首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 72 毫秒
1.
Cytokinins are phytohormones that regulate diverse developmental processes throughout the life of a plant. trans-Zeatin, kinetin, benzyladenine and dihydrozeatin are adenine-type cytokinins that are perceived by the AHK cytokinin receptors. Endogenous cytokinin levels are critical for regulating plant development. To manipulate intracellular cytokinin levels, caged cytokinins were designed on the basis of the crystal structure of the AHK4 cytokinin receptor. The caged cytokinin was photolyzed to release the cytokinin molecule inside the cells and induce cytokinin-responsive gene expression. The uncaging of intracellular caged cytokinins demonstrated that cytokinin-induced root growth inhibition can be manipulated with photo-irradiation. This caged cytokinin system could be a powerful tool for cytokinin biology.  相似文献   

2.
Cytokinins are a class of plant hormones that have been linked to numerous growth and developmental aspects in plants. The cytokinin signal is perceived by sensor histidine kinase receptors and transmitted via histidine phosphotransfer proteins (HPts) to downstream response regulators. Since their discovery, cytokinin receptors have been a focus of interest for many researchers. Ongoing research on these transmembrane receptors has greatly broadened our knowledge in terms of cytokinin–receptor interaction, receptor specificity, receptor cellular localization, and receptor functions in cytokinin related growth and developmental processes. This review focuses on the recent advances on the cytokinin receptors and HPt proteins in Arabidopsis.  相似文献   

3.
Recent breakthroughs in cytokinin research have shed new light on the role of cytokinin in plant development. Loss-of-function mutants of a cytokinin receptor reveal a role for the hormone in establishment of the vasculature during embryonic development. Cytokinin controls the number of early cell divisions via a two-component signaling system. Genetically engineered plants that have a reduced cytokinin content demonstrate the regulatory role of the hormone in control of meristem activity and organ growth during postembryonic development, with opposite roles in roots and shoots. There is increasing evidence from work with transgenic plants and mutant analysis that cytokinins do not perform the previously proposed function as a root-derived signal for the regulation of shoot branching. Root-borne cytokinins might serve as a long-range signal controling other processes at distant sites, such as responding to nutritional status, particularly nitrogen availability.  相似文献   

4.
Cytokinins play a central role in the regulation of plant cell division and numerous developmental processes. Pleiotropic effects have made studies of this hormone difficult, and cytokinin signalling pathways have long remained elusive. The recent identification of CRE1 (a histidine kinase identical to AHK4 and WOL) as the cytokinin receptor of Arabidopsis thaliana is a landmark in cytokinin research. Mutations have been identified in CRE1, and the phenotype of loss-of-function mutations sheds new light on the role of cytokinins in plant development. This article describes the experimental paths leading to receptor identification and the current interpretation of its function.  相似文献   

5.
Although cytokinin plays a central role in plant development, our knowledge of the biosynthesis, distribution, perception and signal transduction of cytokinin is limited. Recent molecular-genetic studies have, however, implicated involvement of a two-component system in cytokinin signal transduction. Furthermore, new mutants with altered cytokinin responses and genes involved in cytokinin signaling have been identified.  相似文献   

6.
7.
The year 2001 saw an amazing progress in cytokinin studies. Ten years ago, cytokinin receptor genes and genes encoding cytokinin biosynthetic enzymes together with the corresponding proteins were identified in plants. These studies elucidated the molecular mechanism of cytokinin effects on the expression of cytokinin responsive genes and ultimately established the endogenous synthesis of cytokinins in plant cells, justifying their membership among plant hormones. The paper describes in short the edifying and sometimes paradoxical story of these fundamental and captivating discoveries.  相似文献   

8.
Summary Cytokinins are essential hormones for plant growth and development. They are also of vital importance for in vitro manipulations of plant cells and tissues. The biological activities and chemistry of cytokinins are well defined but very little is known about their mode of action and it is only recently that cytokinin genes have been identified in plants. This review summarizes the current status of knowledge on cytokinin biosynthesis, metabolism and signal transduction, with an emphasis on genes encoding metabolic enzymes and putative receptors, and genes rapidly induced by cytokinins.  相似文献   

9.
Phytohormones signal and combine to maintain the physiological equilibrium in the plant. Pathogens enhance host susceptibility by modulating the hormonal balance of the plant cell. Unlike other plant hormones, the detailed role of cytokinin in plant immunity remains to be fully elucidated. Here, extensive data mining, including of pathogenicity factors, host regulatory proteins, enzymes of hormone biosynthesis, and signaling components, established an integrated signaling network of 105 nodes and 163 edges. Dynamic modeling and system analysis identified multiple cytokinin-mediated regulatory interactions in plant disease networks. This includes specific synergism between cytokinin and salicylic acid pathways and previously undiscovered aspects of antagonism between cytokinin and auxin in plant immunity. Predicted interactions and hormonal effects on plant immunity are confirmed in subsequent experiments with Pseudomonas syringae pv tomato DC3000 and Arabidopsis thaliana. Our dynamic simulation is instrumental in predicting system effects of individual components in complex hormone disease networks and synergism or antagonism between pathways.  相似文献   

10.
The plant hormone cytokinin is implicated in a large number of developmental and physiological processes. In the model plant Arabidopsis thaliana cytokinin is perceived by a class of membrane-bound receptor histidine kinases with three members, namely AHK2, AHK3, and CRE1/AHK4. These receptors possess an N-terminally located putative extracellular cyclases/histidine kinases associated sensor extracellular (CHASE) domain, which is responsible for hormone recognition. This hydrophilic domain and the two flanking transmembrane regions (CHASE-TM) were expressed using a cell-free protein expression system based on a bacterial ribosomal extract. To obtain soluble CHASE-TM protein, different detergents were directly added to the cell-free reaction and their effect on the yield of soluble protein was studied. After optimising the experimental set-up and employing Brij 58 as a detergent more than 3 mg/ml soluble protein of the CHASE-TM domain were obtained. Affinity purification via a C-terminally fused His-tag resulted in greater than 90% purity. The identity of the purified domain was confirmed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis. Circular dichroism spectroscopy was used and a predominantly α-helical folding pattern was shown, which is in good accordance with secondary structure prediction. A newly developed cytokinin binding assay confirmed the functionality of the thus expressed and purified CHASE-TM domain. The work presented clearly demonstrates the feasibility of producing high amounts of a plant membrane protein using a cell-free protein expression system. This opens the possibility of further biochemical and pharmacological analysis, as well as structural studies on this type of receptor protein.  相似文献   

11.
12.
植物TCP转录因子的作用机理及其应用研究进展   总被引:2,自引:0,他引:2  
TCP转录因子是一类植物特有蛋白,含有保守的TCP domain,其中由60个氨基酸组成的b HLH结构是结合DNA和蛋白互作所必需的。TCP转录因子由于其广泛参与调控植物的生长发育过程(如分枝、株高、叶型、花型等)而备受关注。最近有报道显示,TCP转录因子在植物逆境胁迫应答中(如低温和高盐)同样发挥重要作用。TCP蛋白参与多种信号转导途径(如油菜素内酯、茉莉酸、赤霉素、细胞分裂素等),可能是连接生长发育和介导胁迫响应的一个交叉点。本文从分子生物学角度,系统综述了植物TCP转录因子的作用机理及其在激素应答、发育调控及环境胁迫响应等过程中的功能,以期为基因工程方法改良作物生长模式和抗性提供参考。  相似文献   

13.
14.
Rapid increase of NO release in plant cell cultures induced by cytokinin.   总被引:30,自引:0,他引:30  
N N Tun  A Holk  G F Scherer 《FEBS letters》2001,509(2):174-176
4,5-Diaminofluorescein, a fluorescence indicator for NO, was applied to detect the release of NO from plant cells. NO production was increased within 3 min when plant cell cultures (Arabidopsis, parsley, and tobacco) were treated by cytokinin and was dose-dependent and signal-specific in that other plant hormones and inactive cytokinin analog were not effective in stimulating of NO release. The response was quenched by addition of 2-(aminoethyl)-2-thiopseudourea, an inhibitor of the animal NO synthase, and by addition of an NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-1-oxy-3-oxide. These results imply that NO may act in cytokinin signal transduction.  相似文献   

15.
Cytokinins are plant hormones involved in regulation of diverse developmental and physiological processes in plants whose molecular mechanisms of action are being intensely researched. However, most rapid responses to cytokinin signals at the proteomic and phosphoproteomic levels are unknown. Early cytokinin responses were investigated through proteome-wide expression profiling based on image and mass spectrometric analysis of two-dimensionally separated proteins and phosphoproteins. The effects of 15 min treatments of 7-day-old Arabidopsis thaliana seedlings with four main cytokinins representing hydroxyisopentenyl, isopentenyl, aromatic, and urea-derived type cytokinins were compared to help elucidate their common and specific function(s) in regulating plant development. In proteome and phosphoproteome maps, significant differences were reproducibly observed for 53 and 31 protein spots, respectively. In these spots, 96 proteins were identified by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS), providing a snapshot of early links in cytokinin-regulated signalling circuits and cellular processes, including light signalling and photosynthesis, nitrogen metabolism, the CLAVATA pathway, and protein and gene expression regulation, in accordance with previously described cytokinin functions. Furthermore, they indicate novel links between temperature and cytokinin signalling, and an involvement of calcium ions in cytokinin signalling. Most of the differentially regulated proteins and phosphoproteins are located in chloroplasts, suggesting an as yet uncharacterized direct signalling chain responsible for cytokinin action in chloroplasts. Finally, first insights into the degree of specificity of cytokinin receptors on phosphoproteomic effects were obtained from analyses of cytokinin action in a set of cytokinin receptor double mutants.  相似文献   

16.
When leaves of Bryophyllum marnierianum are detached from the plant, plantlets develop from primordia located at their margins. Leaves excised with a piece of stem attached do not produce plantlets. Severing the major leaf veins overcomes the inhibitory effect of the attached stem, indicating that the control agent is transmitted through the vascular system. A possible mechanism is that an inhibitory substance, possibly a known plant hormone, transported from the stem to the leaf, suppresses plantlet development. A number of hormones were tested for their ability to inhibit plantlet primordium development in whole isolated leaves. Auxins had no effect, indicating that apical dominance is not involved. The cytokinins zeatin, kinetin, and benzylaminopurine (BAP) strongly inhibited plantlet development, suggesting that they may be the or a factor involved in maintenance of plantlet primordium dormancy when the leaf is attached to the plant. This hypothesis was strongly supported by the finding that treatment of leaves attached to stems with a cytokinin antagonist (purine riboside) released the primordia from inhibition. In contrast to whole leaves, plantlet primordium development on leaf explants incubated on Murashige Skoog medium containing 3% sucrose was strongly stimulated by cytokinins. A possible explanation of these observations is that in whole leaves the cytokinin signal is transduced into an inhibitory signal whereas in the isolated primordium cytokinin has a direct stimulatory effect. The inhibitory cytokinin pathway must be dominant as long as the leaf is attached to the plant. A model is proposed which could explain these findings. This study points to a novel role of cytokinins in the maintenance of foliar plantlet primordium dormancy.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号