首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complementary chromatic adaptation, a photomorphogenetic response, known to occur in many cyanobacteria, enables them to efficiently absorb prevalent wavelengths of light in the environment. In the present study, we have described the influence of light on phycobiliprotein production in three marine phycoerythrin producing cyanobacterial cultures, namely, Lyngbya sp. A09DM, Phormidium sp. A27DM and Halomicronema sp. A32DM. A comparative study (UV-visible overlay spectra and SDS-PAGE analyses) of phycobiliproteins purified from all the three cultures grown in white, yellow, red and green lights has been confirmed. White light was taken as control. Red and green lights were taken to check their effect on phycocyanin and phycoerythrin production, respectively. Yellow light was studied as its wavelength falls in between green and red light. Lyngbya sp. A09DM was found to be the best chromatically adapting cyanobacterium followed by Halomicronema sp. A32DM. These two cultures can be placed in group III chromatic adaptors. Phormidium sp. A27DM was the least chromatically adapting culture and can be placed in group II chromatic adaptors. The study signifies that even light plays an important role along with nutrient availability in adapting cultures to changing environmental conditions.  相似文献   

2.
The present paper describes an efficient single step chromatographic method for purification of C-Phycocyanin from three cyanobacterial species, i.e., Spirulina sp. (freshwater), Phormidium sp. (marine water) and Lyngbya sp. (marine water). C-Phycocyanin from these cyanobacterial species was purified to homogeneity and some of their properties were investigated. The purification involves a multistep treatment of the crude extract by fractional precipitation with ammonium sulfate, followed by ion-exchange chromatography on DEAE-Sepharose CL-6B column. Pure C-Phycocyanin was finally obtained from Spirulina, Phormidium, and Lyngbya spp. with purity ratio (A620/A280) 4.42, 4.43, and 4.59, respectively, further the purity and homogeneity were confirmed by native and SDS-PAGE. The estimated molecular weights of purified C-PC from Spirulina, Phormidium, and Lyngbya spp. were 112, 131, and 81 kDa, respectively. SDS-PAGE of pure C-Phycocyanin yielded two bands corresponding to alpha and beta subunits. The results of SDS-PAGE demonstrate the same molecular weight of beta subunits (24.4 kDa) for all the three cyanobacterial species, whereas the molecular weight of the alpha subunit is different for all (17 kDa Spirulina sp., 19.1 kDa Phormidium sp., 15.2 kDa Lyngbya sp.). Thus, the C-Phycocyanin was characterized as (alphabeta)3 for Spirulina and Phormidium spp., while as (alphabeta)2 for Lyngbya sp.  相似文献   

3.
《Process Biochemistry》2014,49(10):1757-1766
The present study probes into the purification of phycobiliproteins, and characterization of their in vitro anti-oxidant activity. Moreover, the study also demonstrates the use of antioxidant virtue of phycoerythrin in moderating the phenomenon of aging in Caenorhabditis elegans. Phycoerythrin, phycocyanin and allophycocyanin were purified successfully from Lyngbya sp. A09DM by ammonium sulfate fractionation appended with Triton X-100 intercession. The success of protocol was examined by a series of biochemical characterization like SDS-PAGE, native-PAGE, UV–visible spectroscopy and fluorescence spectroscopy ensuring purity, integrity and functionality of purified phycoerythrin, phycocyanin and allophycocyanin. Purified phycobiliproteins were evaluated for antioxidant and metal ion chelating activity by various in vitro antioxidant assay systems. Results showed significant and dose-dependent antioxidant as well as metal chelating potential of all phycobiliproteins in decreasing order of phycoerythrin > phycocyanin > allophycocyanin. Expansion in lifespan and improvement in pharyngeal pumping of C. elegans were noticed upon pre-treatment with phycoerythrin (100 μg ml−1). Moreover, phycoerythrin mediated increase in worm survival under oxidative stress revealed that the life expansion effect of phycoerythrin on nematode is in part by an action of its antioxidant virtue. These results collectively added up evidence in favor of the ‘free-radical theory of aging’. The present report, for the first time, describes antioxidant potential of phycoerythrin and its use in extending life-span of C. elegans.  相似文献   

4.
5.
Summary Rhodomonas sp. was grown in a photo-bioreactor equipped with a measuring cell in a spectrophotometer as part of an external flow loop. The apparent absorbance from 400 to 800 nm of the cell suspension was recorded at predetermined intervals and stored in a computer. From the spectra, the biomass and the concentrations of the two pigments chlorophyll a and phycoerythrin were determined in nitrogen-limited batch cultures.  相似文献   

6.
The structure and function of phycobilisomes in the rhodophyte Porphyridium sp. were investigated by comparing the properties of the wild type with a pigment mutant called C12. When grown under low light, cells of C12 were bright orange, while wild-type cells were deep red. The results obtained from a characterization of purified phycobilisomes of the mutant C12 led us to propose the existence in Porphyridium sp. phycobilisomes of two types of rods, some containing only phycoerythrin and others containing phycoerythrin bound to phycocyanin, which is in turn linked to the core by the linker LRC. By studying the partitioning of phycobiliproteins between phycobilisomes and pools of free phycobiliproteins, we found that phycocyanin in the C12 mutant was only present in the pool of free proteins and that its specific linker, LRC, was totally absent. Phycoerythrin was present in the free pool and in the purified phycobilisomes as well. One of the three specific phycoerythrin linkers γ was missing. In light of the fact that in the C12 mutant, the linker LRC is absent and that there is no phycocyanin bound to the phycobilisomes, we propose that the rods in the mutant contain only phycoerythrin. These phycobilisomes are nevertheless functional and exhibit an efficient excitation transfer from phycoerythrin directly to allophycocyanin. Electron microscopy showed the purified phycobilisomes of C12 to be less dense than those of the wild type. This change was attributed to the disappearance of the rods containing the combination phycocyanin/phycoerythrin. Light still regulates phycobiliprotein synthesis in the mutant, as shown by the change in the color of the culture, which turned green-yellow when cells were shifted from low light to high light growth conditions. Light also regulates the structure of the phycobilisomes, which have fewer rods under high light growth conditions.  相似文献   

7.
Summary The phycoerythrins from Rhodomonas sp. strain 3-C and Cryptomonas ovata var. palustris were purified and partially characterized. The phycoerythrin from Rhodomonas had a single visible absorption maximum at 542 nm with a shoulder at approximately 562 nm and is, therefore, representative of cryptophyte type I phycoerythrin. The phycoerythrin from C. ovata var. palustris had a single absorption maximum at 566 nm and is, therefore, representative of cryptophyte type III phycoerythrin. Calibrated gel filtration chromatography showed that both of these phycoerythrins have a native molecular weight of 30 800 daltons. Calibrated sodium dodecyl sulfate gel electrophoresis demonstrated that both pigments were composed of two subunits with apparent molecular weights of 17 700 and 11 000 daltons. On polyacrylamide gel electrofocusing both these phycoerythrins had an isoionic point of 4.90.  相似文献   

8.
Red algae of the species Porphyridium cruentum were grown in a minimum sulfate medium containing 35SO42-. 35S-labeled phycoerythrin was extracted. B Phycoerythrin, b phycoerythrin and R phycocyanin could be separated from other proteins by using a carrier-free electrophoresis on columns. The final ratio A545/A280 of B phycoerythrin thus obtained was greater than or equal to 5. 35S-labeled B phycoerythrin was digested proteolytically with trypsin and pepsin. The resulting 35S-containing bilipeptides were separated by isoelectric focusing. Zones of enhanced chromophore concentration always showed an enhanced radioactivity. Peptide fractions with a low molar ratio sulfur/chromophore (1.1-1.8) were purified to remove sucrose and the carrier ampholyte. A modified, optimized Edman degradation followed. A butylacetate-soluble, red Edman product was obtained that contained most of the chromophore and the bulk of the radioactivity. This product was purified by two-dimensional thin-layer chromatography. The main spot of the chromatogram was subjected to acidic hydrolysis. The major part of the radioactivity in the hydrolysate cochromatographed with cysteine. That proves cysteine to be the binding amino acid in all cases investigated.  相似文献   

9.
Three efficient Cr(VI) reducing bacterial strains were isolated from Cr(VI) polluted landfill and characterized for in vitro Cr(VI) reduction. Phylogenetic analysis using 16S rRNA gene sequencing revealed that the newly isolated strains G1DM20, G1DM22 and G1DM64 were closely related to Bacillus cereus, Bacillus fusiformis and Bacillus sphaericus, respectively. The suspended cultures of all Bacillus sp. exhibited more than 85% reduction of 1000 microM Cr(VI) within 30 h. The suspended culture of Bacillus sp. G1DM22 exhibited an ability for continuous reduction of 100 microM Cr(VI) up to seven consecutive inputs. Assays with the permeabilized cells and cell-free extracts from each of Bacillus sp. demonstrated that the hexavalent chromate reductase activity was mainly associated with the soluble fraction of cells and expressed constitutively. The Cr(VI) reduction by the cell-free extracts of Bacillus sp. G1DM20 and G1DM22 was maximum at 30 degrees C and pH 7 whereas, Bacillus sp. G1DM64 exhibited maximum Cr(VI) reduction at pH 6. Addition of 1mM NADH enhanced the Cr(VI) reductase activity in the cell-free extracts of all three isolates. Amongst all three isolates tested, crude cell-free extracts of Bacillus sp. G1DM22 exhibited the fastest Cr(VI) reduction rate with complete reduction of 100 microM Cr(VI) within 100 min. The apparent K(m) and V(max) of the chromate reductase activity in Bacillus sp. G1DM22 were determined to be 200 microM Cr(VI) and 5.5 micromol/min/mg protein, respectively. The Cr(VI) reductase activity in cell-free extracts of all the isolates was stable in presence of different metal ions tested except Hg(2+) and Ag(+).  相似文献   

10.
Phycoerythrin, a chromoprotein, from the cryptomonad alga Rhodomonas lens is composed of two pairs of nonidentical polypeptides (α2β2). This structure is indicated by a molecular weight of 54,300, calculated from osmotic pressure measurements and by sodium dodecyl sulfate (SDS) gel electrophoresis, which showed bands with molecular weights of 9800 and 17,700 in a 1:1 molar ratio. The s20,w0 of 4.3S is consistent with a protein of this molecular weight. Similar results were obtained with another cryptomonad phycoerythrin and a cryptomonad phycocyanin. Electrophoresis after partial cross-linking by dimethyl suberimidate revealed seven bands for the cryptomonad phycocyanin and six bands for cryptomonad phycoerythrin and confirmed the proposed structure. Spectroscopic studies on α and β subunits of cryptomonad phycocyanin and phycoerythrin were carried out on the separated bands in SDS gels. The individual polypeptides possessed a single absorption band with the following maxima: phycoerythrin (R. lens), α at 565 nm, β at 531 nm; phycocyanin (Chroomonas sp.), α at 644 nm, β at 566 nm. Fluorescence polarization was not constant across the visible absorption band regions of phycoerythrin (R. lens and C. ovata) with higher polarizations located at higher wavelengths, as had also been previously shown for cryptomonad phycocyanin (Chroomonas sp.). Combining the absorption spectra and the polarization results indicates that in each case the β subunit contains sensitizing chromophores and the α subunit fluorescing chromophores. The CD spectra of cryptomonad phycocyanin and both phycoerythrins were similar and were related to the spectra of the individual subunits. In Ouchterlony double-diffusion experiments the cryptomonad phycoerythrins and phycocyanins cross-reacted, with spurring, with phycoerythrin isolated from a red alga. The cryptomonad phycoerythrins were immunochemically very similar to each other and to cryptomonad phycocyanin, with little spurring detected.  相似文献   

11.
A spontaneous, stable, pigmentation mutant of Nostoc sp. strain MAC was isolated. Under various growth conditions, this mutant, R-MAC, had similar phycoerythrin contents (relative to allophycocyanin) but significantly lower phycocyanin contents (relative to allophycocyanin) than the parent strain. In saturating white light, the mutant grew more slowly than the parent strain. In nonsaturating red light, MAC grew with a shorter generation time than the mutant; however, R-MAC grew more quickly in nonsaturating green light.

When the parental and mutant strains were grown in green light, the phycoerythrin contents, relative to allophycocyanin, were significantly higher than the phycoerythrin contents of cells grown in red light. For both strains, the relative phycocyanin contents were only slightly higher for cells grown in red light than for cells grown in green light. These changes characterize both MAC and R-MAC as belonging to chromatic adaptation group II: phycoerythrin synthesis alone photocontrolled.

A comparative analysis of the phycobilisomes, isolated from cultures of MAC and R-MAC grown in both red and green light, was performed by polyacrylamide gel electrophoresis in the presence of 8.0 molar urea or sodium dodecyl sulfate. Consistent with the assignment of MAC and R-MAC to chromatic adaptation group II, no evidence for the synthesis of red light-inducible phycocyanin subunits was found in either strain. Phycobilisomes isolated from MAC and R-MAC contained linker polypeptides with relative molecular masses of 95, 34.5, 34, 32, and 29 kilodaltons. When grown in red light, phycobilisomes of the mutant R-MAC appeared to contain a slightly higher amount of the 32-kilodalton linker polypeptide than did the phycobilisomes isolated from the parental strain under the same conditions. The 34.5-kilodalton linker polypeptide was totally absent from phycobilisomes isolated from cells of either MAC or R-MAC grown in green light.

  相似文献   

12.
The unicellular cyanobacterium Synechocystis sp. strain 6701 was mutagenized with UV irradiation and screened for pigment changes that indicated genetic lesions involving the light-harvesting proteins of the phycobilisome. A previous examination of the pigment mutant UV16 showed an assembly defect in the phycocyanin component of the phycobilisome. Mutagenesis of UV16 produced an additional double mutant, UV16-40, with decreased phycoerythrin content. Phycocyanin and phycoerythrin were isolated from UV16-40 and compared with normal biliproteins. The results suggested that the UV16 mutation affected the alpha subunit of phycocyanin, while the phycoerythrin beta subunit from UV16-40 had lost one of its three chromophores. Characterization of the unassembled phycobilisome components in these mutants suggests that these strains will be useful for probing in vivo the regulated expression and assembly of phycobilisomes.  相似文献   

13.
Synechocystis 6701 phycobilisomes consist of a core of three cylindrical elements in an equilateral array from which extend in a fanlike manner six rods, each made up of three to four stacked disks. Previous studies (see Gingrich, J. C., L. K. Blaha, and A. N. Glazer, 1982. J. Cell Biol. 92:261-268) have shown that the rods consist of four disk-shaped complexes of biliproteins with "linker" polypeptides of 27-, 33.5-, 31.5-, and 30.5-kdaltons, listed in order starting with the disk proximal to the core: phycocyanin (alpha beta)6-27 kdalton, phycocyanin (alpha beta)6-33.5 kdalton, phycoerythrin (alpha beta)6- 31.5 kdalton, phycoerythrin (alpha beta)6-30.5 kdalton, where alpha beta is the monomer of the biliprotein. Phycoerythrin complexes of the 31.5- and 30.5-kdalton polypeptides were isolated in low salt. In 0.05 M K-phosphate-1 mM EDTA at pH 7.0, these complexes had the average composition (alpha beta)2-31.5 and (alpha beta)-30.5 kdalton polypeptide, respectively. Peptide mapping of purified 31.5- and 30.5- kdalton polypeptides showed that they differed significantly in primary structure. In 0.65 M Na-K-phosphate at pH 8, these phycoerythrin complexes formed rods of stacked disks of composition (alpha beta)6- 31.5 or (alpha beta)6-30.5 kdaltons. For the (alpha beta)-30.5 kdalton complex, the yield of rod assemblies was variable and the self- association of free phycoerythrin to smaller aggregates was an important competing reaction. Complementation experiments were performed with incomplete phycobilisomes from Synechocystis 6701 mutant strain CM25. These phycobilisomes are totally lacking in phycoerythrin and the 31.5- and 30.5-kdalton polypeptides, but have no other apparent structural defects. In high phosphate at pH 8, the phycoerythrin-31.5- kdalton complex formed disk assemblies at the end of the rod substructures of CM25 phycobilisomes whereas no interaction with the phycoerythrin-30.5 kdalton complex was detected. In mixtures of both the phycoerythrin-31.5 and -30.5 kdalton complexes with CM25 phycobilisomes, both complexes were incorporated at the distal ends of the rod substructures. The efficiency of energy transfer from the added phycoerythrin in complemented phycobilisomes was approximately 96%. The results show that the ordered assembly of phycoerythrin complexes seen in phycobilisomes is reproduced in the in vitro assembly process.  相似文献   

14.
C-phycoerythrin was isolated and purified from marine Pseudanabaena sp. using two step chromatographic methods. Phycobiliproteins in the marine Pseudanabaena was extracted in 100 mM phosphate buffer (pH 7.2) and precipitated by salting out. The precipitated C-phycoerythrin was purified by gel filtration with Sephadex G-150, and then it was purified by ion exchange chromatography on DEAE cellulose, which was developed by linear ionic strength gradients. Purified phycoerythrin showed absorption maxima at 568 and 541 nm, and displayed a fluorescence maximum at 578 nm. The absorbance ratio A???/A???, a criterion for purity (purity ratio) achieved was 6.86. It showed a single band on examination by polyacrylamide gel electrophoresis (PAGE). The polypeptide analysis of the purified C-phycoerythrin by SDS-PAGE demonstrated that it contained two chromophore-carrying subunits. The yield of purified C-phycoerythrin obtained was 13.6 mg/g of the cell dry weight with 47% of yield. Obtaining highly pure C-phycoerythrin allows one to evaluate its fluorescence properties for future applications in biochemical and biomedical research.  相似文献   

15.
The genes for the alpha and beta subunits of a novel six bilin-bearing (class II) phycoerythrin were cloned from Synechococcus sp. WH8020 and sequenced. The cloned genes (mpeA and mpeB) were detected by homology with the genes for C-phycoerythrin from Pseudanabaena sp. PCC7409. The mpe locus occurs once in the genome and is arranged similarly to that of many other phycobiliproteins, with mpeA shortly 3' of mpeB. Sequence comparison suggests that this phycoerythrin (and perhaps all class II phycoerythrins) occupy a branch of the phycoerythrin family separate from five-chromophore per alpha beta (class I) phycoerythrins, C-phycoerythrin, and B-phycoerythrin. The position of the sixth chromophore of the class II phycoerythrin of WH8020 was determined by comparison of the amino acid sequence of the chromopeptides (Ong, L. J., and Glazer, A. N. (1991) J. Biol Chem. 266, 9515-9527) with the sequence deduced from the gene. This located the chromophore at residue 75 of the alpha subunit, very close to the alpha-83 chromophore in the primary structure and, presumably, in the three-dimensional structure.  相似文献   

16.
The genetic diversity and phylogenetic position of 10 strains of picocyanobacteria from the Arabian Sea were examined using partial sequences from three loci: 16S rDNA, RNA polymerase rpoC1, and two elements of the phycoerythrin (PE) locus, cpeA and cpeB which encode for the α and β subunit of PE. Nine of the strains showed nearly identical spectral phenotypes based on the in vivo excitation spectrum for PE fluorescence emission and appear to be strains synthesizing a phycourobilin (PUB)–lacking PE. These strains include one, Synechococcus sp. G2.1, already known to be closely related to filamentous cyanobacteria and not to the commonly studied 5.1 subcluster of marine Synechococcus. The 10th strain was a PE‐lacking strain that was of interest because it was isolated from open‐ocean conditions where picocyanobacteria with this phenotype are relatively uncommon. Phylogenetic analysis of the concatenated 16S rDNA and rpoC1 data sets showed that none of the previously described strains were members of the 5.1 subcluster of marine Synechococcus, nor were they closely related to strain G2.1. Instead, they form a well‐supported and previously undescribed clade of cyanobacteria that is sister to Cyanobium. Thus, these strains represent the first PE‐containing Cyanobium from oceanic waters, and the lineage they define includes a strain with a PE‐lacking phenotype from the same environment. Analysis of the PE sequence data showed the PE apoprotein has evolved independently in the G2.1 lineage and the Cyanobium‐like lineage represented by the study strains. It also revealed a hypervariable region of the β‐subunit not described previously; variation in this region shows a pattern among a wide range of PE‐containing organisms congruent with the phylogenetic relationships inferred from other genes. This suggests that the PUB‐lacking spectral phenotype is more likely to have evolved in distantly related phylogenetic lineages by either divergent or convergent evolution than by lateral gene transfer. Both the conserved PE gene sequences and the inferred amino acid sequences for the hypervariable region show considerable divergence among Prochlorococcus PEs, red algal PEs, PUB‐containing PEs from the marine Synechococcus 5.1 subcluster, PEs from the Cyanobium‐like strains, and PEs from other cyanobacteria (including strain G2.1). Thus, it appears that the hypervariable region of the PE gene can be used as a taxon‐specific marker.  相似文献   

17.
An on‐line, laser photo‐acoustic, trace gas detection system in combination with a stepper motor‐controlled monochromator was used to record semicontinuous light action spectra of nitrogenase activity in heterocystous cyanobacteria. Action spectra were made of cultures of Nodularia spumigena Mertens ex Bornet & Flahault, Aphanizomenon flos‐aquae Ralfs ex Bornet & Flahault, and Anabaena sp. and from field samples of a cyanobacterial bloom in the Baltic Sea. Nitrogenase activity was stimulated by monochromatic light coinciding the red and blue peaks of chl a, the phycobiliproteins phycocyanin (allophycocyanin) and phycoerythrin, and several carotenoids. Because nitrogenase is confined to the heterocyst, it was concluded that all photopigments must have been present in these cells, were involved in light harvesting and photosynthesis, and supplied the energy for N2 fixation. The species investigated showed marked differences in their nitrogenase action spectra, which might be related to their specific niches and to their success in cyanobacterial blooms. Moreover, light action spectra of nitrogenase activity shifted during the day, probably as the result of changes in the phycobiliprotein content of the heterocyst relative to chl a. Action spectra of nitrogenase and changes in pigment composition are essential for the understanding of the competitive abilities of species and for the estimation of N2 fixation by a bloom of heterocystous cyanobacteria.  相似文献   

18.
Phycobilisomes from a blue-green alga Nostoc species   总被引:9,自引:1,他引:8  
Phycobilisomes were isolated from a Nostoc sp. strain Mac in phosphate buffer (pH 7.0) by treatment with 1% Brij 56 and centrifugation on discontinuous sucrose gradients (2.0, 1.0, 0.5, and 0.25 M in the proportions 6:4:4:10 ml, respectively). Absorption spectra of isolated phycobilisomes showed the presence of phycoerythrin, phycocyanin, and allophycocyanin. The phycobilisome pigments were partially resolved by electrophoresis on acrylamide gels. Stained gels demonstrated that each main protein band corresponded to a pigmented region. The phycobilisomes appeared compact with a rounded surface and flattened base (about 40-nm diameter) at the attachment site to the photosynthetic lamellae. Fixation in glutaraldehyde caused a significant reduction in total pigment absorption, as well as shifts in the absorption maxima, particularly that of phycoerythrin.  相似文献   

19.
A series of experiments on the light-harvesting properties of the cryptomonad biliprotein phycoerythrin 566 has been carried out on purified protein isolated from Cryptomonas ovata. Although this pigment has an absorption maximum at 566 nm, a property very close to that of other phycoerythrins, it was found to have a totally unique set of chromophores. The chromophores (bilins) responsible for its absorption spectrum were analyzed by a number of approaches. Chromophore-containing peptides were produced by trypsin treatment and purified in order to isolate the individual peptide-bound bilins free of overlapping absorption. These chromopeptides, after comparison with appropriate controls, showed that three spectrally distinct bilins occurred on the purified oligomeric protein. Two of the bilins were the well-known phycoerythrobilin and cryptoviolin, but the third was previously undiscovered and had an absorption spectrum between that of cryptoviolin and phycocyanobilin. Since the spectral diversity of the three bilins was fully maintained in solvents that minimize the effects of apoprotein on the spectra of the bilins, it is likely that the three bilins are also structurally dissimilar. The alpha and beta subunits, which constitute the protein, were separated by ion-exchange chromatography, and the new bilin was found to be the sole chromophore on the alpha subunit. It was also found that at least two alpha subunits could be separated and they both had this unusual bilin (cryptobilin 596). The beta subunit, therefore, contained both phycoerythrobilin and cryptoviolin. On the basis of the spectra of the three chromopeptides, the absorption spectrum of the protein was modeled using the known absorptivities of cryptoviolin and phycoerythrobilin.  相似文献   

20.
The dichloromethane (DCM)-utilizing facultative methylotroph Methylobacterium sp. DM4 was shown to contain three plasmids with approximate size of 120 kb, 40 kb and 8 kb. Curing experiments suggested that the DCM-utilization character was correlated with the possession of an intact 120 kb plasmid. The DCM-utilization genes were cloned on the broad-host-range vector pVK100. Plasmid pME1510, a recombinant plasmid carrying a 21 kb HindIII fragment complemented DCM-utilization-negative derivatives of Methylobacterium sp. DM4 and conferred the DCM-utilization-positive phenotype to a number of Gram-negative methylotrophic bacteria. In Southern hybridization experiments with pMe1510 as a probe, chromosomal DNA from Methylobacterium sp. DM4 gave definite signals while purified plasmid DNA did not. Plasmid pME1510 did not hybridize with total DNA from a cured DCM-non-utilizing derivative of Methylobacterium sp. DM4. It is concluded that the DCM-utilization genes are located on the chromosome or on a megaplasmid. Curing procedures thus led to the formation of a chromosomal or megaplasmid deletion larger than 21 kb and covering the DCM-utilization genes or to the loss of an undetected megaplasmid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号