首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Octodon degus, a social hystricomorph rodent, responds to olfactory cues from a gonadally intact female entrained to a light-dark cycle (LD) by accelerating reentrainment of running wheel activity following a 6-h phase advance of the LD cycle. In this study, we examined the role of ovarian hormones in the production of and responsiveness to olfactory social cues in females. Experiment 1: intact females were sequentially phase-advanced 6 h with photic cues alone, or in the presence of an intact female donor, ovariectomized (OVX) donor, a castrated male, or a castrated male with testosterone replacement. Acceleration of reentrainment occurred only in the presence of the intact female donor while reentrainment was delayed by OVX donors. Experiment 2: OVX females undergoing a 6-h phase advance did not accelerate reentrainment in the presence of an intact female donor compared to reentrainment with photic cues alone. Thus, ovarian hormones are necessary for both the production of and responsiveness to olfactory cues. Experiment 3: OVX females implanted with estrogen-filled Silastic capsules did not accelerate reentrainment following the 6-h phase advance in the presence of an intact donor, whereas animals implanted with a combination of estrogen- and progesterone-filled capsules (Experiment 4) reduced the length of time needed to reentrain in the presence of an intact donor. Therefore, combined progesterone and estrogen are sufficient for responsiveness to the effective olfactory cue in intact donor females. These data clarify that the sex difference in sensitivity to non-photic odor effects on circadian reentrainment is caused by both the testosterone's inhibitory effects (Octodon degus. J. Biol. Rhythms 18 (2003) 43-50) and the enhancing effects of progesterone and estrogen.  相似文献   

2.
The degu (Octodon degus) is a diurnal rodent, although phase inversions to nocturnal behavior have been reported under specific laboratory conditions. The reliability of this animal as a diurnal model of sleep therefore requires further characterization of intrinsic circadian pacemaker properties. A phase response curve to light has been reported in the degu, and is consistent with other diurnal animals. This study reports a phase response curve to melatonin in the degu, which is distinct in orientation from the light curve.  相似文献   

3.
Sex differences have been identified in a variety of circadian rhythms, including free-running rhythms, light-induced phase shifts, sleep patterns, hormonal fluctuations, and rates of reentrainment. In the precocial, diurnal rodent Octodon degus, sex differences have been found in length of free-running rhythm (tau), phase response curves, rates of reentrainment, and in the use of social cues to facilitate reentrainment. Although gonadal hormones primarily organize circadian rhythms during early development, adult gonadal hormones have activational properties on various aspects of circadian rhythms in a number of species examined. Gonadectomy of adult female O. degus did not influence tau, phase angle of entrainment, or activity patterns in previous experiments. The present experiment examined the role of gonadal hormones in adult male degus' circadian wheel-running rhythms. We predicted that male gonadal hormones would have an activational effect on some aspects of circadian rhythms, particularly those in which we see sex differences. Phase angles of entrainment, tau, length of the active period (alpha), maximum and mean activity levels, and activity amplitude were examined for intact and castrated males housed in LD 12:12. Responses to light pulses while housed in constant darkness (DD) were also compared. Castration had no significant effect on tau or light-induced phase shifts. However, castration significantly increased phase angle of entrainment and decreased activity levels. The data indicate that adult gonadal steroids are not responsible for the sex differences in endogenous circadian mechanisms of O. degus (tau, PRC), although they influence activity level and phase angle of entrainment. This is most likely due to masking properties of testosterone, similar to the activity-increasing effects of estrogen during estrus in O. degus females.  相似文献   

4.
The degu (Octodon degus) is a diurnal rodent, although phase inversions to nocturnal behavior have been reported under specific laboratory conditions. The reliability of this animal as a diurnal model of sleep therefore requires further characterization of intrinsic circadian pacemaker properties. A phase response curve to light has been reported in the degu, and is consistent with other diurnal animals. This study reports a phase response curve to melatonin in the degu, which is distinct in orientation from the light curve.  相似文献   

5.
During puberty, humans develop a later chronotype, exhibiting a phase-delayed daily rest/activity rhythm. The purpose of this study was to determine: 1) whether similar changes in chronotype occur during puberty in a laboratory rodent species, 2) whether these changes are due to pubertal hormones affecting the circadian timekeeping system. We tracked the phasing and distribution of wheel-running activity rhythms during post-weaning development in rats that were gonadectomized before puberty or left intact. We found that intact peripubertal rats had activity rhythms that were phase-delayed relative to adults. Young rats also exhibited a bimodal nocturnal activity distribution. As puberty progressed, bimodality diminished and late-night activity phase-advanced until it consolidated with early-night activity. By late puberty, intact rats showed a strong, unimodal rhythm that peaked at the beginning of the night. These pubertal changes in circadian phase were more pronounced in males than females. Increases in gonadal hormones during puberty partially accounted for these changes, as rats that were gonadectomized before puberty demonstrated smaller phase changes than intact rats and maintained ultradian rhythms into adulthood. We investigated the role of photic entrainment by comparing circadian development under constant and entrained conditions. We found that the period (τ) of free-running rhythms developed sex differences during puberty. These changes in τ did not account for pubertal changes in entrained circadian phase, as the consolidation of activity at the beginning of the subjective night persisted under constant conditions in both sexes. We conclude that the circadian system continues to develop in a hormone-sensitive manner during puberty.  相似文献   

6.
The Octodon degus, or degu, is an excellent animal model for studying the theoretical and neural underpinnings of diurnality. The power of this model comes from their unique evolutionary lineage, long lives, and relative ease of care in the laboratory for a non-domesticated species. We have summarized the field and laboratory data indicating the critical variables that influence the degus' phase preference and the possible mechanisms for the phase flexibility observed in the field and laboratory. We also review studies examining the physiology and anatomy of light and non-photic inputs to the degu circadian system and studies of the circadian pacemaker itself, with particular emphasis placed on characteristics that appear to be convergent adaptations to a diurnal niche. Finally, we begin to seek the origin for the diurnally-phased activity output of the degu, although we conclude that significant work remains to be done.  相似文献   

7.
Reentrainment following phase shifts of the light-dark (LD) cycle is accelerated in Octodon degus in the presence of olfactory social cues (i.e., odors) produced by conspecifics. However, not all odors from conspecifics were effective in facilitating reentrainment after a phase advance. In the current experiments, we examined whether nonanimal odors, odors from another species, or conspecific odors, including those manipulated by steroid hormones, can cause the same increased reentrainment of wheel-running activity as odors from an intact, adult female degu. A variety of odors, each selected to probe a particular aspect of the reentrainment acceleration phenomenon, were presented to a group of phase-shifting female degus. The shifting females (test animals) responded to odors of intact, female degu donors with decreased reentrainment time, but odors of ovariectomized (OVX), OVX with a single hormone replacement capsule (estradiol or progesterone) or phase-shifting females had no effect. Multiple males were effective odor donors, whereas a single male was ineffective in earlier studies. Rats and cloves were not effective in accelerating reentrainment. Furthermore, odors from rats delayed reentrainment. We conclude that the odors that effectively accelerate degu reentrainment after a phase advance of the LD cycle are species specific. We also report that repeated phase shifts, followed by complete recovery of phase relationships, do not alter the rate of recovery from a phase shift over time. These data suggest that in O. degus, a social species, odors may reinforce and strengthen the salience of the photic zeitgeber and/or facilitate synchronization of rhythms between animals.  相似文献   

8.
While ecological causes of sociality (or group living) have been identified, proximate mechanisms remain less clear. Recently, close connections between sociality, glucocorticoid hormones (cort) and fitness have been hypothesized. In particular, cort levels would reflect a balance between fitness benefits and costs of group living, and therefore baseline cort levels would vary with sociality in a way opposite to the covariation between sociality and fitness. However, since reproductive effort may become a major determinant of stress responses (i.e., the cort–adaptation hypothesis), cort levels might also be expected to vary with sociality in a way similar to the covariation between sociality and fitness. We tested these expectations during three years in a natural population of the communally rearing degu, Octodon degus. During each year we quantified group membership, measured fecal cortisol metabolites (a proxy of baseline cort levels under natural conditions), and estimated direct fitness. We recorded that direct fitness decreases with group size in these animals. Secondly, neither group size nor the number of females (two proxies of sociality) influenced mean (or coefficient of variation, CV) baseline cortisol levels of adult females. In contrast, cortisol increased with per capita number of offspring produced and offspring surviving to breeding age during two out of three years examined. Together, our results imply that variation in glucocorticoid hormones is more linked to reproductive challenge than to the costs of group living. Most generally, our study provided independent support to the cort–adaptation hypothesis, according to which reproductive effort is a major determinant, yet temporally variable, influence on cort–fitness covariation.  相似文献   

9.
Adolescence is the developmental epoch during which children become adults—intellectually, physically, hormonally and socially. Brain development in critical areas is ongoing. Adolescents are risk-taking and novelty-seeking and they weigh positive experiences more heavily and negative experiences less than adults. This inherent behavioral bias can lead to risky behaviors like drug taking. Most drug addictions start during adolescence and early drug-taking is associated with an increased rate of drug abuse and dependence.The hormonal changes of puberty contribute to physical, emotional, intellectual and social changes during adolescence. These hormonal events do not just cause maturation of reproductive function and the emergence of secondary sex characteristics. They contribute to the appearance of sex differences in non-reproductive behaviors as well. Sex differences in drug use behaviors are among the latter. The male predominance in overall drug use appears by the end of adolescence, while girls develop the rapid progression from first use to dependence (telescoping) that represent a female-biased vulnerability. Sex differences in many behaviors including drug use have been attributed to social and cultural factors. A narrowing gap in drug use between adolescent boys and girls supports this thesis. However, some sex differences in addiction vulnerability reflect biologic differences in brain circuits involved in addiction. The purpose of this review is to summarize the contribution of sex differences in the function of ascending dopamine systems that are critical to reinforcement, to briefly summarize the behavioral, neurochemical and anatomical changes in brain dopaminergic functions related to addiction that occur during adolescence and to present new findings about the emergence of sex differences in dopaminergic function during adolescence.  相似文献   

10.
Octodon degus is a desert rodent of northern Chile, adapted to survive with a limited supply of water. This rodent has a high degree of fecal dehydration, related to colon water absorption. With the hypothesis that aquaporins (AQPs) might be present in the colon epithelium of O. degus and involved in fluid absorption, we studied colon water absorption in vivo and the distribution of AQPs and Na(+) transporters by immunocytochemistry. AQP-1 was found in apical and basolateral membranes of surface-absorptive and crypt epithelial cells. AQP-8 was found in the cytoplasm of enterocytes of surface colon. AQP-3 immunolabeling, on the other hand, was absent from the epithelium but present in a subepithelial fibroblast layer, pericryptal cells, and muscularis mucosae. The hydration state did not modify the amount of immunostaining for any of the AQPs. Colon water absorption was markedly decreased by the mercurial agent p-chloromercuribenzenesulfonic acid and was not affected by water deprivation. The NHE3 isoform of Na(+)/H(+) exchanger and alpha-1 subunit of the Na(+)-K(+)-ATPase were found in apical and basolateral membranes of surface-absorptive cells, respectively. These results suggest that colon water absorption is mostly transcellular and mediated by water channels like AQP-1. Apical Na(+)/H(+) exchanger and basolateral Na(+)-K(+)-ATPase in surface cells could be part of the Na(+) absorption pathway. It is hypothesized that this transport is necessary to provide an osmotic gradient for water absorption. The roles of AQP-8 and AQP-3 in water absorption remain to be established.  相似文献   

11.
The behavior of male and female Octodon degus (Hystricognathi; Octodontidae) was studied in captivity to examine the occurrence of non-parental infanticide, which involves the killing of immature infants by adult conspecifics other than the genetic parents. Sexually inexperienced male and female, and lactating female degus were tested for their behavior toward genetically unrelated, and socially unfamiliar, degu pups in a neutral arena. No male or female degu showed any sign of aggression toward the pups. Lactating females tended to exhibit the shortest latency to first behavioral interaction with the pup and the highest rate of social interactions with the pup, and they spent a relatively high proportion of their time in proximity with the pup. In contrast, males tended to show the longest latency to first pup contact and a reduced rate of interactions with the pup, and they spent a relatively small fraction of their time with the pup. The behavior of non-breeding females seemed intermediate between that of males and lactating females. Given that social and ecological conditions posed to promote non-parental infanticide in other rodents seemed not particularly different from what is known of degu biology, ecology, and social behavior, lack of degu infanticide may reflect phylogenetic inertia instead of an absence of conditions favoring infanticide. Received: 8 January 2000 / Received in revised form: 16 June 2000 / Accepted: 20 June 2000  相似文献   

12.
The slowly maturing, long-lived rodent Octodon degus (degu) provides a unique opportunity to examine the development of the circadian system during adolescence. These studies characterize entrained and free-running activity rhythms in gonadally intact and prepubertally gonadectomized male and female degus across the first year of life to clarify the impact of sex and gonadal hormones on the circadian system during adolescence. Gonadally intact degus exhibited a delay in the phase angle of activity onset (Psi(on)) during puberty, which reversed as animals became reproductively competent. Gonadectomy before puberty prevented this phase delay. However, the effect of gonadal hormones during puberty on Psi(on) does not result from changes in the period of the underlying circadian pacemaker. A sex difference in Psi(on) and free-running period (tau) emerged several months after puberty; these developmental changes are not likely to be related, since the sex difference in Psi(on) emerged before the sex difference in tau. Changes in the levels of circulating hormones cannot explain the emergence of these sex differences, since there is a rather lengthy delay between the age at which degus reach sexual maturity and the age at which Psi(on) and tau become sexually dimorphic. However, postnatal exposure to gonadal hormones is required for sexual differentiation of Psi(on) and tau, since these sex differences were absent in prepubertally gonadectomized degus. These data suggest that gonadal hormones modulate the circadian system during adolescent development and provide a new model for postpubertal sexual differentiation of a central nervous system structure.  相似文献   

13.
Naked mole-rats (Heterocephalus glaber) are fossorial, eusocial rodents that live in colonies which typically include 60-80 individuals. Generally, only one of the females and 1-3 of the males in a colony are reproductives. The reproductives engage in mutual genital nuzzling behavior that is rarely exhibited by subordinates (non-reproductives). Thus, genital nuzzling may represent a mechanism of bonding and/or specific recognition between reproductive individuals. We investigated whether gonadal hormones are involved in the maintenance of genital nuzzling behavior and mating behaviors in isolated pairs of mole-rats and also in established breeding pairs of mole-rats within colonies. We also explored whether sex hormone deprivation would alter the strict partner preference for performance of nuzzling within colonies. Our results indicate (a) considerable variation between pairs in the frequency of nuzzling, (b) a reduction in the frequency of nuzzling following castration of the male and restoration of the 'baseline' frequency after replacement of testosterone in castrated males, (c) the failure of either castration or combined castration and ovariectomy to eliminate genital nuzzling in established pairs, and (d) the exhibition of nuzzling behavior by some of the subordinates in all three experimental colonies beginning several weeks after gonadectomy of both of the reproductives. No cases of lordosis behavior were seen during the approximately 109 h of behavioral observations. This is not surprising, since female mole-rats have an approximately 30-day ovulatory cycle, and lordosis only occurs during a peri-ovulatory period of a few hours. A total of 44 cases of mounting behavior were recorded; all these involved breeding males in colonies or males from isolated pairs, and all occurred when males were either gonad-intact or castrated with testosterone replacement. Thus, in contrast to nuzzling behavior, male sex behavior appeared to be eliminated during androgen deprivation.  相似文献   

14.
The effects of vertebrate predation have been monitored since 1989 on 16 replicated 0.56 ha study plots in a semiarid thorn scrub community in north-central Chile. Using fences of different heights with and without holes and suspended game netting to alter principal predator (foxes and raptors) and large rodent herbivore (Octodon degus) access, four grids each have been assigned to the following treatments: 1) low fencing and holes allowing free access of predators and small mammals; 2) low fencing without holes to exclude degus only; 3) high fencing and netting with holes to exclude predators only; and 4) high fencing and netting without holes to exclude predators and degus. Small mammal population censuses are conducted monthly using mark-recapture techniques. Degu population trends during 1989 and 1990 showed strongly but nonsignificantly lower numbers in control plots during months when densities were characteristically low (September–November) for this seasonally reproductive species; since March 1991, differences have become persistent and increasingly significant. Predators appear to have greater numerical effects when their prey populations are low. Survival times of degus, particularly established adults, were significantly longer in predator exclusion grids during the 2 1/2 years of observation; thus, predation also affects prey population structure.  相似文献   

15.
Gonadal steroids modify the phase, amplitude and period of circadian rhythms. To further resolve the role of estradiol, we examined daily patterns of activity, circadian free running period and behavioral responses to light pulses using aromatase deficient (ArKO) mice. These animals lack the enzyme necessary to produce estradiol. We hypothesized that circulating estrogens during development and adulthood modulate the amount of activity, the temporal relationship of activity patterns relative to a light:dark cycle, and the free running period. Intact and gonadectomized male and female ArKO and wildtype (WT) littermates were used. WT males, but not ArKO males, retained the ability to respond to steroid hormones; the time of activity onset, free running period in constant darkness, and total daily activity were significantly different in gonadectomized compared to intact males. In contrast, gonadectomy did not alter the expression of these variables in ArKO males. ArKO females had a longer free running period in constant darkness compared to WT females regardless of gonadal state. Ovariectomized ArKO females had a significantly delayed activity onset when compared to intact ArKO females and ovariectomized WT females, despite all 3 groups being estrogen deficient. Phase shifts in response to light pulses given at different times of the day revealed an interaction between genotype, sex, and circulating steroids. These results from ArKO animals strongly suggest an organizational effect of estradiol during a critical period of development on the expression of biological rhythms.  相似文献   

16.
Human adolescents exhibit higher levels of novelty-seeking behaviour than younger or older individuals, and novelty-seeking is higher in males than females from adolescence onwards. Gonadal hormones, such as testosterone and estradiol, have been suggested to underlie age and sex difference in response to novelty; however, empirical evidence in support of this hypothesis is limited. Here, we investigated whether suppressing gonadal hormone levels during adolescence affects response to novelty in laboratory rats. Previously, we have shown that male adolescent Lister-hooded rats (postnatal day, pnd, 40) exhibit a stronger preference than same-aged females for a novel object compared to a familiar object. In the current study, 24 male and 24 female Lister-hooded rats were administered with Antide (a gonadotrophin-releasing hormone antagonist), or with a control vehicle solution, at pnd 28. Antide provided long-term suppression of gonadal hormone production, as confirmed by ELISA assays and measurement of internal organs. Response to novel objects was tested at pnd 40 in Antide-treated and control subjects using a ‘novel object recognition’ task with a short (2-minute) inter-trial interval. In support of previous findings, control males exhibited a stronger preference than control females for novelty when presented with a choice of objects. Antide-treated males exhibited a significantly lower preference for novel objects compared to control males, whilst Antide-treated females did not differ significantly from control females in their preference for novelty. Antide treatment did not affect total time spent interacting with objects. We discuss how gonadal hormones might influence sex differences in preference for novelty during adolescence.  相似文献   

17.
Using histomorphological and functional criteria we describe the feedback mechanisms which could play a role in the regulation of the gonadotrophic axis during the postnatal transition to puberty in male lambs. The working hypothesis was that the testicular factors change the peripheral levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) by influencing the synthesis rate and storage of LH and FSH in adenohypophyseal gonadotroph cells of weanling and weaned pubertal lambs. The examination was made in (i) 9-week-old infantiles, suckling lambs undergoing weaning, testis-intact (TEI) and orchidectomised (ORCHX) at the 6th week of age, and (ii) 16-week-old pubertal lambs TEI and ORCHX at the 12th week of age (n=5 per group). Changes in gonadotrophs were assayed with hybridohistochemistry, immunohistochemistry and radioimmunoassay. The percentage of the adenohypophyseal area (PA) occupied by cells containing LHβ-mRNA and FSHβ-mRNA and peripheral levels of both gonadotrophins were lower (P<0.01) in the 16-week-old TEI lambs in comparison with the 9-week-old ones. The PA occupied by cells immunoreactive for LHβ was lower (P<0.01), whereas in the case of FSH was greater (P<0.001) in the 16-week-old lambs. After orchidectomy the PA occupied by gonadotrophs stained for LHβ-mRNA was greater (P<0.01) in 16-week-old lambs. The PA occupied by LHβ-labelled cells was lower (P<0.05) in the 9-week-old ORCHX lambs, whereas in 16-week-old ones was higher (P<0.05) in comparison with the TEI lambs. The circulating LH was greater (P<0.01) in the ORCHX 9- and 16-week-old lambs compared to the TEI ones. The PA occupied by cells containing FSHβ-mRNA and the plasma FSH concentration were greater (P<0.001) after orchidectomy in lambs from both age stages. The PA occupied by FSHβ-labelled cells was greater (P<0.01) in the 9-week-old ORCHX lambs, whereas in 16-week-old ones was lower (P<0.05) compared to the lambs from TEI groups. In conclusion, in infantile lambs testicular factors may play inhibitory role in regulating FSH synthesis rate, storage and release in contrast to the stimulatory role in regulating LH storage reflected by the inhibitory role in regulating LH release. In lambs at the beginning of puberty, testicular factors may play inhibitory role in regulating LH synthesis rate, storage and release in contrast to the stimulatory role in regulating FSH storage reflected by the inhibitory role in regulating FSH synthesis rate and release. The effects of testicular hormones on the gonadotrophin storage, i.e. releasable pools in adenohypophyseal cells, are specific for both LH and FSH in lambs during the postnatal transition to puberty. Thus, the initiation of puberty in male sheep is a function of change of the inhibitory role of gonadal factors in regulating FSH storage to the stimulatory one and the stimulatory role of gonadal factors in regulating LH storage to the inhibitory one.  相似文献   

18.
19.
Several types and subtypes of vocalizations which have a behavioral impact on degu pups were identified. Among these the complex “mothering call” which is exclusively uttered by females and first during extensive nursing periods in the nest is a candidate for filial learning. In 14C-2-fluoro-2-deoxyglucose (FDG) experiments two-weeks-old pups raised by normal mothers showed higher metabolic activity in somatosensory frontoparietal and frontal cortex upon play back of a mothering call than pups raised by muted mothers. It is suggested that pups learn to associate the mothering call with close body contact with their mother early in life. In addition, FDG representation of the call, of its components and of tone and noise stimuli were studied in degu auditory cortex. Five fields and some aspects of tonotopic organization were identified. The mothering call activated all fields, but with more spatial extent of labeling in normally raised pups. A rostral field was activated by play-back of the mothering call, noise, and two-tone sequences, but hardly by single-frequency tones and the narrow-band component of the mothering call. Accepted: 13 August 1997  相似文献   

20.
Diurnal and seasonal rhythms of cortisol, testosterone, and DHEA were examined, as little is known about the relationship between these rhythmicities and pubertal development. Salivary samples were obtained from 60 boys and 60 girls at approximately 07:45, 08:00, 08:30, 12:00, 16:50, and 21:00 h. The participants' ages ranged from 8-14 yrs, and each participant was tested three times at six-month intervals. The study was conducted at a General Clinical Research Center (GCRC) and at the homes of the participants. All hormones showed diurnal fluctuations. The acrophase (peak time) of cortisol occurred earlier than for testosterone or DHEA and showed a seasonal effect, with the acrophase occurring earlier in spring than in summer. The cortisol acrophase also occurred later in the day for boys than for girls during later puberty. Seasonal effects were found only for cortisol with higher concentrations in the spring and summer. Cortisol concentrations were relatively stable across pubertal maturation, but significantly lower concentrations were observed at pubertal stage 3 compared to the other stages. Morning cortisol levels were also higher in boys at pubertal stage 2. Testosterone concentrations were higher in boys at pubertal stages 3 and 4, and DHEA was lower at pubertal stage 1 than 3 and 4 for both boys and girls. For the total sample, there was a positive correlation between DHEA and testosterone during early puberty (stages 1-3) but not later puberty (stages 4-5). Awakening secretory activity correlated with daytime secretory activity for testosterone and DHEA, but not for cortisol. These data provide novel chronobiological information on cortisol, testosterone, and DHEA as it relates to sexual maturation and encourage further study on both normal and abnormal endocrine rhythms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号