首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cambial activity and vessel differentiation of the Quercus robur stem were investigated in relation to concentration of growth regulators and sucrose, seasonal changes in the sensitivity of cambial cells, and axial polarity of the stem. Basipetal efflux of natural auxin was measured in the oak stem cambial region. IAA, GA3, kinetin and sucrose affected cambial activity and/or initiation of vessel differentiation differently, depending upon concentration. Depending upon the season, kinetin increased or reduced the stimulation of cambial activity caused by IAA and GA3, but it did not affect the differentiation of vessels. Supply of sucrose in higher concentrations reduced the number of differentiated vessels but did not decrease the stimulation of cambial divisions.Unlike stimulation of cambial activity by GA3, auxin stimulation of cambial divisions and differentiation of vessels were highly dependent upon stem polarity, 2,3,5-triiodobenzoic acid (TIBA) inhibited formation of vessels, but not cambial activity. The oscillations in basipetal efflux of natural auxin from the cambial stem region of successive 6 mm long sections substantiate the hypothesis that the histogenesis of xylem tissue in ring-porous species is under control of the vectoriat field that is associated with oscillatory phenomena in polar auxin transport.  相似文献   

2.
Summary The current notion that hormonal level and cell response are clearly correlated has often been challenged recently. During the period of cambial activity, auxin content seems to control the intensity of mitosis and some features of the resulting wood, but not the duration of the active period itself. During cambial rest, the indole-3-acetic acid (IAA) level often remains high in the cambium, but the cell sensitivity to auxin is low. The decrease of auxin transport in autumn is sometimes interpreted as a major qualitative change affecting the pattern of transport, and sometimes as a secondary change occurring later than rest onset. The causes of the seasonal variation of cambial response remain unknown. A hypothesis is proposed that accounts for the structural-functional changes occurring in cambial cells during the onset of dormancy. Abscisic acid (ABA) may reduce wood production and xylem cell enlargement in late summer. An important amount of ABA may be present in the cambial zone in autumn after drought stress and in spring in the young growing shoot. Changes in ABA level do not appear to be clearly correlated with the different steps of cambial rest and activity. Beyond the role of ABA as a stress mediator, its participation in the annual regulation of cambial activity remains unclear. Its distribution in the most alkaline compartments may account for the particularities of its seasonal activity. The involvement of IAA and ABA in cambial growth is discussed within the scope of a possible annual alternation of two different metabolisms in the cambial cell.Abbreviations ABA abscisic acid - DPA dihydrophaseic acid - GA gibberellic acid - GC-MS gas chromatography-mass spectrometry - IAA indole-3-acetic acid - PA phaseic acid - RNA ribonucleic acid - SICM single ion current monitoring - SIM selected ion monitoring  相似文献   

3.
I Iliev  R Savidge 《Phytochemistry》1999,50(6):953-960
Proteolytic activity in the cambial zone and developing xylem of Pinus banksiana Lamb. was investigated over an annual cycle of growth and dormancy. Highest proteolytic activity was associated with the most active period of primary-wall radial expansion of cambial derivatives, in early spring, before protoplasmic autolysis was initiated in developing earlywood. Three pH maxima of proteolytic activity, near pH 3.0, 6.5 and 9.5, were observed at that time. In general, activities measured at pH values below 7.0 were greater than those determined above pH 7.0 at all stages in the annual cycle, in both cambial zone and developing xylem, although elevated activity at alkaline pH was also observed during springtime growth. Polyvinylpolypyrollidone (PVP) treatment markedly enhanced pH 7.5 but not pH 4.0 proteolytic activity in the cambial zone, but not in developing xylem, indicating the presence of PVP-binding proteinase regulators in the cambium. By fractionation and effector studies total proteolysis was determined to comprise interactions between serine, cystine, aspartate and metallo-proteases having MWs, by gel chromatography, between 10 and 100 kDa. The observations point to a complex regulatory mechanism controlling the presence and catalytic rates of the distinct types of proteases in the cambial region throughout an annual cycle of growth and dormancy.  相似文献   

4.
树木生长是森林生态系统固碳的主要方式,树木生长过程受到气候与非气候因素的共同作用。树木径向生长长期定位监测是明确树木生长对气候变化响应的重要研究手段。本文对运用微树芯法的树木形成层活动及径向生长过程研究进行了总结。首先,综述了气候因素对树木形成层活动的影响: 寒冷湿润区温度决定树木生长开始和停止,干旱半干旱区水分和温度共同决定生长开始,水分决定生长停止;生长速率和持续时间共同决定生长量,最大生长速率出现在夏至前后;短期施氮并不能影响树木径向生长动态。其次,探讨了生物因素对树木径向生长过程的调控: 形成层活动开始时间因树种、树龄、竞争关系而有所差异;非结构性碳水化合物的季节动态与径向生长过程相耦合。最后,阐述了气候因素和生物因素交互作用下树木次生生长的响应机制。针对以上进展,本文提出了目前研究尚存在的问题并展望了未来的发展前景,以期为进一步的科学研究提供参考。  相似文献   

5.
6.
S. Pramod  Priti B. Patel  Karumanchi S. Rao 《Flora》2013,208(10-12):549-555
The effect of exogenous ethephon on cambial activity, xylem production and ray population in young shoots of Leucaena leucocephala was investigated anatomically. The application of ethephon showed a diphasic effect on cambial activity and xylogenesis in a dose dependent manner. Lower concentration of ethephon enhanced cambial activity while high concentrations reduced cambial cell divisions and daughter-cell differentiation. High ethephon concentration also resulted in shorter vessel elements, thick walled fibers and phenolic accumulation in ray cells and vessel elements, whereas low concentration allowed elongation of fibers and vessel elements. The density of rays increased significantly with increase in ethylene concentration. The evaluation of longitudinal sections of cambial zone in ethephon treated plants showed high frequency of transformation of fusiform initials into ray initials through divisions and segmentation, resulting in high ray frequency in both xylem and phloem. The present study demonstrates that ethylene plays an important role in regulating secondary vascular tissue composition by reducing the population of fusiform initials in the cambium.  相似文献   

7.
By screening a T-DNA population of Arabidopsis mutants for alterations in inflorescence stem vasculature, we have isolated a mutant with a dramatic increase in vascular tissue development, characterized by a continuous ring of xylem/phloem. This phenotype is the consequence of premature and numerous cambial cell divisions in both the fascicular and interfascicular regions that result in the loss of the alternate vascular bundle/fiber organization typically observed in Arabidopsis stems. The mutant was therefore designated high cambial activity (hca). The hca mutation also resulted in pleiotropic effects including stunting and a delay in developmental events such as flowering and senescence. The physiological characterization of hca seedlings in vitro revealed an altered auxin and cytokinin response and, most strikingly, an enhanced sensitivity to cytokinin. These results were substantiated by comparative microarray analysis between hca and wild-type plants. The genetic analysis of hca indicated that the mutant phenotype was not tagged by the T-DNA and that the hca mutation segregated as a single recessive locus, mapping to the long arm of chromosome 4. We propose that hca is involved in mechanisms controlling the arrangement of vascular bundles throughout the plant by regulating the auxin-cytokinin sensitivity of vascular cambial cells. Thus, the hca mutant is a useful model for examining the genetic and hormonal control of cambial growth and differentiation.  相似文献   

8.
Expression of Manduca Broad-Complex (BR-C) mRNA in the larval epidermis is under the dual control of ecdysone and juvenile hormone (JH). Immunocytochemistry with antibodies that recognize the core, Z2, and Z4 domains of Manduca BR-C proteins showed that BR-C appearance not only temporally correlates with pupal commitment of the epidermis on day 3 of the fifth (final) larval instar, but also occurs in a strict spatial pattern within the abdominal segment similar to that seen for the loss of sensitivity to JH. Levels of Z2 and Z4 BR-C proteins shift with Z2 predominating at pupal commitment and Z4 dominant during early pupal cuticle synthesis. Both induction of BR-C mRNA in the epidermis by 20-hydroxyecdysone (20E) and its suppression by JH were shown to be independent of new protein synthesis. For suppression JH must be present during the initial exposure to 20E. When JH was given 6 h after 20E, suppression was only seen in those regions that had not yet expressed BR-C. In the wing discs BR-C was first detected earlier 1.5 days after ecdysis, coincident with the pupal commitment of the wing. Our findings suggest that BR-C expression is one of the first molecular events underlying pupal commitment of both epidermis and wing discs.  相似文献   

9.
Hormonal regulation of macrophage collagenase activity.   总被引:3,自引:0,他引:3  
Whereas peritoneal macrophages from nonpregnant guinea pigs were stimulated in vitro by endotoxin to produce collagenase on the second day of culture, those from pregnant guinea pigs were incapable of this response. However, if the cells from pregnant animals were preincubated for one day prior to endotoxin stimulation, collagenase activity could be detected. Injection of either estrogen or progesterone into guinea pigs at doses comparable to those found during pregnancy prior to removal of the peritoneal cells also inhibited the in vitro stimulation of collagenase production. The addition of these hormones in vitro revealed that at 5 × 10?6 M estrogen and progesterone inhibited 53% and 100% respectively of the collagenase activity. Addition of both hormones at a final concentration of 5 × 10?7 M of each inhibited 87% of the activity indicating a synergistic effect since this concentration of either hormone alone was ineffective.  相似文献   

10.
The effects of chorionic gonadotropin, estriol (E3), leptin, ghrelin, and kisspeptin on the intracellular expression of perforin, granzyme A, and granzyme B was studied in separated NK cells. All studied hormones except E3 are could modulate the expression of cytotoxic enzymes in NK cells by suppression of the expression of the most active proapoptotic agents, resulting in increased expression of granzyme A, which is typical of the decidual subpopulation of these lymphocytes.  相似文献   

11.
Endogenous levels of cambial region abscisic acid (ABA) were quantified by immunoassay and assessed together with cambial growth activity in poplar (Populus nigra L. × P. maximowiczii Henry, clone Kamabuchi) over the course of a growing season. The level of cambial region ABA increased from spring to late-summer but decreased sharply in autumn. Cambial growth activity, measured as the radial number of undifferentiated cambial cells and enlarging xylem cells, also increased from spring to summer and decreased sharply in autumn, indicating the onset of cambial dormancy. Exogenous ABA, applied laterally to poplar stems at two times within the growing season, enhanced cambial growth activity, as the radial number of undifferentiated cambial cells increased in ABA-treated trees subsequent to the two application times. Xylem cell development was also affected by exogenous ABA as fibre length increased significantly in ABA-treated trees at both application times. The positive correlation of cambial region ABA and cambial growth activity as well as the positive effects of exogenous ABA application thereon sheds new light on the role of this hormonal growth regulator.  相似文献   

12.
Nuclear localization of the rat glucocorticosteroid receptor (rGR) transiently expressed in COS-7 cells appears to be mediated by two nuclear localization signals, NL1 and NL2, in a hormone-dependent mechanism. We investigated the intracellular distribution of the human GR (hGR) expressed in COS-7 cells, by a different immunohistochemical technique involving immunostaining of cell pellet sections, thus avoiding the use of cell permeabilizing agents and allowing rigorous comparison between successive experiments. With a large set of hGR mutants, we could define determinants of the hGR nuclear localization and compare them with those previously reported for rGR. Our study demonstrated two hormone-dependent nuclear localization signals. NL1 activity, overlapping the DNA-binding domain (DBD)-hinge boundary, was repressed by the unliganded ligand-binding domain (LBD), even if the repressed NL1 retained a residual potency to target hGR in the nucleus. Structure/function analysis suggested a bipartite structure of NL1, analogous to that of other nuclear targeting signals (the carboxy-terminal part of DBD between amino acids 478 and 487 and the beginning of the hinge region which includes a basic amino acid stretch between 491 and 498). Upon hormone binding, NL2, located in the LBD, was activated, but was unable by itself to sustain full nuclear localization, which required the derepressed NL1 activity. Only two sequences in the LBD, localized between amino acids 600 and 626 and from amino acid 696 up to the carboxyl-terminal amino acid 777, respectively, were found to inhibit NL1 activity. As previously reported, efficient nuclear retention, mandatory for gene expression, did not required DNA-binding activity. The controversial intracellular localization of the unliganded form of hGR and the role of hsp90 in cytoplasmic localization are further discussed.  相似文献   

13.
Leaf senescence is a genetically controlled dismantling programme that enables plants to efficiently remobilise nutrients to new growing sinks. It involves substantial metabolic reprogramming whose timing is affected by developmental and environmental signals. Plant hormones have long been known to affect the timing of leaf senescence, but they also affect plant development and stress responses. It has therefore been difficult to tease apart how the different hormones regulate the onset and progression of leaf senescence, i.e., whether they directly affect leaf senescence or affect it indirectly by altering the developmental programme or by altering plants’ response to stress. Here we review research on hormonal regulation of leaf senescence and propose that hormones affect senescence through differential responses to developmental and environmental signals. We suggest that leaf senescence strictly depends on developmental changes, after which senescence can be induced, depending on the type of hormonal and environmental cues.  相似文献   

14.
The molecular mechanisms that control the ordered patterning of vascular tissue development in plants are not well understood. Several models propose a two-component system for vascular differentiation. These components include an inducer of vascular tissue development and an inhibitor that prevents the formation of vascular bundles near pre-existing bundles. We have identified two recessive allelic mutants in Arabidopsis, designated continuous vascular ring (cov1), that display a dramatic increase in vascular tissue development in the stem in place of the interfascicular region that normally separates the vascular bundles. The mutant plants exhibited relatively normal vascular patterning in leaves and cotyledons. Analysis of the interaction of cov1 with a known auxin signalling mutant and direct analysis of auxin concentrations suggests that cov1 affects vascular pattering by some mechanism that is independent of auxin. The COV1 protein is predicted to be an integral membrane protein of unknown function, highly conserved between plants and bacteria. In plants, COV1 is likely to be involved in a mechanism that negatively regulates the differentiation of vascular tissue in the stem.  相似文献   

15.
16.
Chick liver cell monolayers synthesize fatty acids at in vivo rates and are responsive to insulin and glucagon. High rates of fatty acid synthesis are maintained with insulin present and lost slowly without insulin. Glucagon or 3',5'-cyclic AMP cause immediate cessation of fatty acid synthesis. The site of inhibition appears to be cytoplasmic acetyl-CoA carboxylase which catalyzes the first committed step of fatty acid synthesis. Liver carboxylase exists either as catalytically inactive protomers or active filamentous polymers. Citrate, an allosteric activator of the enzyme, is required for both catalysis and polymerization. Glucagon and cAMP cause an immediate decrease in the cytoplasmic citrate concentration of chick liver cells apparently by inhibiting the conversion of glucose to citrate at the phosphofructokinase reaction. Since fatty acid synthesis and citrate level are closely correlated, citrate appears to be a feed-forward activator of the carboxylase in vivo. Compelling evidence indicates that carboxylase filaments are present in the intact cell when citrate levels are high and depolymerize when citrate levels fall. Hence, carboxylase activity and fatty acid synthetic rate appear to be determined by cytoplasmic citrate level.  相似文献   

17.
The intracellular conversion of testosterone to estradiol by the aromatase enzyme complex is an important step in many of the central actions of testosterone. In rats, estrogen given alone, or in combination with dihydrotestosterone, mimics most of the behavioral effects of testosterone, whereas treatment with antiestrogens or aromatase inhibitors block facilitation of copulatory behavior by testosterone. We used a highly sensitive in vitro radiometric assay to analyze the distribution and regulation of brain aromatase activity. Studies using micropunch dissections revealed that the highest levels of aromatase activity are found in an interconnected group of sexually dimorphic nuclei which constitutes a neural circuit important in the control of male sexual behavior. Androgen regulated aromatase activity in many diencephalic nucleic, including the medial preoptic nucleus, but not in the medial and cortical nuclei of the amygdala. Additional genetic evidence for both androgen-dependent and -independent control of brain AA was obtained by studies of androgen-insensitive testicular-feminized rats. These observations suggest that critical differences in enzyme responsiveness are present in different brain areas. Within several nuclei, sex differences in aromatase induction correlated with differences in nuclear androgen receptor concentrations suggesting that neural responsiveness to testosterone is sexually differentiated. Estradiol and dihydrotestosterone acted synergistically to regulate aromatase activity in the preoptic area. In addition, time-course studies showed that estrogen treatment increased the duration of nuclear androgen receptor occupation in the preoptic area of male rats treated with dihydrotestosterone. These results suggest possible ways that estrogens and androgens may interact at the cellular level to regulate neural function and behavior.  相似文献   

18.
端粒酶活性调节的分子机制   总被引:4,自引:0,他引:4  
Liu WJ  Ding J 《生理科学进展》2001,32(3):220-224
人端粒酶由RNA亚基、hTERT催化亚基和hTEP1调节蛋白等组成。端粒酶对端粒结构的稳定起着重要的作用,而端粒结构和端粒结合蛋白也影响着端粒酶活性。某些化疗药物通过破坏端粒结构下调端粒酶活性。端粒酶的激活需要hTERT基因的从头转录和各个蛋白亚基正确装配为端粒酶全酶。端粒酶活性调节的分子机制包括:(1)TERT基因的表达和转录是决定端粒酶活性的重要环节,受多种因素调控;(2)蛋白激酶Cα和蛋白激酶B磷酸化端粒酶蛋白而激活端粒酶,蛋白磷酸酯酶2A(PP2A)可逆转这一过程,下调端粒酶活性;(3)多种癌基因和抑癌基因及其编码的蛋白质也直接或间接与端粒蛋白、端粒酶蛋白反应,参与端粒酶活性的调控。  相似文献   

19.
Microdialysis probes were used to sample the cambial region of Picea abies stems during the cambial reactivation period. The concentrations of ethylene and zeatinriboside in each sample were measured by gas chromatography and enzyme-linked immuno-sorbent assay, respectively. The ethylene level increased throughout the experimental period, except for a temporary decrease that occurred about the time of budburst on the lower branches. The zeatin-riboside level changed relatively little during the same period. The results indicate that increased activity in the cambial region was associated with an increase in the level of ethylene but not of zeatinriboside.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号