首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new alleles of human red cell acid phosphatase (ACP1) have been identified by comparison with previously reported variants using three different electrophoretic techniques. Family data are available on all the variants and show genetic transmission of the rare alleles ACP1*N, ACP1*P and ACP1*S. Further evidence of a rare allele demonstrating reversed 'A' activity is also described. The report documents the need to use several electrophoretic techniques to characterize new or rare variants.  相似文献   

2.
The ACP1*A allele of erythrocyte acid phosphatase (ACP1) has a lower enzymatic activity when compared to other ACP1 alleles and is associated with maximal rate of body growth during intrauterine life. In three different samples of obese subjects (total number = 218). ACP1*A was associated with extreme body mass deviations. No difference in ACP1 allele distribution was observed between obese and nonobese subjects. These data suggest that a genetically determined variability of ACP1 influences the degree of obesity, but only when obesity itself has been triggered by some other factors.  相似文献   

3.
Associations with past malarial morbidity, season of conception, and common diseases such as obesity, type 2 diabetes, and allergy argue against neutrality of the ACP1 genetic polymorphism. Comparison of ACP1 distribution in mothers and their newborns and analysis of the joint wife-husband ACP1 phenotype distribution in couples with repeated spontaneous abortion suggest a negative effect of the ACP1*C allele on early life viability. Analysis of the polymorphism of the ACP1 gene suggests that, unlike the ACP1*A and ACP1*B alleles, the ACP1*C allele is independent of sequences in the 5' flanking region, resulting in an inverted F/S isoform ratio.  相似文献   

4.
The acid phosphatase locus (ACP1) is a classical polymorphism that has been surveyed in hundreds of human populations worldwide. Among individuals of European ancestry, the ACP1*C allele occurs with an average frequency of approximately 0.05, whereas it is nearly absent in all other human populations. It has been hypothesized that this allele is maintained by overdominant selection among European populations. Here, we analyze ACP1 protein polymorphism data from more than 50,000 individuals previously surveyed in 67 populations across Europe as well as inheritance data from more than 6,000 European parent-offspring pairs to assess the signature of natural selection currently acting on this allele. Although we see a significant excess of ACP1*C heterozygotes relative to Hardy-Weinberg expectations, we find no evidence that natural selection favors ACP1*C heterozygotes. Instead, ACP1*C appears to have a strongly deleterious and recessive fitness effect. We observed only 48.9% of expected homozygous offspring from heterozygous parents and significantly fewer homozygotes than expected within populations. Because parent-offspring pairs indicate a significant deficiency of ACP1*C homozygotes, we infer that viability selection is acting on ACP1*C homozygotes very early in life, perhaps before birth. We estimate that approximately 1.2% of all couples of European ancestry are composed of individuals who both carry the APC1*C allele. As such, selection against ACP1*C homozygotes may represent a nonnegligible contribution to the overall number of spontaneous abortions among women of European ancestry and may cause substantial fertility reductions among some combinations of parental genotypes.  相似文献   

5.
The study continues the series of works on the Russian gene pool. Gene geographic analysis of five erythrocytic gene markers best studied in the Russian population (ACP1, PGM1, ESD, GLO1, and 6-PGD) has been performed. Gene-geographic electronic maps have been constructed for 13 alleles of these loci and their correlations with geographic latitude and longitude. For all maps, statistical characteristics are presented, including the variation range and mean gene frequencies, partial and multiple correlations with latitude and longitude, and parameters of heterozygosity and interpopulation diversity. The maps of eight alleles (ACP1*A, ACP1*C, PGM1*2+, PGM1*2-, PGM1*1-, ESD*1, GLO1*1, and PGD*C) are shown and analyzed in detail. The genetic relief and structural elements of the maps are compared with the ecumenical trends, main variation patterns of these genes in northern Eurasia, and genetic characteristics of the indigenous populations of the Urals and Europe.  相似文献   

6.
ACP1GUA-1, a variant of human erythrocyte acid phosphatase, exists as a polymorphism (allele frequency of .132) in the Guaymi Indians of Central America. This variant has an electrophoretic mobility similar to the common B- and C-type variants, but individuals of the ACP1GUA-1 phenotype have a level of enzyme activity only 27% of the activity expected for the ACP1C variant. The GUA-1 variant is more thermostable than is the B variant, and the order of responsiveness to the modulation of activity by purine analogs and folate is always (B)-(A)-(GUA-1). Thus, the GUA-1 variant is a low-activity variant with C-like regulatory properties. Erythrocytes from individuals of the ACP1GUA-1 phenotype have increased basal levels of glutathione reductase, and a larger fraction of the glutathione reductase protein is present as the holoenzyme, indicating increased levels of flavin adenine dinucleotide in the erythrocytes of these individuals. This is consistent with the suggestion that ACP1 has a physiological function as a flavin mononucleotide phosphatase.  相似文献   

7.
The Km constant and the sensitivity to inhibitors were determined for the rare variant KUK of red cell acid phosphatase. At the same time, the thermodynamic energies of activation and of inactivation were measured. The kinetic parameters were not very different from those of the usual ACP1 C alloenzymes. However, they differed in their thermodynamic energies: the conformational structure of the ACP1 KUK protein being less stable.  相似文献   

8.
A new variant of erythrocyte acid phosphatase, designated ACP1TIC-1, is characterized by a more cathodal electrophoretic mobility than any of the common polymorphic phenotypes, both in the presence and absence of tricarboxylic acids. Individuals of the ACP1TIC-1 phenotype have a level of enzyme activity (4.8 +/- 0.1 mumol/g hemoglobin per min) similar to individuals of the ACP1A phenotype, although no differences in Km values were observed or is the extent of phosphate inhibition different between the ACP1TIC-1 and the ACP1B variants. The thermostability of the enzyme is less than that observed for any of the common variants. The TIC-1 variant is activated by adenine and inhibited by folic acid to the same extent as the type-A enzyme, while the stimulation of the activity of the TIC-1 enzyme by hypoxanthine and the inhibition of it by uric acid is similar to that for the B enzyme. Thus, the TIC-1 variant has a unique combination of kinetic properties, seeming to be a hybrid of A-type and B-type characteristics.  相似文献   

9.
A DNA fragment containing the Pseudomonas aeruginosa fabD (encoding malonyl-coenzyme A [CoA]:acyl carrier protein [ACP] transacylase), fabG (encoding beta-ketoacyl-ACP reductase), acpP (encoding ACP), and fabF (encoding beta-ketoacyl-ACP synthase II) genes was cloned and sequenced. This fab gene cluster is delimited by the plsX (encoding a poorly understood enzyme of phospholipid metabolism) and pabC (encoding 4-amino-4-deoxychorismate lyase) genes; the fabF and pabC genes seem to be translationally coupled. The fabH gene (encoding beta-ketoacyl-ACP synthase III), which in most gram-negative bacteria is located between plsX and fabD, is absent from this gene cluster. A chromosomal temperature-sensitive fabD mutant was obtained by site-directed mutagenesis that resulted in a W258Q change. A chromosomal fabF insertion mutant was generated, and the resulting mutant strain contained substantially reduced levels of cis-vaccenic acid. Multiple attempts aimed at disruption of the chromosomal fabG gene were unsuccessful. We purified FabD as a hexahistidine fusion protein (H6-FabD) and ACP in its native form via an ACP-intein-chitin binding domain fusion protein, using a novel expression and purification scheme that should be applicable to ACP from other bacteria. Matrix-assisted laser desorption-ionization spectroscopy, native polyacrylamide electrophoresis, and amino-terminal sequencing revealed that (i) most of the purified ACP was properly modified with its 4'-phosphopantetheine functional group, (ii) it was not acylated, and (iii) the amino-terminal methionine was removed. In an in vitro system, purified ACP functioned as acyl acceptor and H(6)-FabD exhibited malonyl-CoA:ACP transacylase activity.  相似文献   

10.
An association between favism (a hemolytic reaction to consumption of fava beans), glucose-6-phosphate dehydrogenase deficiency (G6PD(-)) and acid phosphatase locus 1 (ACP(1)) phenotypes has been reported; the frequency of carriers of the p(a) and p(c) ACP(1) alleles was found to be significantly higher in G6PD(-) individuals showing favism than in the general population. Here, we investigated the hypothesis that favism is caused by toxic Vicia faba substances, which in some ACP(1) phenotypes cause increased phosphorylation and consequently increased glycolysis, with strong reduction in reduced glutathione production, resulting in hemolysis. It has been demonstrated that ACP(1) f isoforms have physiological functions different from those of s isoforms and are responsible for most of the phosphatase activity, in addition to being less stable in the presence of oxidizing molecules. Thus, the C, CA and A phenotypes, characterized by lower concentrations of f isoforms, could be more susceptible to damage by oxidative events compared to the other phenotypes. To test this hypothesis, the (f+s) enzymatic activity of different ACP(1) phenotypes with and without added V. faba extract was analyzed. Enzymatic activities of ACP(1) A, -CA, -C groups (low activity) and -B, -BA, -CB groups (high activity) were significantly different after addition of V. faba extract. Phenotypes A, CA and C had extremely low enzymatic activity levels, which would lead to low levels of reduced glutathione and bring about erythrocyte lysis.  相似文献   

11.
We have studied the pattern of association between the season of conception and cytosolic low molecular weight phosphotyrosine phosphatase (ACP1) genetic polymorphism in 329 consecutively newborn infants from the population of Penne and 361 consecutively newborn infants from the population of Rome. In addition, 329 mothers were studied in the population of Penne. A concordant, highly significant association was observed in the two populations between ACP1 parameters and the season of conception of newborn infants. The total activity of ACP1 shows a minimum in infants conceived in January–February and a maximum in those conceived at the end of the solar year. Analysis of the joint mother-newborn ACP1 distribution in relation to the season of fertilisation has shown that among mothers carrying ACP1*A (the allele showing the lowest activity), the proportion of newborns carrying this allele is higher in those conceived in the first months of the year than in those conceived subsequently. Since ACP1 probably functions as a phosphotyrosine phosphatase and as a flavin mononucleotide phosphatase, low activity could enhance the metabolic rate and would be advantageous in a cold environment. The cycle of variation of ACP1 in infants follows the cycle of solar illumination. It is possible that individuals who have a genetic background allowing them to adapt easily and readily to seasonal demand are more successful in reproducing themselves. The population of zygotes conceived in a given season would therefore reproduce the pattern of gene combination more fit for that season. Received: 15 June 1997 / Accepted: 31 July 1997  相似文献   

12.
Acyl carrier protein (ACP) interacts with many different enzymes during the synthesis of fatty acids, phospholipids, and other specialized products in bacteria. To examine the structural and functional roles of amino acids previously implicated in interactions between the ACP polypeptide and fatty acids attached to the phosphopantetheine prosthetic group, recombinant Vibrio harveyi ACP and mutant derivatives of conserved residues Phe-50, Ile-54, Ala-59, and Tyr-71 were prepared from glutathione S-transferase fusion proteins. Circular dichroism revealed that, unlike Escherichia coli ACP, V. harveyi-derived ACPs are unfolded at neutral pH in the absence of divalent cations; all except F50A and I54A recovered native conformation upon addition of MgCl(2). Mutant I54A was not processed to the holo form by ACP synthase. Some mutations significantly decreased catalytic efficiency of ACP fatty acylation by V. harveyi acyl-ACP synthetase relative to recombinant ACP, e.g. F50A (4%), I54L (20%), and I54V (31%), whereas others (V12G, Y71A, and A59G) had less effect. By contrast, all myristoylated ACPs examined were effective substrates for the luminescence-specific V. harveyi myristoyl-ACP thioesterase. Conformationally sensitive gel electrophoresis at pH 9 indicated that fatty acid attachment stabilizes mutant ACPs in a chain length-dependent manner, although stabilization was decreased for mutants F50A and A59G. Our results indicate that (i) residues Ile-54 and Phe-50 are important in maintaining native ACP conformation, (ii) residue Ala-59 may be directly involved in stabilization of ACP structure by acyl chain binding, and (iii) acyl-ACP synthetase requires native ACP conformation and involves interaction with fatty acid binding pocket residues, whereas myristoyl-ACP thioesterase is insensitive to acyl donor structure.  相似文献   

13.
The gene for the secreted acid protease (ACP), a potential virulence factor of Candida species, was inactivated in Candida tropicalis by gene disruption. The disruption was performed by cotransformation of an ade2 C. tropicalis mutant with a linear DNA fragment carrying a deletion in ACP, and the replicative vector pMK16 which carries a selectable ADE2 gene marker. Few of the transformants exhibited lower protease secretion levels and were shown to have one deleted and one unaffected ACP copy, since C. tropicalis is a diploid yeast. These transformants were rendered homozygotic for this deletion by mild UV-treatment. One of the homozygotic acp deletion mutants obtained was completely devoid of extracellular protease activity and grew poorly on bovine serum albumin-containing medium. This mutant could be complemented by an ACP fragment inserted in pMK16, but also by an acid protease gene isolated from C. parapsilosis.  相似文献   

14.
Summary Red cell acid phosphatase (ACP1) catalyses the transfer of phosphate from phosphate ester substrates to suitable acceptor alcohols such as methanol and glycerol. The rate of substrate turnover in the presence of acceptors is increased by the increment of the phosphotransferase reaction, thus allowing this activity to be measured. There is specificity with regard to acceptors: (a) polyols (e.g., glycerol) are better acceptors than the corresponding n-alcohols, and (b) polyol configuration and chain length determine acceptor activity. Ribitol was the most efficient acceptor found. Each of the three common ACP1 alleles is represented electrophoretically by two isozyme bands; the phosphotransferase activity of the anodal isozyme was found to be more than twice that of the cathodal isozyme. The extent of phosphotransferase activity is also genotype dependent. In the presence of 2M glycerol, the relative phosphotransferase efficiencies for the three homozygote types were: ACP1*B=3.7, ACP1*A=3.4, and ACP1*C =2.5. This pattern of B>A>C is the same as found for the modulation of ACP1 by purines and folates.Publication no. 278 of the Forensic Science Group, School of Public Health, University of California  相似文献   

15.
The well-known relationship between low birth weight and allergies prompted us to investigate a possible pleiotropic effect of ACP1 on these conditions. ACP1 is a polymorphic enzyme that affects signal transduction of insulin and other growth factors, T-cell receptor signaling, and the regulation of flavoenzyme activity. Our aim was to compare the relationship between ACP1 and allergy with the relationship between ACP1 and birth weight. We studied 299 subjects from the Caucasian population of England, 124 subjects from the Caucasian population of central Italy, and 302 healthy puerperae and their newborn babies from the same Caucasian populations. ACP1 phenotype was determined by starch gel electrophoresis on RBC hemolysate and by DNA analysis. Subjects with high ACP1 activity (ACP1 C,B phenotype) show a lower level of IgE compared to subjects with low ACP1 activity (p = 0.01). The proportion of infants with a birth weight below the first quartile is lower among infants born to mothers with high ACP1 activity than among infants born to mothers with medium-low activity (p = 0.01). The data suggest a protective effect of high-activity ACP1 C,B phenotype from low birth weight and from allergic manifestations after birth.  相似文献   

16.
Red cell acid phosphatase (ACP) is shown to be inhibited by folic acid and various folates. The degree of inhibition is phenotype dependent with a pattern of variation differing from that of the well recognized variation in red cell activity levels. The pattern of variation is ordered ACP1B less than ACP1A less than ACP1C in terms of the relative allelic contributions to the observed inhibition. This pattern correlates with previously observed patterns of risk for two hemolytic disorders and may thus provide a key to their understanding.  相似文献   

17.
18.
Human red cell acid phosphatase (ACP1) is a polymorphic enzyme closely related to cytosolic low molecular weight acid phosphatases, a protein family broadly conserved among eukaryotes. Two different functions have been proposed for ACP1: flavin mononucleotide (FMN) phosphatase and phosphotyrosine phosphatase (PTPase). Given that genetic variants of ACP1 activity are common, the enzyme could have a role in regulating a large spectrum of cellular functions and, in turn, disease susceptibility. In the present paper we report a study of ACP1 genetic polymorphism in 1088 normal subjects and in 1267 subjects from the population of Rome admitted to hospital for a number of common diseases. All ACP1 parameters investigated show highly significant differences among samples, suggesting that the enzyme may have a significant role in some of the diseases considered. In particular, consistent associations of ACP1 with developmental disturbances and with hemolytic favism have been observed. In the majority of diseases showing association with ACP1, only one of the two ACP1 isoforms, f and s, is involved, supporting the hypothesis of a functional differentiation between the two enzymatic fractions.  相似文献   

19.
The high-mobility-group (HMG) proteins, a group of nonhistone chromatin-associated proteins, have been extensively characterized in higher eucaryotic cells. To test the biological function of an HMG protein, we have cloned and mutagenized a gene encoding an HMG-like protein from the yeast Saccharomyces cerevisiae. A yeast genomic DNA library was screened with an oligonucleotide designed to hybridize to any yeast gene containing an amino acid sequence conserved in several higher eucaryotic HMG proteins. DNA sequencing and Northern (RNA) blot analysis revealed that one gene, called ACP2 (acidic protein 2), synthesizes a poly(A)+ RNA in S. cerevisiae which encodes a 27,000-molecular-weight protein whose amino acid sequence is homologous to those of calf HMG1 and HMG2 and trout HMGT proteins. Standard procedures were used to construct a diploid yeast strain in which one copy of the ACP2 gene was mutated by replacement with the URA3 gene. When this diploid was sporulated and dissected, only half of the spores were viable. About half of the nonviable spores proceeded through two or three cell divisions and then stopped dividing; the rest did not germinate at all. None of the viable spores contained the mutant ACP2 gene, thus proving that the protein encoded by ACP2 is required for cell viability. The results presented here demonstrate that an HMG-like protein has an essential physiological function.  相似文献   

20.
The amebiasis cysteine proteinase gene (ACP1) encoding an antigen from Entamoeba histolytica, as well as the recombinant ACP1, obtained by cloning and expression of the ACP1 gene in heterologous host Escherichia coli BL-21 (DE3), were used to evaluate their ability to induce immune protective responses in minipig against challenge infection in a minipig -E. histolytica model. There was a 64.52% reduction (P<0.001) in the group of recovery of challenged E. histolytica compared with that in the control group. Specific anti-ACP1 antibodies from immune protected minipig had significantly higher levels of immunoglobulin G (IgG) (P<0.001). Our data indicate recombinant ACP1 may be a potential target as a vaccine antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号