首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Leaf shape is controlled early on by initiation at the shoot apical meristem (SAM), as well as by changes in the rates and planes of cell division and the polarity-dependent differentiation of leaf cells. To elucidate the regulation of this differentiation by signal(s) from the SAM, we screened for mutations in genes that might be involved in these early processes. A novel recessive mutant, 356-2 [identified as a new allele of thedeformed root and leaf1 (drl1) mutant], was isolated from a collection ofDs transposon insertion lines. The356- 2/drl1- 101 mutant produces narrow, filamentous leaves and defective mer-istems. Its palisade cells have a spongy cell-like structure and are fewer in number, indicating that the leaves are abaxialized. Interestingly, some of those filament-like leaves have no vascular tissues inside their blades.DRL1 encodes a protein similar to the yeast elongator-associated protein (EAP) KTI12. The amino acid sequence of DRL1 is universally conserved in prokaryotes and eukaryotes. These facts suggest that DRL1 might positively regulate leaf polarity and SAM activity by controlling cell proliferation and differentiation.  相似文献   

3.
4.
The shoot and root apical meristems (SAM and RAM, respectively) of plants serve both as sites of cell division and as stem cell niches. The SAM is also responsible for the initiation of new leaves, whereas the analogous process of lateral root initiation occurs in the pericycle, a specialized layer of cells that retains organogenic potential within an otherwise non-dividing region of the root. A picture is emerging of how cell division, growth, and differentiation are coordinated in the meristems and lateral organ primordia of plants. This is starting to reveal striking parallels between the control of stem cell maintenance in both shoots and roots, and to provide information on how signalling from developmental processes and the environment impact on cell behaviour within meristems.  相似文献   

5.
Making leaves     
Leaves are determinate organs that develop from the flanks of the shoot apical meristem through founder cell recruitment, establishment of proximodistal, dorsoventral and mediolateral axes, and subsequent growth, expansion and differentiation along these axes. Maintenance of the shoot apical meristem and production of leaves requires balanced partitioning of cells between pluripotent and differentiation fates. Hormones have a significant role in this balance but it is becoming apparent that additional intrinsic and extrinsic inputs influence hormone signalling to control meristem function and leaf initiation. As leaves develop, temporal and spatial regulation of growth and maturation determines leaf shape and complexity. Remarkably genes involved in leaf development in the context of the shoot apical meristem are also involved in elaboration of the leaf shape to generate subtle marginal serrations, more prominent lobes or a dissected compound leaf. Potentially these common regulatory modules represent a fundamental means of setting up boundaries separating discrete zones of growth. Defining gene networks involved in leaf shape variation and exploring interspecies differences between such networks is enabling exciting insight into changes that contribute to natural variation of leaf form.  相似文献   

6.
The shoot apical meristem (SAM) serves as a non-drying reservoir of pluripotent stem cells to supply new daughter cells forming above-ground tissues and organs such as leaves, stems, flowers and fruits throughout the life cycle of plants. Accordingly, the homeostasis control of stem cell division and differentiation must be an essential core mechanism for harmonic growth and development of plants as multicellular higher eukaryotes. Unlike animals, plants are sessile organisms and thus constantly face environmental factors, including abiotic stresses. Therefore, post-embryonic development derived from stem cells in the SAM likely interacts with surrounding abiotic stresses for plant adaptation and plastic development. For this reason, this review provides the most recent findings regarding comprehensive signaling networks involved in stem cell maintenance in the SAM, and then describes how stem cell signaling is related with abiotic stress response through involvement of phytohormones and reactive oxygen species in the SAM.  相似文献   

7.
8.
9.
Leaf initiation and development in soybean under phosphorus stress   总被引:4,自引:0,他引:4  
Experiments investigated changes in leaf development in young soybean plants progressing into P stress. The apical meristem and leaf structure were examined anatomically to evaluate the involvement of cell division and cell expansion in the restriction of leaf number and individual leaf size. Seedlings were deprived of P for 32 d following germination. Leaf initiation rates declined noticeably after about 2 weeks, even though the apical dome was of similar size and had a similar number of cells as controls. Primordia appeared morphologically similar also. Expansion of primary and the first three trifoliolate leaves of -P plants was severely reduced, and expansion of each leaf ceased, uniformly, when an area of about 40 cm(2) was obtained. Leaf epidermal cell size in the lateral plane was unaffected. The results indicate that expansion of leaves under P stress was limited by the number of cell divisions, which would imply control of cell division by a common regulatory factor within the leaf canopy.  相似文献   

10.
Stem cell maintenance in multilayered shoot apical meristems (SAMs) of plants requires strict regulation of cell growth and division. Exactly how the complex milieu of chemical and mechanical signals interact in the central region of the SAM to regulate cell division plane orientation is not well understood. In this paper, simulations using a newly developed multiscale computational model are combined with experimental studies to suggest and test three hypothesized mechanisms for the regulation of cell division plane orientation and the direction of anisotropic cell expansion in the corpus. Simulations predict that in the Apical corpus, WUSCHEL and cytokinin regulate the direction of anisotropic cell expansion, and cells divide according to tensile stress on the cell wall. In the Basal corpus, model simulations suggest dual roles for WUSCHEL and cytokinin in regulating both the direction of anisotropic cell expansion and cell division plane orientation. Simulation results are followed by a detailed analysis of changes in cell characteristics upon manipulation of WUSCHEL and cytokinin in experiments that support model predictions. Moreover, simulations predict that this layer-specific mechanism maintains both the experimentally observed shape and structure of the SAM as well as the distribution of WUSCHEL in the tissue. This provides an additional link between the roles of WUSCHEL, cytokinin, and mechanical stress in regulating SAM growth and proper stem cell maintenance in the SAM.  相似文献   

11.
Cyclin dependent kinases (CDKs) play important roles in the plant cell cycle, a highly coordinated process in plant growth and development. To understand the regulatory network involving the CDKs, we have examined the role of ACK1, a gene that has significant homology to known ICKs (inhibitors of CDKs), but occupies a distinct branch of the ICK phylogenetic tree. Overexpression of ACK1 in transgenic Arabidopsis significantly inhibited growth, leading to effects such as serration of leaves, as a result of strong inhibition of cell division in the leaf meristem. ACK1 transgenic plants also differed morphologically from control Arabidopsis plants, and the cells of ACK1 transgenics were more irregular than the corresponding cells of control plants. These results suggest that ACK1 acts as a CDK inhibitor in Arabidopsis, and that the alterations in leaf shape may be the result of restricted cell division.  相似文献   

12.
Development of leaf shape   总被引:4,自引:0,他引:4  
Variation among vascular plants in the initiation and patterning of leaves results in a diverse array of leaf shape, including the strap-like leaf of many grasses and the broad lamina of most eudicots. Recent findings highlight the importance of interactions between the shoot apical meristem (SAM) and developing leaf primordia in axis specification and the establishment of leaf shape. Global regulators of epigenetic states have been implicated in these interactions and may play a role in distinguishing founder cells and stem cells within the SAM.  相似文献   

13.
茎尖分生组织是位于植物顶端具有持续分化能力的组织,通过细胞分裂、分化产生茎、叶和花等器官,形成植株地上部分。茎尖分生组织在分化过程中受外界环境因素、内源激素水平和分子调控等影响,表现出明显变化。该文综合国内外近年来有关茎尖分生组织分化调控的研究进展,从茎尖分生组织的形态结构和环境影响因素,以及激素调控和分子调控等方面,对茎尖分生组织分化活动的研究进行综述,并对目前研究现状存在问题及未来研究方向进行了分析和展望。  相似文献   

14.
15.
16.
17.
Metabolic aspects of organogenesis in the shoot apical meristem   总被引:1,自引:0,他引:1  
  相似文献   

18.
Shaping up: the genetic control of leaf shape   总被引:1,自引:0,他引:1  
Leaf initiation at the shoot apical meristem involves a balance between cell proliferation and commitment to make primordia. Several genes, such as CLAVATA1, CLAVATA3, WUSCHEL, KNOTTED1, and PHANTASTICA, play key roles in these processes. When expressed in the leaf primordium, however, these 'meristem' genes can profoundly affect leaf shape and size, possibly by regulating hormone gradients and transport. The KNOTTED1-like genes are involved in regulating changes in hormonal levels. Recent studies have elaborated on the role that hormones, such as auxin, play in releasing biophysical constraints on leaf initiation and growth. Final leaf form is elaborated by a coordination of these hormonally regulated processes, cell division and cellular differentiation.  相似文献   

19.
BACKGROUND AND AIMS: Plant lateral organs such as leaves arise from a group of initial cells within the flanks of the shoot apical meristem (SAM). Alterations in the initiation of lateral organs are often associated with changes in the dimension and arrangement of the SAM as well as with abnormal hormonal homeostasis. A mutation named stem fasciated (stf) that affects various aspects of plant development, including SAM shape and auxin level, was characterized in sunflower (Helianthus annuus). METHODS: F1, F2 and F3 generations were obtained through reciprocal crosses between stf and normal plants. For the genetic analysis, a chi2 test was used. Phenotypic observations were made in field-grown and potted plants. A histological analysis of SAM, hypocotyl, epicotyl, stem and root apical meristem was also conducted. To evaluate the level of endogenous indole-3-acetic acid (IAA), a capillary gas chromatography-mass spectrometry-selected ion monitoring analysis was performed. KEY RESULTS: stf is controlled by a single nuclear recessive gene. stf plants are characterized by a dramatically increased number of leaves and vascular bundles in the stem, as well as by a shortened plastochron and an altered phyllotaxis pattern. By histological analysis, it was demonstrated that the stf phenotype is related to an enlarged vegetative SAM. Microscopy analysis of the mutant's apex also revealed an abnormal enlargement of nuclei in both central and peripheral zones and a disorganized distribution of cells in the L2 layer of the central zone. The stf mutant showed a high endogenous free IAA level, whereas auxin perception appeared normal. CONCLUSIONS: The observed phenotype and the high level of auxin detected in stf plants suggest that the STF gene is necessary for the proper initiation of primordia and for the establishment of a phyllotactic pattern through control of both SAM arrangement and hormonal homeostasis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号