首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amyloid beta (Abeta) peptides play an important role in the pathogenesis of Alzheimer's disease. Free radical generation by Abeta peptides was suggested to be a key mechanism of their neurotoxicity. Reports that neurotoxic free radicals derived from Abeta-(1-40) and Abeta-(25-35) peptides react with the spin trap N-tert-butyl-alpha-phenylnitrone (PBN) to form a PBN/.Abeta peptide radical adduct with a specific triplet ESR signal assert that the peptide itself was the source of free radicals. We now report that three Abeta peptides, Abeta-(1-40), Abeta-(25-35), and Abeta-(40-1), do not yield radical adducts with PBN from the Oklahoma Medical Research Foundation (OMRF). In contrast to OMRF PBN, incubation of Sigma PBN in phosphate buffer without Abeta peptides produced a three-line ESR spectrum. It was shown that this nitroxide is di-tert-butylnitroxide and is formed in the Sigma PBN solution as a result of transition metal-catalyzed auto-oxidation of the respective hydroxylamine present as an impurity in the Sigma PBN. Under some conditions, incubation of PBN from Sigma with Abeta-(1-40) or Abeta-(25-35) can stimulate the formation of di-tert-butylnitroxide. It was shown that Abeta peptides enhanced oxidation of cyclic hydroxylamine 1-hydroxy-4-oxo-2,2,6, 6-tetramethylpiperidine (TEMPONE-H), which was strongly inhibited by the treatment of phosphate buffer with Chelex-100. It was shown that ferric and cupric ions are effective oxidants of TEMPONE-H. The data obtained allow us to conclude that under some conditions toxic Abeta peptides Abeta-(1-40) and Abeta-(25-35) enhance metal-catalyzed oxidation of hydroxylamine derivatives, but do not spontaneously form peptide-derived free radicals.  相似文献   

2.
Extracellular accumulation of beta-amyloid peptide (Abeta) has been linked to the development of Alzheimer disease. The importance of intraneuronal Abeta has been recognized more recently. Although considerable evidence indicates that extracellular Abeta contributes to the intracellular pool of Abeta, the mechanisms involved in Abeta uptake by neurons are poorly understood. We examined the molecular mechanisms involved in Abeta-(1-42) internalization by primary neurons in the absence of apolipoprotein E. We demonstrated that Abeta-(1-42) is more efficiently internalized by axons than by cell bodies of sympathetic neurons, suggesting that Abeta-(1-42) uptake might be mediated by proteins enriched in the axons. Although the acetylcholine receptor alpha7nAChR, previously suggested to be involved in Abeta internalization, is enriched in axons, our results indicate that it does not mediate Abeta-(1-42) internalization. Moreover, receptors of the low density lipoprotein receptor family are not essential for Abeta-(1-42) uptake in the absence of apolipoprotein E because receptor-associated protein had no effect on Abeta uptake. By expressing the inactive dynamin mutant dynK44A and the clathrin hub we found that Abeta-(1-42) internalization is independent of clathrin but dependent on dynamin, which suggests an endocytic pathway involving caveolae/lipid rafts. Confocal microscopy studies showing that Abeta did not co-localize with the early endosome marker EEA1 further support a clathrin-independent mechanism. The lack of co-localization of Abeta with caveolin in intracellular vesicles and the normal uptake of Abeta by neurons that do not express caveolin indicate that Abeta does not require caveolin either. Instead partial co-localization of Abeta-(1-42) with cholera toxin subunit B and sensitivity to reduction of cellular cholesterol and sphingolipid levels suggest a caveolae-independent, raft-mediated mechanism. Understanding the molecular events involved in neuronal Abeta internalization might identify potential therapeutic targets for Alzheimer disease.  相似文献   

3.
Amyloid plaques formed by aggregation of the amyloid beta-peptide (Abeta) are an intrinsic component of Alzheimer disease pathogenesis. It has been suggested that oxidation of methionine 35 in Abeta has implications for Alzheimer disease, and it has been shown that oxidation of Met-35 significantly inhibits aggregation in vitro. In this study, the aggregational properties of Abeta-(1-40) before and after Met-35 oxidation were investigated using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. The results show that Abeta-(1-40)Met-35(O) trimer and tetramer formation is significantly attenuated as compared with Abeta-(1-40). This suggests that oxidation of Met-35 inhibits a conformational switch in Abeta-(1-40) necessary for trimer but not dimer formation. Random incorporation of Abeta-(1-40) and Abeta-(1-40)Met-35(O) in homo- and heterooligomers could also be observed. This is the first report of an early rate-limiting step in Abeta-(1-40) aggregation. Slowing of the fibrillization process at this early step is likely to support prolonged solubility and clearance of Abeta from brain and may reduce disease progression.  相似文献   

4.
The conversion of soluble, nontoxic amyloid beta-protein (Abeta) to aggregated, toxic Abeta rich in beta-sheet structures is considered to be the key step in the development of Alzheimer's disease. Therefore, extensive studies have been carried out on the mechanisms involved in Abeta aggregation and the characterization of Abeta aggregates formed in aqueous solutions mimicking biological fluids. On the other hand, several investigators pointed out that membranes play an important role in Abeta aggregation. However, it remains unclear whether Abeta aggregates formed in solution and membranes are identical and whether the former can bind to membranes. In this study, using a dye-labeled Abeta-(1-40) as well as native Abeta-(1-40), the properties of Abeta aggregates formed in buffer and raft-like membranes composed of monosialoganglioside GM1/cholesterol/sphingomyelin were compared. Fourier transform infrared spectroscopic measurements suggested that Abeta aggregates formed in buffer and in membranes have different beta-sheet structures. Fluorescence experiments revealed that Abeta aggregated in buffer did not show any affinity for membranes.  相似文献   

5.
The conversion of soluble, non-toxic amyloid beta-protein (Abeta) to aggregated, toxic Abeta could be the key step in the development of Alzheimer's disease. Liposomal studies have proposed that Abeta-(1-40) preferentially recognizes a cholesterol-dependent cluster of gangliosides and a conformationally altered form of Abeta promotes the aggregation of the protein. Cell experiments using fluorescein-labeled Abeta-(1-40) supported this model. Here, the interaction of native Abeta-(1-42) with unfixed rat pheochromocytoma PC12 cells was visualized using the amyloid-specific dye Congo red. Abeta-(1-42) preferentially bound to ganglioside and cholesterol-rich domains of cell membranes and formed amyloids in a time-dependent manner. These observations corroborate the model involving ganglioside-mediated accumulation of Abeta. The NGF-induced differentiation of PC12 cells into neuron-like cells caused a marked increase in both gangliosides and cholesterol, and thereby greatly potentiated the accumulation and cytotoxicity of Abeta-(1-42). NGF-differentiated cells exposed to Abeta-(1-42) had degenerated neurites, in which ganglioside and cholesterol-rich domains were localized, preceding cell death. A reduction in the amount of cholesterol by the cholesterol synthesis inhibitor compactin almost nullified the formation of amyloids by Abeta-(1-42). Our system using NGF-differentiated PC12 cells and Congo red is useful for screening inhibitors of the formation of amyloids by and cytotoxicity of Abeta.  相似文献   

6.
Biometals play an important role in Alzheimer disease, and recent reports have described the development of potential therapeutic agents based on modulation of metal bioavailability. The metal ligand clioquinol (CQ) has shown promising results in animal models and small phase clinical trials; however, the actual mode of action in vivo has not been determined. We now report a novel effect of CQ on amyloid beta-peptide (Abeta) metabolism in cell culture. Treatment of Chinese hamster ovary cells overexpressing amyloid precursor protein with CQ and Cu(2+) or Zn(2+) resulted in an approximately 85-90% reduction of secreted Abeta-(1-40) and Abeta-(1-42) compared with untreated controls. Analogous effects were seen in amyloid precursor protein-overexpressing neuroblastoma cells. The secreted Abeta was rapidly degraded through up-regulation of matrix metalloprotease (MMP)-2 and MMP-3 after addition of CQ and Cu(2+). MMP activity was increased through activation of phosphoinositol 3-kinase and JNK. CQ and Cu(2+) also promoted phosphorylation of glycogen synthase kinase-3, and this potentiated activation of JNK and loss of Abeta-(1-40). Our findings identify an alternative mechanism of action for CQ in the reduction of Abeta deposition in the brains of CQ-treated animals and potentially in Alzheimer disease patients.  相似文献   

7.
Alzheimer disease is a neurodegenerative disorder that is tightly linked to the self-assembly and amyloid formation of the 39-43-residue-long amyloid-beta (Abeta) peptide. Considerable evidence suggests a correlation between Alzheimer disease development and the longer variants of the peptide, Abeta-(1-42/43). Currently, a molecular understanding for this behavior is lacking. In the present study, we have investigated the hydrogen/deuterium exchange of Abeta-(1-42) fibrils under physiological conditions, using solution NMR spectroscopy. The obtained residue-specific and quantitative map of the solvent protection within the Abeta-(1-42) fibril shows that there are two protected core regions, Glu11-Gly25 and Lys28-Ala42, and that the residues in between, Ser26 and Asn27, as well as those in the N terminus, Asp1-Tyr10, are solvent-accessible. This result reveals considerable discrepancies when compared with a previous investigation on Abeta-(1-40) fibrils and suggests that the additional residues in Abeta-(1-42), Ile41 and Ala42, significantly increase the solvent protection and stability of the C-terminal region Lys28-Ala42. Consequently, our findings provide a molecular explanation for the increased amyloidogenicity and toxicity of Abeta-(1-42) compared with shorter Abeta variants found in vivo.  相似文献   

8.
The major components of neuritic plaques found in Alzheimer disease (AD) are peptides known as amyloid beta-peptides (Abeta), which derive from the proteolitic cleavage of the amyloid precursor proteins. In vitro Abeta may undergo a conformational transition from a soluble form to aggregated, fibrillary beta-sheet structures, which seem to be neurotoxic. Alternatively, it has been suggested that an alpha-helical form can be involved in a process of membrane poration, which would then trigger cellular death. Conformational studies on these peptides in aqueous solution are complicated by their tendency to aggregate, and only recently NMR structures of Abeta-(1-40) and Abeta-(1-42) have been determined in aqueous trifluoroethanol or in SDS micelles. All these studies hint to the presence of two helical regions, connected through a flexible kink, but it proved difficult to determine the length and position of the helical stretches with accuracy and, most of all, to ascertain whether the kink region has a preferred conformation. In the search for a medium which could allow a more accurate structure determination, we performed an exhaustive solvent scan that showed a high propensity of Abeta-(1-42) to adopt helical conformations in aqueous solutions of fluorinated alcohols. The 3D NMR structure of Abeta-(1-42) shows two helical regions encompassing residues 8-25 and 28-38, connected by a regular type I beta-turn. The surprising similarity of this structure, as well as the sequence of the C-terminal moiety, with those of the fusion domain of influenza hemagglutinin suggests a direct mechanism of neurotoxicity.  相似文献   

9.
Seeding specificity in amyloid growth induced by heterologous fibrils   总被引:5,自引:0,他引:5  
Over residues 15-36, which comprise the H-bonded core of the amyloid fibrils it forms, the Alzheimer's disease plaque peptide amyloid beta (Abeta) possesses a very similar sequence to that of another short, amyloidogenic peptide, islet amyloid polypeptide (IAPP). Using elongation rates to quantify seeding efficiency, we inquired into the relationship between primary sequence similarity and seeding efficiency between Abeta-(1-40) and amyloid fibrils produced from IAPP as well as other proteins. In both a solution phase and a microtiter plate elongation assay, IAPP fibrils are poor seeds for Abeta-(1-40) elongation, exhibiting weight-normalized efficiencies of only 1-2% compared with Abeta-(1-40) fibrils. Amyloid fibrils of peptides with sequences completely unrelated to Abeta also exhibit poor to negligible seeding ability for Abeta elongation. Fibrils from a number of point mutants of Abeta-(1-40) exhibit intermediate seeding abilities for wild-type Abeta elongation, with differing efficiencies depending on whether or not the mutation is in the amyloid core region. The results suggest that amyloid fibrils from different proteins exhibit structural differences that control seeding efficiencies. Preliminary results also suggest that identical sequences can grow into different conformations of amyloid fibrils as detected by seeding efficiencies. The results have a number of implications for amyloid structure and biology.  相似文献   

10.
Cognitive impairment is a major feature of Alzheimer's disease and is accompanied by beta-amyloid (Abeta) deposition. Transgenic animal models that overexpress Abeta exhibit learning and memory impairments, but neuronal degeneration is not a consistent characteristic. We report that levels of Abeta-(1-42), which do not compromise the survival of cortical neurons, may indeed interfere with functions critical for neuronal plasticity. Pretreatment with Abeta-(1-42), at sublethal concentrations, resulted in a suppression of cAMP-response element-binding protein (CREB) phosphorylation, induced by exposure to either 30 mm KCl or 10 microm N-methyl-d-aspartate. The effects of Abeta-(1-42) seem to involve mechanisms unrelated to degenerative changes, since Abeta-(25-35), a toxic fragment of Abeta, at sublethal concentrations did not interfere with activity-dependent CREB phosphorylation. Furthermore, caspase inhibitors failed to counteract the Abeta-(1-42)-evoked suppression of CREB activation. Abeta-(1-42) also interfered with events downstream of activated CREB. The Abeta-(1-42) treatment suppressed the activation of the cAMP response element-containing brain-derived neurotrophic factor (BDNF) exon III promoter and the expression of BDNF exon IIII mRNA induced by neuronal depolarization. In view of the critical role of CREB and BDNF in neuronal plasticity, including learning and memory, the observations indicate a novel pathway through which Abeta may interfere with neuronal functions and contribute to cognitive deficit in Alzheimer's disease before the stage of massive neuronal degeneration.  相似文献   

11.
Beta-amyloid (Abeta) aggregates at low concentrations in vivo, and this may involve covalently modified forms of these peptides. Modification of Abeta by 4-hydroxynonenal (4-HNE) initially increases the hydrophobicity of these peptides and subsequently leads to additional reactions, such as peptide cross-linking. To model these initial events, without confounding effects of subsequent reactions, we modified Abeta at each of its amino groups using a chemically simpler, close analogue of 4-HNE, the octanoyl group: K16-octanoic acid (OA)-Abeta, K28-OA-Abeta, and Nalpha-OA-Abeta. Octanoylation of these sites on Abeta-(1-40) had strikingly different effects on fibril formation. K16-OA-Abeta and K28-OA-Abeta, but not Nalpha-OA-Abeta, had increased propensity to aggregate. The type of aggregate (electron microscopic appearance) differed with the site of modification. The ability of octanoyl-Abeta peptides to cross-seed solutions of Abeta was the inverse of their ability to form fibrils on their own (i.e. Abeta approximately Nalpha-OA-Abeta>K16-OA-Abeta>K28-OA-Abeta). By CD spectroscopy, K16-OA-Abeta and K28-OA-Abeta had increased beta-sheet propensity compared with Abeta-(1-40) or Nalpha-OA-Abeta. K16-OA-Abeta and K28-OA-Abeta were more amphiphilic than Abeta-(1-40) or Nalpha-OA-Abeta, as shown by lower "critical micelle concentrations" and higher monolayer collapse pressures. Finally, K16-OA-Abeta and K28-OA-Abeta are much more cytotoxic to N2A cells than Abeta-(1-40) or Nalpha-OA-Abeta. The greater cytotoxicity of K16-OA-Abeta and K28-OA-Abeta may reflect their greater amphiphilicity. We conclude that lipidation can make Abeta more prone to aggregation and more cytotoxic, but these effects are highly site-specific.  相似文献   

12.
Familial Danish dementia is an early onset autosomal dominant neurodegenerative disorder linked to a genetic defect in the BRI2 gene and clinically characterized by dementia and ataxia. Cerebral amyloid and preamyloid deposits of two unrelated molecules (Danish amyloid (ADan) and beta-amyloid (Abeta)), the absence of compact plaques, and neurofibrillary degeneration indistinguishable from that observed in Alzheimer disease (AD) are the main neuropathological features of the disease. Biochemical analysis of extracted amyloid and preamyloid species indicates that as the solubility of the deposits decreases, the heterogeneity and complexity of the extracted peptides exponentially increase. Nonfibrillar deposits were mainly composed of intact ADan-(1-34) and its N-terminally modified (pyroglutamate) counterpart together with Abeta-(1-42) and Abeta-(4-42) in approximately 1:1 mixture. The post-translational modification, glutamate to pyroglutamate, was not present in soluble circulating ADan. In the amyloid fractions, ADan was heavily oligomerized and highly heterogeneous at the N and C terminus, and, when intact, its N terminus was post-translationally modified (pyroglutamate), whereas Abeta was mainly Abeta-(4-42). In all cases, the presence of Abeta-(X-40) was negligible, a surprising finding in view of the prevalence of Abeta40 in vascular deposits observed in sporadic and familial AD, Down syndrome, and normal aging. Whether the presence of the two amyloid subunits is imperative for the disease phenotype or just reflects a conformational mimicry remains to be elucidated; nonetheless, a specific interaction between ADan oligomers and Abeta molecules was demonstrated in vitro by ligand blot analysis using synthetic peptides. The absence of compact plaques in the presence of extensive neuro fibrillar degeneration strongly suggests that compact plaques, fundamental lesions for the diagnosis of AD, are not essential for the mechanism of dementia.  相似文献   

13.
Amyloid beta-peptide (Abeta) is a major component of plaques in Alzheimer's disease, and formation of senile plaques has been suggested to originate from regions of neuronal membrane rich in gangliosides. Here we demonstrate using NMR on 15N-labelled Abeta-(1-40) and Abeta-(1-42) that the interaction with ganglioside G(M1) micelles is localized to the N-terminal region of the peptide, particularly residues His13 to Leu17, which become more helical when bound. The key interaction is with His13, which undergoes a G(M1)-specific conformational change. The sialic acid residue of the ganglioside headgroup is important for determining the nature of the conformational change. The isolated pentasaccharide headgroup of G(M1) is not bound, suggesting the need for a polyanionic surface. Binding to heparin confirms this suggestion, since binding is of similar affinity but does not produce the same conformational changes in the peptide. A comparison of Abeta-(1-40) and Abeta-(1-42) indicates that binding to G(M1) micelles is not related to oligomerization, which occurs at the C-terminal end. These results imply that binding to ganglioside micelles causes a transition from random coil to alpha-helix in the N-terminal region, leaving the C-terminal region unstructured.  相似文献   

14.
Aggregation of proteins and peptides has been shown to be responsible for several diseases known as amyloidoses, which include Alzheimer disease (AD), prion diseases, among several others. AD is a neurodegenerative disorder caused primarily by the aggregation of beta-amyloid peptide (Abeta). Here we describe the stabilization of small oligomers of Abeta by the use of sulfonated hydrophobic molecules such as AMNS (1-amino-5-naphthalene sulfonate); 1,8-ANS (1-anilinonaphthalene-8-sulfonate) and bis-ANS (4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonate). The experiments were performed with either Abeta-1-42 or with Abeta-13-23, a shorter version of Abeta that is still able to form amyloid fibrils in vitro and contains amino acid residues 16-20, previously shown to be essential to peptide-peptide interaction and fibril formation. All sulfonated molecules tested were able to prevent Abeta aggregation in a concentration dependent fashion in the following order of efficacy: 1,8-ANS < AMNS < bis-ANS. Size exclusion chromatography revealed that in the presence of bis-ANS, Abeta forms a heterogeneous population of low molecular weight species that proved to be toxic to cell cultures. Since the ANS compounds all have apolar rings and negative charges (sulfonate groups), both hydrophobic and electrostatic interactions may contribute to interpeptide contacts that lead to aggregation. We also performed NMR experiments to investigate the structure of Abeta-13-23 in SDS micelles and found features of an alpha-helix from Lys(16) to Phe(20). 1H TOCSY spectra of Abeta-13-23 in the presence of AMNS displayed a chemical-shift dispersion quite similar to that observed in SDS, which suggests that in the presence of AMNS this peptide might adopt a conformation similar to that reported in the presence of SDS. Taken together, our studies provide evidence for the crucial role of small oligomers and their stabilization by sulfonate hydrophobic compounds.  相似文献   

15.
Alzheimer disease and familial British dementia are neurodegenerative diseases that are characterized by the presence of numerous amyloid plaques in the brain. These lesions contain fibrillar deposits of the beta-amyloid peptide (Abeta) and the British dementia peptide (ABri), respectively. Both peptides are toxic to cells in culture, and there is increasing evidence that early "soluble oligomers" are the toxic entity rather than mature amyloid fibrils. The molecular mechanisms responsible for this toxicity are not clear, but in the case of Abeta, one prominent hypothesis is that the peptide can induce oxidative damage via the formation of hydrogen peroxide. We have developed a reliable method, employing electron spin resonance spectroscopy in conjunction with the spin-trapping technique, to detect any hydrogen peroxide generated during the incubation of Abeta and other amyloidogenic peptides. Here, we monitored levels of hydrogen peroxide accumulation during different stages of aggregation of Abeta-(1-40) and ABri and found that in both cases it was generated as a short "burst" early on in the aggregation process. Ultrastructural studies with both peptides revealed that structures resembling "soluble oligomers" or "protofibrils" were present during this early phase of hydrogen peroxide formation. Mature amyloid fibrils derived from Abeta-(1-40) did not generate hydrogen peroxide. We conclude that hydrogen peroxide formation during the early stages of protein aggregation may be a common mechanism of cell death in these (and possibly other) neurodegenerative diseases.  相似文献   

16.
A pathological hallmark of Alzheimer's disease (AD) is the deposition of amyloid beta-protein (Abeta) in fibrillar form on neuronal cells. However, the role of Abeta fibrils in neuronal dysfunction is highly controversial. This study demonstrates that monosialoganglioside GM1 (GM1) released from damaged neurons catalyzes the formation of Abeta fibrils, the toxicity and the cell affinity of which are much stronger than those of Abeta fibrils formed in phosphate-buffered saline. Abeta-(1-40) was incubated with equimolar GM1 at 37 degrees C. After a lag period of 6-12 h, amyloid fibrils were formed, as confirmed by circular dichroism, thioflavin-T fluorescence, size-exclusion chromatography, and transmission electron microscopy. The fibrils showed significant cytotoxicity against PC12 cells differentiated with nerve growth factor. Trisialoganglioside GT1b also facilitated the fibrillization, although the effect was weaker than that of GM1. Our study suggests an exacerbation mechanism of AD and an importance of polymorphisms in Abeta fibrils during the pathogenesis of the disease.  相似文献   

17.
18.
The amyloid beta peptides (Abeta) are the major components of the senile plaques characteristic of Alzheimer's disease. Abeta peptides are generated from the cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. Beta-secretase (BACE), a type-I transmembrane aspartyl protease, cleaves APP first to generate a 99-amino acid membrane-associated fragment (CT99) containing the N terminus of Abeta peptides. Gamma-secretase, a multi-protein complex, then cleaves within the transmembrane region of CT99 to generate the C termini of Abeta peptides. The production of Abeta peptides is, therefore, dependent on the activities of both BACE and gamma-secretase. The cleavage of APP by BACE is believed to be a prerequisite for gamma-secretase-mediated processing. In the present study, we provide evidence both in vitro and in cells that BACE-mediated cleavage between amino acid residues 34 and 35 (Abeta-34 site) in the Abeta region is dependent on gamma-secretase activity. In vitro, the Abeta-34 site is processed specifically by BACE1 and BACE2, but not by cathepsin D, a closely related aspartyl protease. Moreover, the cleavage of the Abeta-34 site by BACE1 or BACE2 occurred only when Abeta 1- 40 peptide, a gamma-secretase cleavage product, was used as substrate, not the non-cleaved CT99. In cells, overexpression of BACE1 or BACE2 dramatically increased the production of the Abeta 1-34 species. More importantly, the cellular production of Abeta 1-34 species induced by overexpression of BACE1 or BACE2 was blocked by a number of known gamma-secretase inhibitors in a concentration-dependent manner. These gamma-secretase inhibitors had no effect on enzymatic activity of BACE1 or BACE2 in vitro. Our data thus suggest that gamma-secretase cleavage of CT99 is a prerequisite for BACE-mediated processing at Abeta-34 site. Therefore, BACE and gamma-secretase activity can be mutually dependent.  相似文献   

19.
Alzheimer's disease (AD) is characterized by increased beta amyloid (Abeta) levels, extracellular Abeta deposits in senile plaques, neurofibrillary tangles, and neuronal loss. However, the physiological role of normal levels of Abeta and its parent protein, the amyloid precursor protein (APP) are unknown. Here we report that low-level transgenic (Tg) expression of the Swedish APP mutant gene (APPswe) in Fischer-344 rats results in attenuated age-dependent cognitive performance decline in 2 hippocampus-dependent learning and memory tasks compared with age-matched nontransgenic Fischer-344 controls. TgAPPswe rats exhibit mild increases in brain APP mRNA (56.8%), Abeta-42 (21%), and Abeta-40 (6.1%) peptide levels at 12 mo of age, with no extracellular Abeta deposits or senile plaques at 6, 12, and 18 mo of age, whereas 3- to 6-fold increases in Abeta levels are detected in plaque-positive human AD patients and transgenic mouse models. The data support the hypothesis that a threshold paradigm underlies Abeta-related pathology, below which APP expression may play a physiological role in specific hippocampus-dependent tasks, most likely related to its neurotrophic role.  相似文献   

20.
The brains of Alzheimer's disease (AD) patients contain large numbers of amyloid plaques that are rich in fibrils composed of 40- and 42-residue amyloid-beta (Abeta) peptides. Several lines of evidence indicate that fibrillar Abeta and especially soluble Abeta aggregates are important in the etiology of AD. Recent reports also stress that amyloid aggregates are polymorphic and that a single polypeptide can fold into multiple amyloid conformations. Here we demonstrate that Abeta-(1-40) can form soluble aggregates with predominant beta-structures that differ in stability and morphology. One class of aggregates involved soluble Abeta protofibrils, prepared by vigorous overnight agitation of monomeric Abeta-(1-40) at low ionic strength. Dilution of these aggregation reactions induced disaggregation to monomers as measured by size exclusion chromatography. Protofibril concentrations monitored by thioflavin T fluorescence decreased in at least two kinetic phases, with initial disaggregation (rate constant approximately 1 h(-1)) followed by a much slower secondary phase. Incubation of the reactions without agitation resulted in less disaggregation at slower rates, indicating that the protofibrils became progressively more stable over time. In fact, protofibrils isolated by size exclusion chromatography were completely stable and gave no disaggregation. A second class of soluble Abeta aggregates was generated rapidly (<10 min) in buffered 2% hexafluoroisopropanol (HFIP). These aggregates showed increased thioflavin T fluorescence and were rich in beta-structure by circular dichroism. Electron microscopy and atomic force microscopy revealed initial globular clusters that progressed over several days to soluble fibrous aggregates. When diluted out of HFIP, these aggregates initially were very unstable and disaggregated completely within 2 min. However, their stability increased as they progressed to fibers. Relative to Abeta protofibrils, the HFIP-induced aggregates seeded elongation by Abeta monomer deposition very poorly. The techniques used to distinguish these two classes of soluble Abeta aggregates may be useful in characterizing Abeta aggregates formed in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号