thus implicate Fbxw7 as a key regulator of the maintenance and differentiation of neural stem cells in the brain.  相似文献   

11.
Inactivation of the tumor suppressor kinase Lkb1 in mice leads to vascular defects and midgestational lethality at embryonic day 9-11 (E9-E11). Here, we have used conditional targeting to investigate the defects underlying the Lkb1(-/-) phenotype. Endothelium-restricted deletion of Lkb1 led to embryonic death at E12.5 with a loss of vascular smooth muscle cells (vSMCs) and vascular disruption. Transforming growth factor beta (TGFbeta) pathway activity was reduced in Lkb1-deficient endothelial cells (ECs), and TGFbeta signaling from Lkb1(-/-) ECs to adjacent mesenchyme was defective, noted as reduced SMAD2 phosphorylation. The addition of TGFbeta to mutant yolk sac explants rescued the loss of vSMCs, as evidenced by smooth muscle alpha actin (SMA) expression. These results reveal an essential function for endothelial Lkb1 in TGFbeta-mediated vSMC recruitment during angiogenesis.  相似文献   

12.
13.
We have reexamined the role of endogenous thrombospondin-1 (TSP1) in growth and motility of vascular smooth muscle cells (SMCs). Based on the ability of aortic-derived SMCs isolated from TSP1 null mice and grown in the absence of exogenous TSP1 to grow at comparable rates and to a slightly higher density than equivalent cells from wild-type mice, TSP1 is not necessary for their growth. Low concentrations of exogenous TSP1 stimulate growth of TSP1 null SMCs, but higher doses of TSP1 or its C-terminal domain are inhibitory. However, SMCs from TSP1 null mice are selectively deficient in chemotactic and proliferative responses to platelet-derived growth factor and in outgrowth in three-dimensional cultures. Recombinant portions of the N- and C-terminal domains of TSP1 stimulate SMC chemotaxis through different integrin receptors. Based on these data, the relative deficiency in SMC outgrowth during an ex vivo angiogenic response of muscle tissue from TSP1 null mice is probably due to restriction of platelet-derived growth factor dependent SMC migration and/or proliferation.  相似文献   

14.
Vascular smooth muscle cell (VSMC) migration from media to intima and its multiplication in intima is a contributing factor in the pathogenesis of atherosclerosis and restenosis after angioplasty. Previously, we have demonstrated that STAT-3-dependent cytosolic phospholipase A(2) (cPLA(2)) expression is needed for VSMC motility induced by platelet-derived growth factor-BB, a receptor tyrosine kinase agonist (Neeli et al. (2005) J. Biol. Chem. 279, 46122-46128). In order to learn more about the STAT-3-cPLA(2) axis in motogenic signaling, here we have studied its role in VSMC motility in response to a G protein-coupled receptor (GPCR) agonist, thrombin. Thrombin induced VSMC motility in a dose-dependent manner with a maximum effect at 0.5 units/ml. Thrombin activated STAT-3 as measured by its tyrosine phosphorylation and translocation from the cytoplasm to the nucleus. Forced expression of a dominant negative mutant of STAT-3 reduced thrombin-induced STAT-3 tyrosine phosphorylation and its translocation from the cytoplasm to the nucleus. Thrombin stimulated STAT-3-DNA binding and reporter gene activities in VSMC, and these responses were blocked by FS3DM, a dominant negative mutant of STAT-3. FS3DM also attenuated thrombin-induced VSMC motility. Thrombin induced the expression of cPLA(2) in a time- and STAT-3-dependent manner. In addition, pharmacological inhibition of cPLA(2) blocked thrombin-induced VSMC motility. Furthermore, exogenous addition of arachidonic acid rescued thrombin-induced VSMC motility from inhibition by blockade of STAT-3 activation. Forced expression of cPLA(2) also surpassed the inhibitory effect of dominant negative STAT-3 on thrombin-induced VSMC motility. Together, these results show that thrombin-induced VSMC motility requires STAT-3-dependent induction of expression of cPLA(2).  相似文献   

15.
We recently identified hepatoma-derived growth factor (HDGF) as a nuclear targeted vascular smooth muscle cell (VSM) mitogen that is expressed in developing vascular lesions. In the present study, VSM in culture express endogenous HDGF only in the nucleus and target a green fluorescent protein (GFP)-HDGF fusion to the nucleus. To define the features of the HDGF molecule that are essential for nuclear localization and mitogenic function, deletion and site-directed mutagenesis were performed. Deletion analysis identified the carboxyl-terminal half of HDGF to be responsible for nuclear targeting in VSM. Overexpression of tagged HDGF proteins with point mutations in the putative bipartite nuclear localization sequence in the carboxyl terminus demonstrated that single Lys --> Asn mutations randomized HDGF expression to both the nucleus and cytoplasm similar to the empty vector. Importantly, the Lys --> Asn mutation of all three lysines blocked nuclear entry. Point mutation of a p34(cdc2) kinase consensus motif within the nuclear localization sequence had no effect on nuclear targeting. Moreover, nuclear entry was essential for the HDGF mitogenic effect, as transfection with the triple Lys --> Asn mutant HA-HDGF significantly attenuated bromodeoxyuridine uptake when compared with transfection with wild type HA-HDGF. We conclude that HDGF contains a true bipartite nuclear localization sequence with all three lysines necessary for nuclear targeting. Nuclear targeting of HDGF is required for HDGF stimulation of DNA replication in VSM.  相似文献   

16.
We have studied the effect of transforming growth factor beta 1 (TGF-beta 1) on vascular smooth muscle cell (SMC) mitogenesis and expression of thrombospondin and other growth related genes. We found that TGF-beta 1 treatment of vascular SMC induced a prolonged increase in steady-state mRNA levels of thrombospondin as well as alpha 1 (IV) collagen. The increase began at approximately 2 h, peaked by 24 h, and remained considerably elevated 48 h after growth factor addition. There was a corresponding increase in thrombospondin protein as well as increased expression of several other secreted polypeptides. The increase in thrombospondin contrasted sharply with that observed for platelet-derived growth factor (PDGF) which induced a rapid and transient increase in thrombospondin mRNA level. Although TGF-beta 1 was able to directly enhance expression of thrombospondin as well as the growth-related genes c-fos and c-myc, and induced c-fos expression with identical kinetics as PDGF, it was unable to elicit [3H]thymidine incorporation into DNA in three independent smooth muscle cell strains. However, TGF-beta 1 was able to strongly increase the mitogenic response of SMC to PDGF. Addition of both TGF-beta 1 and PDGF to SMC also caused a synergistic increase in the expression of thrombospondin as well as c-myc. Interestingly, in one other smooth muscle cell strain, a weak and delayed mitogenic response to TGF-beta 1 alone was observed. Our results strongly suggest that induction of thrombospondin expression by TGF-beta 1 and by PDGF occurs by distinct mechanisms. In addition, that TGF-beta 1 can enhance PDGF-induced mitogenesis may be due to the ability of TGF-beta 1 to directly induce the expression of thrombospondin, c-fos, c-myc, and the PDGF beta-receptor.  相似文献   

17.
Airway smooth muscle cells exhibit phenotype plasticity that underpins their ability to contribute both to acute bronchospasm and to the features of airway remodelling in chronic asthma. A feature of mature, contractile smooth muscle cells is the presence of abundant caveolae, plasma membrane invaginations that develop from the association of lipid rafts with caveolin-1, but the functional role of caveolae and caveolin-1 in smooth muscle phenotype plasticity is unknown. Here, we report a key role for caveolin-1 in promoting phenotype maturation of differentiated airway smooth muscle induced by transforming growth factor (TGF)-β(1). As assessed by Western analysis and laser scanning cytometry, caveolin-1 protein expression was selectively enriched in contractile phenotype airway myocytes. Treatment with TGF-β(1) induced profound increases in the contractile phenotype markers sm-α-actin and calponin in cells that also accumulated abundant caveolin-1; however, siRNA or shRNAi inhibition of caveolin-1 expression largely prevented the induction of these contractile phenotype marker proteins by TGF-β(1). The failure by TGF-β(1) to adequately induce the expression of these smooth muscle specific proteins was accompanied by a strongly impaired induction of eukaryotic initiation factor-4E binding protein(4E-BP)1 phosphorylation with caveolin-1 knockdown, indicating that caveolin-1 expression promotes TGF-β(1) signalling associated with myocyte maturation and hypertrophy. Furthermore, we observed increased expression of caveolin-1 within the airway smooth muscle bundle of guinea pigs repeatedly challenged with allergen, which was associated with increased contractile protein expression, thus providing in vivo evidence linking caveolin-1 expression with accumulation of contractile phenotype myocytes. Collectively, we identify a new function for caveolin-1 in controlling smooth muscle phenotype; this mechanism could contribute to allergic asthma.  相似文献   

18.
NF-kappaB is required for TNF-alpha-directed smooth muscle cell migration.   总被引:3,自引:0,他引:3  
Migration of vascular smooth muscle cells (VSMC) is a crucial event in the formation of vascular stenotic lesions. Tumor necrosis factor-alpha (TNF-alpha) is elaborated by VSMC in atherosclerosis and following angioplasty. We investigated the role of nuclear factor-kappaB (NF-kappaB) in human VSMC migration induced by TNF-alpha. Adenoviral expression of a mutant form of the inhibitor of NF-kappaB, IkappaB-alphaM, suppressed TNF-alpha-triggered degradation of cellular IkappaB-alpha, inhibited activation of NF-kappaB, and attenuated TNF-alpha-induced migration. Further, IkappaB-alphaM suppressed TNF-alpha-stimulated release of interleukin-6 and -8 (IL-6 and IL-8). Neutralization of IL-6 and IL-8 with appropriate antibodies reduced TNF-alpha-induced VSMC migration. Addition of recombinant IL-6 and IL-8 stimulated migration. Collectively, our data provide initial evidence that TNF-alpha-mediated VSMC migration requires NF-kappaB activation and is associated with induction of IL-6 and IL-8 which act in an autocrine manner.  相似文献   

19.
Reendothelialization involves endothelial progenitor cell (EPC) homing, proliferation, and differentiation, which may be influenced by fluid shear stress and local flow pattern. This study aims to elucidate the role of laminar flow on embryonic stem (ES) cell differentiation and the underlying mechanism. We demonstrated that laminar flow enhanced ES cell-derived progenitor cell proliferation and differentiation into endothelial cells (ECs). Laminar flow stabilized and activated histone deacetylase 3 (HDAC3) through the Flk-1-PI3K-Akt pathway, which in turn deacetylated p53, leading to p21 activation. A similar signal pathway was detected in vascular endothelial growth factor-induced EC differentiation. HDAC3 and p21 were detected in blood vessels during embryogenesis. Local transfer of ES cell-derived EPC incorporated into injured femoral artery and reduced neointima formation in a mouse model. These data suggest that shear stress is a key regulator for stem cell differentiation into EC, especially in EPC differentiation, which can be used for vascular repair, and that the Flk-1-PI3K-Akt-HDAC3-p53-p21 pathway is crucial in such a process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号