首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 337 毫秒
1.

Background  

Protein remote homology detection and fold recognition are central problems in bioinformatics. Currently, discriminative methods based on support vector machine (SVM) are the most effective and accurate methods for solving these problems. A key step to improve the performance of the SVM-based methods is to find a suitable representation of protein sequences.  相似文献   

2.

Background  

Protein remote homology detection and fold recognition are central problems in computational biology. Supervised learning algorithms based on support vector machines are currently one of the most effective methods for solving these problems. These methods are primarily used to solve binary classification problems and they have not been extensively used to solve the more general multiclass remote homology prediction and fold recognition problems.  相似文献   

3.

Background  

Nonnegative Matrix Factorization (NMF) is an unsupervised learning technique that has been applied successfully in several fields, including signal processing, face recognition and text mining. Recent applications of NMF in bioinformatics have demonstrated its ability to extract meaningful information from high-dimensional data such as gene expression microarrays. Developments in NMF theory and applications have resulted in a variety of algorithms and methods. However, most NMF implementations have been on commercial platforms, while those that are freely available typically require programming skills. This limits their use by the wider research community.  相似文献   

4.

Background  

Protein fold recognition is a key step in protein three-dimensional (3D) structure discovery. There are multiple fold discriminatory data sources which use physicochemical and structural properties as well as further data sources derived from local sequence alignments. This raises the issue of finding the most efficient method for combining these different informative data sources and exploring their relative significance for protein fold classification. Kernel methods have been extensively used for biological data analysis. They can incorporate separate fold discriminatory features into kernel matrices which encode the similarity between samples in their respective data sources.  相似文献   

5.

Background  

The triosephosphate isomerase (TIM)-barrel fold occurs frequently in the proteomes of different organisms, and the known TIM-barrel proteins have been found to play diverse functional roles. To accelerate the exploration of the sequence-structure protein landscape in the TIM-barrel fold, a computational tool that allows sensitive detection of TIM-barrel proteins is required.  相似文献   

6.

Background  

In order to maintain the most comprehensive structural annotation databases we must carry out regular updates for each proteome using the latest profile-profile fold recognition methods. The ability to carry out these updates on demand is necessary to keep pace with the regular updates of sequence and structure databases. Providing the highest quality structural models requires the most intensive profile-profile fold recognition methods running with the very latest available sequence databases and fold libraries. However, running these methods on such a regular basis for every sequenced proteome requires large amounts of processing power.  相似文献   

7.

Background  

The detection of relationships between a protein sequence of unknown function and a sequence whose function has been characterised enables the transfer of functional annotation. However in many cases these relationships can not be identified easily from direct comparison of the two sequences. Methods which compare sequence profiles have been shown to improve the detection of these remote sequence relationships. However, the best method for building a profile of a known set of sequences has not been established. Here we examine how the type of profile built affects its performance, both in detecting remote homologs and in the resulting alignment accuracy. In particular, we consider whether it is better to model a protein superfamily using a single structure-based alignment that is representative of all known cases of the superfamily, or to use multiple sequence-based profiles each representing an individual member of the superfamily.  相似文献   

8.

Background  

The challenge of remote homology detection is that many evolutionarily related sequences have very little similarity at the amino acid level. Kernel-based discriminative methods, such as support vector machines (SVMs), that use vector representations of sequences derived from sequence properties have been shown to have superior accuracy when compared to traditional approaches for the task of remote homology detection.  相似文献   

9.

Background  

Catalytic domains of Type II restriction endonucleases (REases) belong to a few unrelated three-dimensional folds. While the PD-(D/E)XK fold is most common among these enzymes, crystal structures have been also determined for single representatives of two other folds: PLD (R.BfiI) and half-pipe (R.PabI). Bioinformatics analyses supported by mutagenesis experiments suggested that some REases belong to the HNH fold (e.g. R.KpnI), and that a small group represented by R.Eco29kI belongs to the GIY-YIG fold. However, for a large fraction of REases with known sequences, the three-dimensional fold and the architecture of the active site remain unknown, mostly due to extreme sequence divergence that hampers detection of homology to enzymes with known folds.  相似文献   

10.

Background  

In recent years protein structure prediction methods using local structure information have shown promising improvements. The quality of new fold predictions has risen significantly and in fold recognition incorporation of local structure predictions led to improvements in the accuracy of results.  相似文献   

11.

Introduction

Tanshinones are a major class of bioactive ingredients in the traditional herbal medicines, Danshen (Salvia miltiorrhiza). A sensitive and reliable determination method for tanshinones is useful to ensure the quality of Danshen.

Objective

To develop a sensitive and selective analytical method for tanshinones by high‐performance liquid chromatography (HPLC) with fluorescence detection after pre‐column derivatisation.

Methodology

The proposed method depends on derivatisation reaction of tanshinones with 4‐carbomethoxybenzaldehyde and ammonium acetate forming intensely fluorescent imidazole derivative.

Results

The proposed method provided excellent sensitivity with the detection limits of 3.3 nM (66 fmol/injection), 3.2 nM (64 fmol/injection) and 2.0 nM (40 fmol/injection) for cryptotanshinone, tanshinone I and tanshinone IIA, respectively, without the necessity of complicated instrumentations. The developed method is successfully applied to quantify the contents of tanshinones in Danshen.

Conclusion

The developed method is the first analytical method for tanshinones by fluorescence detection. Since the derivatisation reaction is selective for the o‐quinone structure of tanshinone, the developed method will become a suitable mean for the discovering of tanshinone type diterpenoids from herbal samples. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.

Background  

Remote homology detection is a challenging problem in Bioinformatics. Arguably, profile Hidden Markov Models (pHMMs) are one of the most successful approaches in addressing this important problem. pHMM packages present a relatively small computational cost, and perform particularly well at recognizing remote homologies. This raises the question of whether structural alignments could impact the performance of pHMMs trained from proteins in the Twilight Zone, as structural alignments are often more accurate than sequence alignments at identifying motifs and functional residues. Next, we assess the impact of using structural alignments in pHMM performance.  相似文献   

13.

Background  

While substitution matrices can readily be computed from reference alignments, it is challenging to compute optimal or approximately optimal gap penalties. It is also not well understood which substitution matrices are the most effective when alignment accuracy is the goal rather than homolog recognition. Here a new parameter optimization procedure, POP, is described and applied to the problems of optimizing gap penalties and selecting substitution matrices for pair-wise global protein alignments.  相似文献   

14.
Hidden Markov model speed heuristic and iterative HMM search procedure   总被引:1,自引:0,他引:1  

Background  

Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or Forward, require considerable time to search large sequence databases.  相似文献   

15.

Background  

Knowledge-based potentials have been widely used in the last 20 years for fold recognition, protein structure prediction from amino acid sequence, ligand binding, protein design, and many other purposes. However generally these are not readily accessible online.  相似文献   

16.

Background  

Recent approaches for predicting the three-dimensional (3D) structure of proteins such asde novoor fold recognition methods mostly rely on simplified energy potential functions and a reduced representation of the polypeptide chain. These simplifications facilitate the exploration of the protein conformational space but do not permit to capture entirely the subtle relationship that exists between the amino acid sequence and its native structure. It has been proposed that physics-based energy functions together with techniques for sampling the conformational space, e.g., Monte Carlo or molecular dynamics (MD) simulations, are better suited to the task of modelling proteins at higher resolutions than those of models obtained with the former type of methods. In this study we monitor different protein structural properties along MD trajectories to discriminate correct from erroneous models. These models are based on the sequence-structure alignments provided by our fold recognition method, FROST. We define correct models as being built from alignments of sequences with structures similar to their native structures and erroneous models from alignments of sequences with structures unrelated to their native structures.  相似文献   

17.

Background  

Residue depth allows determining how deeply a given residue is buried, in contrast to the solvent accessibility that differentiates between buried and solvent-exposed residues. When compared with the solvent accessibility, the depth allows studying deep-level structures and functional sites, and formation of the protein folding nucleus. Accurate prediction of residue depth would provide valuable information for fold recognition, prediction of functional sites, and protein design.  相似文献   

18.
19.
20.

Background  

Contradicting evidence has been presented in the literature concerning the effectiveness of empirical contact energies for fold recognition. Empirical contact energies are calculated on the basis of information available from selected protein structures, with respect to a defined reference state, according to the quasi-chemical approximation. Protein-solvent interactions are estimated from residue solvent accessibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号