首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper describes an efficient single step chromatographic method for purification of C-Phycocyanin from three cyanobacterial species, i.e., Spirulina sp. (freshwater), Phormidium sp. (marine water) and Lyngbya sp. (marine water). C-Phycocyanin from these cyanobacterial species was purified to homogeneity and some of their properties were investigated. The purification involves a multistep treatment of the crude extract by fractional precipitation with ammonium sulfate, followed by ion-exchange chromatography on DEAE-Sepharose CL-6B column. Pure C-Phycocyanin was finally obtained from Spirulina, Phormidium, and Lyngbya spp. with purity ratio (A620/A280) 4.42, 4.43, and 4.59, respectively, further the purity and homogeneity were confirmed by native and SDS-PAGE. The estimated molecular weights of purified C-PC from Spirulina, Phormidium, and Lyngbya spp. were 112, 131, and 81 kDa, respectively. SDS-PAGE of pure C-Phycocyanin yielded two bands corresponding to alpha and beta subunits. The results of SDS-PAGE demonstrate the same molecular weight of beta subunits (24.4 kDa) for all the three cyanobacterial species, whereas the molecular weight of the alpha subunit is different for all (17 kDa Spirulina sp., 19.1 kDa Phormidium sp., 15.2 kDa Lyngbya sp.). Thus, the C-Phycocyanin was characterized as (alphabeta)3 for Spirulina and Phormidium spp., while as (alphabeta)2 for Lyngbya sp.  相似文献   

2.
Complementary chromatic adaptation, a photomorphogenetic response, known to occur in many cyanobacteria, enables them to efficiently absorb prevalent wavelengths of light in the environment. In the present study, we have described the influence of light on phycobiliprotein production in three marine phycoerythrin producing cyanobacterial cultures, namely, Lyngbya sp. A09DM, Phormidium sp. A27DM and Halomicronema sp. A32DM. A comparative study (UV-visible overlay spectra and SDS-PAGE analyses) of phycobiliproteins purified from all the three cultures grown in white, yellow, red and green lights has been confirmed. White light was taken as control. Red and green lights were taken to check their effect on phycocyanin and phycoerythrin production, respectively. Yellow light was studied as its wavelength falls in between green and red light. Lyngbya sp. A09DM was found to be the best chromatically adapting cyanobacterium followed by Halomicronema sp. A32DM. These two cultures can be placed in group III chromatic adaptors. Phormidium sp. A27DM was the least chromatically adapting culture and can be placed in group II chromatic adaptors. The study signifies that even light plays an important role along with nutrient availability in adapting cultures to changing environmental conditions.  相似文献   

3.
Three ribonucleases (RNases) with different molecular masses were isolated from human kidney. The enzymes were purified to an electrophoretically homogeneous state, and their respective molecular masses were found to be 18,000 (tentatively named RNase HK-1), 20,000 (RNase HK-2A), and 22,000 (RNase HK-2B) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Analysis of the amino acid compositions, amino-terminal sequences, and enzymological properties of the enzymes indicate that RNase HK-1 is related to "nonsecretory" RNase, and that RNases HK-2A and HK-2B are both related to "secretory" RNase. Furthermore, RNase HK-1 showed cross-reactivity with an antibody specific to nonsecretory RNase from human urine, whereas RNases HK-2A and HK-2B showed cross-reactivity with another antibody specific to human urine secretory RNase. However, the carbohydrate compositions of RNases HK-2A and HK-2B were markedly different from that of the secretory urine RNase. This finding seems to indicate that the kidney is not the origin of the urine enzyme.  相似文献   

4.
The 27-, 30-, and 33-kDa rod linker polypeptides and the 75-kDa core linker of phycobilisomes from the cyanobacterium Synechococcus sp. strain PCC 7942 have been reported to be glycoproteins with carbohydrate contents ranging from 3.2 to 18.8% and composed of N-acetylgalactosamine and glucose (H.C. Riethman, T.P. Mawhinney, and L.A. Sherman, J. Bacteriol. 170:2433-2440, 1988). Synechococcus sp. strain PCC 7942 phycobilisomes were purified extensively, and the linker polypeptides were separated from the phycobiliproteins by precipitation in 1 M NaSCN. Upon hydrolysis, the linker fraction yielded 0.037% glucose and 0.015% galactosamine by weight and no other carbohydrate. Phycobilisome polypeptides separated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate were subjected to various glycoprotein-specific staining procedures. Linker polypeptides showed very weak concanavalin A binding and no staining by the Schiff-periodate method or by a much more sensitive periodate oxidation-based method. These results indicated that the linker polypeptides are not glycosylated. An earlier report (T. Fujiwara, J. Biochem. 49:361-367, 1961) contended, on the basis of the isolation of sugar-containing peptic chromopeptides from Porphyra tenera R-phycoerythrin, that this red algal phycobiliprotein is a glycoprotein. Analysis of Gastroclonium coulteri R-phycoerythrin and Porphyridium cruentum B-phycoerythrin revealed only traces of carbohydrate in these two proteins, 0.36 and 0.14%, respectively. Results of glycoprotein staining of gels suggested that the carbohydrate in the R-phycoerythrin preparation is due to a glycoprotein contaminant and that neither red algal phycoerythrin is glycosylated.  相似文献   

5.
An acid phosphatase from Brassica nigra (black mustard) leaf petiole cell-suspension cultures has been purified 1633-fold to a final specific activity of 1225 (mumols orthophosphate produced/min)/mg protein and near homogeneity. The native protein was a glycosylated monomer having a molecular mass of 60 kDa and a pI of 4.5. The enzyme displayed a broad pH optimum of about pH 5.6 and was heat stable. The final preparation hydrolyzed a wide variety of phosphate esters. The highest specificity constants were obtained with 3-phosphoglycerate, 2,3-diphosphoglycerate, PPi, and phosphoenolpyruvate (PEP). The enzyme was activated 1.4-fold by 4 mM Mg2+ or Mn2+, but was strongly inhibited by Mo, Pi, F, and several phosphorylated compounds. Subcellular localization experiments revealed that this nonspecific acid phosphatase is probably a secreted enzyme, localized in the cell wall. By contrast, B. nigra PEP phosphatase appeared to be localized in the cell vacuole. Peptide mapping via CNBr fragmentation was employed to investigate the structural relatedness of the two phosphatases. Their respective CNBr cleavage patterns were dissimilar, suggesting that B. nigra acid and PEP phosphatases are distinct polypeptides. Putative metabolic functions of these two phosphatases are discussed in relation to the biochemical adaptations of B. nigra cell-suspension cultures to nutritional phosphate deprivation.  相似文献   

6.
Dihydrodipicolinate synthase, the first enzyme unique to lysine biosynthesis in higher plants, was purified about 5100-fold from suspension-cultured cells of wheat (Triticum aestivum var Chinese Spring). The synthase has an average molecular weight of 123,000 as determined by gel filtration and exhibited maximum activity at pH 8.0. The kinetics of the condensation reaction are compatible with a “Ping Pong” mechanism in which pyruvate reacts first with the enzyme to form a Schiff base. Pyruvate and l-aspartic-β-semialdehyde (ASA) have respective Km values of 11.76 and 0.80 millimolar. Allosteric inhibition was observed with increasing concentrations of l-lysine and its structural analogs, including threo-4-hydroxy-l-lysine and S-(2-aminoethyl)-l-cysteine, with respective I0.5 values of 51, 141, and 288 micromolar. These amino acids were competitive inhibitors with respect to ASA and noncompetitive inhibitors with respect to pyruvate. We propose that the binding site for lysine overlaps with the ASA binding site, possibly by an attachment of the common alanyl moiety. The wheat enzyme was inhibited by Zn2+, Cd2+, and Hg2+ and also by sulfhydryl inhibitors, p-(hydroxymercuri)benzoic acid and p-chloromercuribenzenesulfonic acid.  相似文献   

7.
海洋微生物有机磷降解酶的纯化与性质研究   总被引:4,自引:0,他引:4  
从长期受有机磷农药污染的海水中分离得到1株能高效降解农药的芽胞杆菌M-1,通过离子交换层析、凝胶过滤层析等方法从发酵液中分离纯化了有机磷农药降解酶,SDS-PAGE测得该酶的分子质量约为45 kD。酶反应最适pH为7.5,最适反应温度为30℃,30℃下保温30 min,酶活力基本不变,高于30℃酶活力则迅速下降;K 、Na 、Ca2 、Mn2 对酶活性有促进作用,Hg2 、Zn2 和Cu2 等对酶有抑制作用。  相似文献   

8.
Cation exchange column chromatography and gel filtration chromatography were used to purify four reptile lysozymes from egg white: SSTL A and SSTL B from soft shelled turtle (Trionyx sinensis), ASTL from Asiatic soft shelled turtle (Amyda cartilagenea) and GSTL from green sea turtle (Chelonia mydas). The molecular masses of the purified reptile lysozymes were estimated to be 14 kDa by SDS-PAGE. Enzyme activity of the four lysozymes could be confirmed by gel zymograms and showed charge differences on native-PAGE. SSTL A, SSTL B and ASTL had sharp pH optima of about pH 6.0, which contrasts with that of GSTL, which showed dual pH optima at about pH 6.0 and pH 8.0. The activities of the reptile lysozymes rapidly decreased within 30 min of incubation at 90 degrees C except for ASTL, which was more stable. Partial N-terminal amino acid sequencing and peptide mapping strongly suggested that the enzymes were C-type lysozymes. Interestingly, the mature SSTL lysozymes show an extra Gly residue at the N-terminus, which was previously found in soft-shelled turtle lysozyme. The reptile lysozymes showed lytic activity against several species of bacteria, such as Micrococcus luteus and Vibrio cholerae, but showed only weak activity to Pseudomonas aeruginosa and lacked activity towards Aeromonas hydrophila.  相似文献   

9.
Three aspartate aminotransferase isoenzymes were identified from extracts of carrot (Daucus carota L.) cell suspension cultures. These isoenzymes were separated by DEAE chromatography and were analyzed on native gradient polyacrylamide gels. The relative molecular weights of the isoenzymes were 111,000 ± 5000, 105,000 ± 5000, and 94,000 ± 4000 daltons; they were designated forms I, II, and III, respectively. Form I, the predominant form, has been purified to apparent homogeneity (>300-fold) using immunoaffinity chromatography with rabbit anti-pig AAT antibodies. Form I has a subunit size of 43,000 Mr, as determined on sodium dodecyl sulfate polyacrylamide gel electrophoresis. Isoelectric focusing (IEF)-PAGE has resolved three bands at a pl of approximately 5.2. Form I may be composed of subunits of similar molecular weight and different charges, and the three bands with AAT activity on the IEF-PAGE gel are a combination of hetero- and homodimers. Form I has a broad pH optimum of 7.5 to 10.0. Km values of 23.6, 2.8, 0.05, and 0.22 millimolar were obtained for glutamate, aspartate, oxaloacetate, and α-ketoglutarate, respectively. The mode of action is a ping-pong-bi-bi mechanism.  相似文献   

10.
Prephenate aminotransferase (PAT) from rosmarinic acid-producing cell cultures of Anchusa officinalis has been purified to apparent electrophoretic homogeneity using a combination of high-performance anion-exchange, chromatofocusing, and gel filtration chromatography. The purified enzyme has a native molecular weight of 220,000 and subunit molecular weights of 44,000 and 57,000, indicating a possible alpha 2 beta 2 subunit structure. The purified PAT displays high affinity for prephenate (Km = 80 microM) but could also utilize other aromatic alpha-keto acids at less than 20% the rate with prephenate. L-Aspartate (Km = 80 microM) is about three times as effective as L-glutamate as amino-donor substrate. Anchusa PAT is not subject to feedback inhibition from L-phenylalanine or tyrosine, but its activity is affected by a rosmarinic acid metabolite, 3,4-dihydroxyphenyllactic acid.  相似文献   

11.
Aspartate kinase is a feedback-regulated enzyme that controls the first step common to the biosynthesis of lysine, threonine, isoleucine, and methionine in plants. Aspartate kinase was purified from Black Mexican Sweet maize (Zea mays L.) cell suspension cultures for physical and kinetic characterization studies. Partial purification and elution from an anion exchange column resolved two lysine-sensitive aspartate kinase isoforms. Both isoforms were purified >1,200-fold to a minimum specific activity of 18 units/milligram of protein. Both isoforms were sensitive to the lysine analogues S-2-aminoethyl-l-cysteine, l-lysine ethyl ester, and δ-hydroxylysine. No threonine-sensitive form of aspartate kinase was detected at any stage during the purification. Additional purification steps were combined with preparative gel electrophoresis to obtain apparently homogeneous lysine-sensitive aspartate kinase. Aspartate kinase appeared to be a tetramer with a holoenzyme molecular weight of 254,000 and to be composed of 49,000 and 60,000 subunits. The tetramer appeared to disassociate during native gel electrophoresis to 113,000 dalton species that retained aspartate kinase activity.  相似文献   

12.
The egg white of marine turtle(Caretta caretta Linn.) contains two chymotrypsin inhibitors and one trypsin inhibitor. The two chymotrypsin inhibitors were purified to homogeneity, as judged by ion-exchange chromatography, Polyacrylamide gel and sodium dodecyl sulphate-gel electrophoresis, isoelectric focusing, immunochemical tests and sedimenttation in the ultracentrifuge. Their sedimentation coefficient values were independent of protein concentration. Their amino acid composition was similar, and contained seven disulphide bonds, and methionine and carbohydrate moiety were absent. Each inhibitor consisted of a single polypeptide chain of 117 amino acids. The average molecular weight of each inhibitor, calculated from sedimentation and diffusion coefficient values, amino acid composition and sodium dodecyl sulphate-gel electrophoresis was 13000. Both the inhibitors were stable over the pH range of 2–11. They inhibited α-chymotrypsin by forming enzymeinhibitor complexes at a molar ratio of unity. The dissociation constant of each complex was 1.06 × 10−10 M. Both the inhibitors were indistinguishable in their physical, chemical and inhibitory properties except for their isoelectric points which were pH 5.23 for inhibitorA and pH 6.0 for inhibitorB. Chemical modification of all amino groups with trinitrobenzene sulphonate had no effect on their inhibitory activity  相似文献   

13.
Soybean cell suspension cultures (Glycine max L. cv. Kanrich) grown on high-nitrogen medium produce 50 mU/g fresh wt of phenylalanine ammonia-lyase [EC 4.1.3.5] 7–9 days after inoculation. Nitrate was not limiting when the peak of enzyme activity was reached. Phenylalanine ammonia-lyase was purified 53-fold to essentially electrophoretic homogeneity from cell extracts with 10% recovery. The enzyme was stable in crude extracts and through most stages of purification. No activity could be detected with tyrosine as substrate in either crude extracts or purified enzyme. The electrophoretic mobility was somewhat less than that of the enzyme from maize but both eluted from an agarose column at the same position and the molecular weight of the subunit was similar for both enzymes. Thus the soybean enzyme is composed of four subunits and the native enzyme is ~330,000 Mr. The variation in structure and/or size and availability of hydrophobic regions among phenylalanine ammonia-lyases from four sources (potato, maize, Rhodotorula glutinis, and soybean) was shown by the different elution patterns they exhibited on columns of ω-aminoalkyl agarose (agarose-Cn-NH2, n = 0 to 8). The order of increasing hydrophobicity is soybean, potato, maize, R. glutinis. The soybean enzyme exhibited negative cooperativity before hydroxylapatite chromatography and positive cooperativity afterward. This is the first example of positive cooperativity observed for phenylalanine ammonia-lyase.  相似文献   

14.
15.
Glutamine synthetase has been purified to homogeneity from cell extracts of a non-N2-fixing filamentous cyanobacterium, Phormidium lapideum. The subunit molecular weight of the enzyme was determined as about 59,000 by sodium dodecyl sulfate gel electrophoresis. Electron micrographs of the Phormidium enzyme revealed a two-layered structure of regular hexagons (12 subunits per molecule), which markedly resembles the three-dimensional polypeptide backbone structure of the Salmonella typhimurium glutamine synthetase established by X-ray crystallography (Almassy, Janson, Hamlin, Xuong, & Eisenberg (1986) Nature 323, 304-309). The N-terminal amino acid sequence of the Phormidium enzyme shows very high similarity with that of the enzyme from an N2-fixing cyanobacterium, Anabaena 7120; 18 residues are common in 23 residues compared. Strong immunocross-reactions between the antibody against the purified Phormidium glutamine synthetase and other cyanobacterial enzymes except the Anacystis enzyme were observed. The apparent Michaelis constants for NH3, L-glutamate, and ATP were determined to be 0.29, 7.4, and 1.7 mM, respectively. Divalent metal ions such as Mg2+ and Mn2+ activated the enzyme in the biosynthetic reaction, whereas various amino acids and glutamate analogs strongly inhibited the enzyme.  相似文献   

16.
We purified and partially sequenced a purple (λmax = 556 nanometers) acid phosphatase (APase; EC 3.1.3.2) secreted by soybean (Glycine max) suspension-culture cells. The enzyme is a metalloprotein with a Mn2+ cofactor. This APase appears to be a glycoprotein with a monomer subunit molecular weight of 58,000 and an active dimer molecular weight of approximately 130,000. The protein has an isoelectric point of about 5.0 and a broad pH optimum centered near 5.5. The purified enzyme, assayed with p-nitrophenyl phosphate as the substrate, has a specific activity of 512 units per milligram protein and a Km of approximately 0.3 millimolar; phosphate is a competitive inhibitor with a Ki of 0.7 millimolar. This APase is similar to one found in soybean seed meal but dissimilar to that found in soybean seedlings.  相似文献   

17.
An NAD-dependent alcohol dehydrogenase has been purified to apparent homogeneity from cell suspension cultures of Lithospermum erythrorhizon Sieb. et Zucc. (Boraginaceae), using protamine sulphate and ammonium sulphate precipitation and chromatography on DEAE-Sephacel, Superdex 200, hydroxyapatite and HiTrap blue. The enzyme is a homodimer with a Mr of ca. 77,000. Each subunit with a Mr of 40,000 contains two zinc atoms. Its isoelectric point was found at pH 5.0. The best alcohol substrate of the enzyme is ethanol. The pH optimum for ethanol oxidation is at pH 8.7 and for acetaldehyde reduction at pH 4.6. The Michaelis constants for ethanol and NAD are 2.49 and 0.05 (pH 8.7), and for acetaldehyde and NADH 2.2 and 0.078 mM (pH 4.6), respectively. Partial amino acid sequences of the purified enzyme showed high homology to alcohol dehydrogenases from other plants.Abbreviations ADH alcohol dehydrogenase - DTT dithiothreitol - PMSF dephenylmethylsulfonyl fluoride - PVPP polyvinylpolypyrrolidone - IAA indole-3-acetic acid - TFA trifluoroacetic acid  相似文献   

18.
A urokinase-type plasminogen activator was purified from conditioned media of several human cell cultures, but preferably from the human lung adenocarcinoma line CALU-3 (ATCC, HTB-55), using a combination of chromatography on zinc chelate-Sepharose, SP-Sephadex C-50, and Sephadex G-100. Final yields of 65-100 micrograms/liter of starting material were obtained with a 290-fold purification factor and a recovery of 30%. The purified plasminogen activator consists of a single polypeptide chain with Mr 54,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and is very similar or identical to single-chain urokinase-type plasminogen activator on the basis of immunodiffusion, amino acid composition, and the lack of specific binding to fibrin. It has very low amidolytic activity on Pyroglu-Gly-Arg-rho-nitroanilide and is converted to two-chain urokinase by limited exposure to plasmin. It has a specific activity of 60,000 IU/mg on fibrin plates and directly activates plasminogen following Michaelis-Menten kinetics with Km = 1.1 microM and kappa cat = 0.0026 S-1. It is concluded that the plasminogen activator purified from CALU-3-conditioned media is physically and kinetically identical to single-chain urokinase-type plasminogen activator. With the present straightforward purification method and a readily available source, sufficient amounts of single-chain urokinase-type plasminogen activator can be obtained for more detailed investigations of its biochemical, biological, and thrombolytic properties.  相似文献   

19.
Three activities of tyrosine aminotransferase (TAT; EC 2.6.1.5), the enzyme which catalyzes the first step of the tyrosine pathway leading to the formation of rosmarinic acid (alpha-O-caffeoyl-3,4-dihydroxyphenyllactic acid), have been extensively purified from cell suspension cultures of Anchusa officinalis L. and subsequently characterized. TAT-1, TAT-2, and TAT-3 differ slightly in native molecular weights (180,000-220,000) and are composed of subunits (4 X 43,000 for TAT-1 and 4 X 56,000 for TAT-2). All three enzymes show a pronounced preference for L-tyrosine over other aromatic amino acids, but TAT-2 and TAT-3 can also effectively utilize L-aspartate or L-glutamate as a substrate. For amino acceptor cosubstrates, either oxaloacetate or alpha-ketoglutarate can be utilized equally well by TAT-1, while the former is the most effective alpha-keto acid for TAT-2 and the latter is the best for TAT-3. All the TAT activities display high pH optima (8.8-9.6), and are inhibited by the tyrosine metabolite 3,4-dihydroxyphenyllactate. TAT-2 and TAT-3 are also inhibited by rosmarinic acid.  相似文献   

20.
A marine, gram positive, aerobic, spore forming, and non flagellated bacterium which degrades low melting point (LMP) — agarose was isolated from the west coast of India and identified as Bacillus megaterium based on its morphological, biochemical, and molecular characterization. This bacterium produced clear haloes or zone of clearance on agar containing plates which was a clear indication of its agarolytic property. The extracellular agarase thus obtained was purified 8.8 and 78 fold from the culture supernatant by ammonium sulfate precipitation and gel filtration, respectively. Molecular mass by gel filtration and SDS-PAGE gave values of 15 and 12 kDa, respectively. The optimum temperature and pH for maximum agarase activity were 40°C and 6.6. The activity of agarase was drastically reduced by addition of metal ions in the assay system. This agarase, gave a K m and V max value of 4 mg/mL and 2.75 μmol/min/mg. The isolation of protoplast from agarophyte like Gelidiella acerosa using indegenous agarase is reported for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号