首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of vesamicol analogues, o-iodo-trans-decalinvesamicol (OIDV) or o-bromo-trans-decalinvesamicol (OBDV), were synthesized and their affinities to vesicular acetylcholine transporter (VAChT) and σ receptors (σ-1, σ-2) were evaluated by in vitro binding assays using rat cerebral or liver membranes. OIDV and OBDV showed greater binding affinity to VAChT (K(i)=20.5±5.6 and 13.8±1.2nM, respectively) than did vesamicol (K(i)=33.9±18.1nM) with low affinity to σ receptors. A saturation binding assay in rat cerebral membranes revealed that [(125)I]OIDV had a single high affinity binding site with a K(d) value of 1.73nM and a B(max) value of 164.4fmol/mg protein. [(125)I]OIDV revealed little competition with inhibitors, which possessed specific affinity to each σ (σ-1 and σ-2), serotonin (5-HT(1A) and 5-HT(2A)), noradrenaline, and muscarinic acetylcholine receptors. In addition, BBB penetration of [(125)I]OIDV was verified in in vivo. The results of the binding studies indicated that OIDV and OBDV had great potential to be VAChT imaging probes with high affinity and selectivity.  相似文献   

2.
Our goal was to synthesize new stereospecific benzovesamicol analogues, which could potentially be used as SPECT or PET radioligands for the vesicular acetylcholine transporter (VAChT). This paper describes the chemical synthesis, resolution and determination of binding affinity for four enantiomeric pairs of derivatives. Their intrinsic affinities were determined by competition against binding of [3H]vesamicol to human VAChT. Of the eight enantiomers, (E)-(R,R)-5-AOIBV [(R,R)-3], and (R,R)-5-FPOBV [(R,R)-4] displayed the highest binding affinities for VAChT (Kd=0.45 and 0.77 nM, respectively), which indicated that an elongation of the chain from 5-idodo as in the case of 5-iodobenzovesamicol (5-IBVM), to a 5-(E)-3-iodoallyloxy or 5-fluoropropoxy substituent, as in 5-AOIBV and 5-FPOBV, respectively, was very well tolerated at the vesamicol binding site. The enantiomer (R,R)-4-MAIBV [(R,R)-16], which retains the basic structure of (-)-5-IBVM but possess an additional aminomethyl substituent in the 4-position of the piperidine ring, displayed lower binding affinity (Kd=8.8 nM). Nevertheless, the result suggests that substitution at this position may be an interesting alternative to investigate for development of new benzovesamicol analogues. As expected, the corresponding (S,S) enantiomers displayed lower Kd values, they were approximately 10-fold lower in the case of (S,S)-5-FPOBV (Kd=8.4 nM) and (E)-(S,S)-5-AOIBV (Kd=4.3 nM). (R,R)-3, and (R,R)-4 showed the same high affinity for VAChT as (-)-5-IBVM and may be suitable as imaging agents of cholinergic nerve terminals.  相似文献   

3.
The sciatic nerve, as a part of the peripheral nervous system (PNS), has been used to study axonal transport for decades. It contains motor, sensory as well as autonomic axons. The present study has concentrated on the axonal transport of the synaptic vesicle acetylcholine transporter (VAChT), using the "stop–flow\erve crush” method. After blocking fast axonal transport by means of a crush, distinct accumulations of various synaptic vesicle proteins, including VAChT, and peptides developed during the first hour after crush–operation and marked increases were observed up to 8 h post–operative. Semiquantitative analysis, using cytofluorimetric scanning (CFS) of immuno–incubated sections, revealed a rapid rate of accumulation proximal to the crush, and that the ratio between distal accumulations (organelles in retrograde transport) and proximal accumulations (organelles in anterograde transport) was about 40%. Most synaptic vesicle proteins were colocalized in the axons proximal to the crush. VAChT–immu–noreactive axons were also immunoreactive for choline acetyltransferase (ChAT). Autonomic axons with VAChT also contained VIP–LI.

The results demonstrate (1) that VAChT, as well as other synaptic vesicle proteins, is transported with fast axonal transport in motor axons as well as in autonomic post–ganglionic neurons in this nerve, (2) VAChT colocalized in motor axons with SV1 as well as with synaptophysin, indicating storage in the same axonal particle, (3) in the autonomic postganglionic sympathetic cholinergic fibres, VAChT colocalized with VIP, but VIP–LI was present in rather large granular structures while VAChT–LI was present mostly as small granular elements, (4) in motor as well as in autonomic axons ChAT–LI was present in VAChT–positive axons, and (4) the ratio of recycling (retrogradely accumulated) VAChT–IR was about 40%, in contrast to the recycling fraction of synaptophysin that was about 70%. © 1998 Elsevier Science Ltd. All rights reserved.  相似文献   


4.
As dysfunction of cerebral cholinergic neurotransmission is one of the main features in patients with Alzheimer's disease, in vivo imaging of the vesicular acetylcholine transporter (VAChT) can be of great value for the early diagnosis of this disease. Two series of positional isomers of m-iodobenzyltrozamicol (MIBT): 3-hydroxy-4-(N-phenylpiperazinyl)piperidine and 4-hydroxy-3-(N-phenylpiperazinyl)piperidine substituted by benzyl, aryl, alkyl or vinyl groups at the nitrogen have been synthesized. These compounds have been evaluated in vitro by competition studies and five compounds (N-benzyl derivatives) showed high affinity for the VAChT (11nM相似文献   

5.
To identify selective high-affinity ligands for the vesicular acetylcholine transporter (VAChT), we have incorporated a carbonyl group into the structures of trozamicol and prezamicol scaffolds, and also converted the secondary amines of the piperidines of trozamicols and prezamicols into amides. Of 18 new racemic compounds, 4 compounds displayed high affinity for VAChT (K(i)=10-20 nM) and greater than 300-fold selectivity for VAChT over σ(1) and σ(2) receptors, namely (4-(4-fluorobenzoyl)-4'-hydroxy-[1,3'-bipiperidin]-1'-yl)(3-methylthiophen-2-yl)methanone oxalate (9g) (K(i-VAChT)=11.4 nM, VAChT/σ(1)=1063, VAChT/σ(2)=370), (1'-benzoyl-4'-hydroxy-[1,3'-bipiperidin]-4-yl)(4-methoxyphenyl)methanone oxalate (10c) (K(i-VAChT)=15.4 nM, VAChT/σ(1)=374, VAChT/σ(2)=315), (4'-hydroxy-1'-(thiophene-2-carbonyl)-[1,3'-bipiperidin]-4-yl)(4-methoxyphenyl)methanone oxalate (10e) (K(i-VAChT)=19.0 nM, VAChT/σ(1)=1787, VAChT/σ(2)=335), and (4'-hydroxy-1'-(3-methylthiophene-2-carbonyl)-[1,3'-bipiperidin]-4-yl)(4-methoxyphenyl)methanone oxalate (10g) (K(i-VAChT)=10.2 nM, VAChT/σ(1)=1500, VAChT/σ(2)=2030). These four compounds can be radiosynthesized with C-11 or F-18 to validate their possibilities of serving as PET probes for quantifying the levels of VAChT in vivo.  相似文献   

6.
The dopamine transporter (DAT) plays a pivotal role in the regulation of dopamine neurotransmission, and is involved in a number of physiological functions and brain disorders. Furthermore the DAT analysis by molecular imaging techniques is a useful tool for the diagnosis and follow up treatment of diseases involving the DAT. In order to predict the affinity of new derivatives for the DAT, different QSAR molecular modeling models based on cocaine were compared. We have evaluated in these models tropane derivatives synthesized with original synthons which coupled properties of both fluorine and iodine atoms. One compound showed a high in vitro affinity and selectivity for the DAT (K(i)=0.87±0.04 nM). This compound should be radiolabeled with radioiodine for further investigations by SPECT.  相似文献   

7.
The synthesis of NPTS, 6, a potent inhibitor of the type 1 glycine transporter (GlyT1) is described, as well as preparation of 6 in optically active and tritiated form for use as a radioligand for affinity displacement assay of GlyT1.  相似文献   

8.
Six novel target compounds 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT) based fibrates were synthesized and evaluated. All the synthesized compounds were preliminarily screened by using the Triton WR-1339-induecd hyperlipidemia model, in which T1 exhibited more potent hypolipidemic property than positive drug fenofibrate (FF). T1 also significantly decreased serum triglycerides (TG), total cholesterol (TC) and low density lipoprotein cholesterin (LDL) in methionine solution (Mets) induced hyperlipidemic mice. Moreover, hepatic transaminases (AST and ALT) were obviously ameliorated after treatment with T1 and the histological observation indicated that T1 ameliorated the injury in liver tissue and inhibited the hepatic lipid accumulation. In the livers of T1-administrated rat, the levels of PPARα related to lipids metabolism were up-regulated. Additional effects such as antioxidant, anti-inflammatory and H2S releasing action confirmed and reinforced the activity of T1 as a potential multifunctional hypolipidemic and hepatoprotective agent.  相似文献   

9.
In order to predict affinity of new diphenylsulfides for the serotonin transporter (SERT), a molecular modeling model was used to compare potential binding affinity of new compounds with known potent ligands. The aim of this study is to identify a suitable PET radioligand for imaging the SERT, new derivatives, and their precursors for a C-11 or F-18 radiolabeling, were synthesized. Two fluorinated derivatives displayed good in vitro affinity for the SERT (K(i)=14.3+/-1 and 10.1+/-2.7 nM) and good selectivity toward the other monoamine transporters as predicted by the docking study.  相似文献   

10.
5-Methyl-6-nitroquipazine, a novel analogue of the potent and selective serotonin transporter inhibitor 6-nitroquipazine was synthesized and radiolabeled with tritium and the positron emitter carbon-11. [3H]5-methyl-6-nitroquipazine was found to have a Kd=51±7 pM. The high affinity and the facile labeling of [11C]5-methyl-6-nitroquipazine makes it a promising radioligand for visualization of the serotonin transporter with positron emission tomography.  相似文献   

11.
Detection of the central cholinergic deficits, a consistent feature of Alzheimer's disease, is essential to allow preventive measures and/or symptomatic treatment already at a very early stage of the disease. The vesicular acetylcholine transporter (VAChT) represents an appropriate target to establish PET radiotracer that are adequate for brain imaging the loss of cholinergic terminals. Here we describe the synthesis and binding characteristics of novel derivatives of vesamicol, known to represent a specific antagonist of VAChT sites. Novel benzyl ether derivatives of vesamicol either 4- or 5-substituted at the cyclohexylring have been synthesized by different regioselective ring opening reactions of a same epoxide precursor. The affinity and selectivity of the novel compounds to VAChT sites were analyzed by competitive radioligand binding studies in rat brain and liver membrane preparations using tritium labeled radioligands. The 4-substituted fluorobenzylether of vesamicol 10b was shown to exhibit a high affinity to VAChT sites (K(i)-value(10b)=10.7+/-1.7 nM), but demonstrated also binding capacities to sigma receptors (K(i-)value(10b)=18.5+/-6.9 nM, [(3)H]DTG; K(i)-value(10b)=30.6+/-9.6 nM, [(3)H]haloperidol). The data suggest the potential of vesamicol derivatives to design appropriate radiotracer for PET imaging of central cholinergic deficits.  相似文献   

12.
A series of 4-(6-(3-nitroguanidino)hexanamido)pyrrolidine derivatives were synthesized and evaluated for their abilities to inhibit inducible nitric oxide synthase (iNOS) isoform. All target compounds were prepared in 11 steps from commercially trans-4-hydroxy-L-proline. The preliminary pharmacological test showed that three compounds, 17, 21, and 30, have the good potency (IC(50)=2.36, 2.68, 2.5 microM, respectively) which are compared to the NOS inhibitor N(G)-nitroarginine(L-NNA) (IC(50)=14.74 microM), and could be used as lead compounds for exploring new iNOS inhibitors in the future.  相似文献   

13.
Six new (S,S)-enantiomers of reboxetine derivatives were synthesized and their binding affinities were determined via competition binding assays in cells expressing the human norepinephrine transporter (NET), serotonin transporter (SERT) or dopamine transporter (DAT). All six compounds prepared exhibit high affinity for the NET (K(i)相似文献   

14.
Forty four di- or trisubstituted novel isatin derivatives were designed and synthesized in 5–6 steps in 25–45% overall yields. Their structures were confirmed by 1H NMR and 13C NMR as well as LC–MS. The anticancer activity of these new isatin derivatives against three human tumor cell lines, K562, HepG2 and HT-29, were evaluated by MTT assay in vitro. SAR studies suggested that the combination of 1-benzyl and 5-[trans-2-(methoxycarbonyl)ethen-1-yl] substitution greatly enhance their cytotoxic activity, whereas an intact carbonyl functionality on C-3 as present in the parent ring is required to such a potency. This study leads to the identification of two highly active molecules, compounds 2h (IC50 = 3 nM) and 2k (IC50 = 6 nM), against human leukemia K562 cells.  相似文献   

15.
A novel series of tropane derivatives containing a fluorinated tertiary amino or amide at the 2β position was synthesized, labeled with the positron-emitter fluorine-18 (t(1/2)=109.8 min), and tested as potential in vivo dopamine transporter (DAT) imaging agents. The corresponding chlorinated analogs were prepared and employed as precursors for radiolabeling leading to the fluorine-18-labeled derivatives via a one-step nucleophilic aliphatic substitution reaction. In vitro binding results showed that the 2β-amino compounds 6b, 6d and 7b displayed moderately high affinities to DAT (K(i)<10nM). Biodistribution studies of [(18)F]6b and [(18)F]6d showed that the brain uptakes in rats were low. This is likely due to their low lipophilicities. Further structural modifications of these tropane derivatives will be needed to improve their in vivo properties as DAT imaging agents.  相似文献   

16.
Cancer is a major killer disease throughout human history. Thus, cancer becomes a major point of interest in life science. It was proved that cancer is a nitrogen trap and tumor cells are avid glutamine consumers. The non-essential amino acid glutamine, which is a glutamic acid derivative, supplies its amide nitrogen to tumor cells in the biosynthesis of purine and pyrimidine bases of nucleic acids as well as takes part in protein synthesis. Based on these and in continuation of our composite programme of development of new potential anticancer agents through rational drug design, 17 new 5-N-Substituted-2-(substituted benzenesulphonyl) glutamines were selected for synthesis. These compounds as well as 36 earlier synthesized glutamine analogues were screened for antitumor activity using percentage inhibition of tumor cell count as the activity parameter. QSAR study was performed with 53 compounds in order to design leads with increased effectiveness for antitumor activity using both physicochemical and topological parameters. QSAR study showed that steric effect on the aromatic ring is conducive to the activity. n-butyl substitution on aliphatic side chain and atom no 12 is important for antitumor activity of glutamine analogues.  相似文献   

17.
18.
A simple and efficient synthesis of nAChR antagonist (+/-)-7-methyl-2-exo-(3'-iodo-5'-pyridinyl)-7-azabicyclo[2.2.1]-heptane ((+/-)-NMI-EPB) has been developed. Both enantiomers of (+/-)-NMI-EPB were separated by semi-preparative chiral HPLC. The enantiomers manifested a substantial difference in their inhibition binding affinities ((+)-NMI-EPB, K(i)=2310, 1680 pM; (-)-NMI-EPB, K(i)=55, 68 pM). The enantiomers were stereoselectively radiolabeled with (11)C. In the distribution studies in the rodent brain [(11)C](-)-NMI-EPB specifically labeled nAChR whereas [(11)C](+)-NMI-EPB exhibited little specific binding. In the baboon PET study [(11)C](-)-NMI-EPB did not reach steady-state within 90 min post-injection suggesting that the radioligand may have some limitations for quantitative imaging.  相似文献   

19.
A series of novel dioxin-containing triaryl pyrazoline derivatives C1C20 have been synthesized. Their B-Raf inhibitory and anti-proliferation activities were evaluated. Compound C6 displayed the most potent biological activity against B-RafV600E and WM266.4 human melanoma cell line with corresponding IC50 value of 0.04 μM and GI50 value of 0.87 μM, being comparable with the positive controls and more potent than our previous best compounds. Moreover, C6 was selective for B-RafV600E from B-RafWT, C-Raf and EGFR and low toxic. The docking simulation suggested the potent bioactivity might be caused by breaking the limit of previous binding pattern. A new 3D QSAR model was built with the activity data and binding conformations to conduct visualized SAR discussion as well as to introduce new directions. Stretching the backbone to outer space or totally reversing the backbone are both potential orientations for future researches.  相似文献   

20.
Based on the structure of HIV-1 gp41 binding site for small-molecule inhibitors, optimization of lead 2 resulted in the discovery of a new series of 2,5-dimethyl-3-(5-(N-phenylrhodaninyl)methylene)-N-(3-(1H-tetrazol-5-yl)phenyl)pyrrole compounds with improved anti-HIV-1 activity. The most active compounds 13a and 13j exhibited significant potency against gp41 6-HB formation with IC(50) values of 4.4 and 4.6 μM and against HIV-1 replication in the MT-2 cells with EC(50) values of 3.2 and 2.2 μM, respectively, thus providing a new starting point to develop highly potent small-molecule HIV fusion inhibitors targeting gp41.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号