首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Exposure to stress activates the hypothalamic–pituitary–adrenal axis and leads to increased levels of glucocorticoid (GC) hormones. Prolonged elevation of GC levels causes neuronal dysfunction, decreases the density of synapses, and impairs neuronal plasticity. Decreased sensitivity to glucocorticoids (glucocorticoid resistance) that develops as a result of chronic stress is one of the characteristic features of stress-induced psychopathologies. In this article, we reviewed the published data on proposed molecular mechanisms that contribute to the development of glucocorticoid resistance in brain, including changes in the expression of the glucocorticoid receptor (GR) gene, biosynthesis of GR isoforms, and GR posttranslational modifications. We also present data on alterations in the expression of the FKBP5 gene encoding the main component of cell ultra-short negative feedback loop of GC signaling regulation. Recent discoveries on stressand GRinduced changes in epigenetic modification patterns as well as normalizing action of antidepressants are discussed. GR and FKBP5 gene polymorphisms associated with stress-induced psychopathologies are described, and their role in glucocorticoid resistance is discussed.  相似文献   

2.
Maternal exposure to stress during pregnancy is associated with significant alterations in offspring neurodevelopment and elevated maternal glucocorticoids likely play a central role in mediating these effects. Placental 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2) buffers the impact of maternal glucocorticoid exposure by converting cortisol/corticosterone into inactive metabolites. However, previous studies indicate that maternal adversity during the prenatal period can lead to a down-regulation of this enzyme. In the current study, we examined the impact of prenatal stress (chronic restraint stress during gestational days 14-20) in Long Evans rats on HSD11B2 mRNA in the placenta and fetal brain (E20) and assessed the role of epigenetic mechanisms in these stress-induced effects. In the placenta, prenatal stress was associated with a significant decrease in HSD11B2 mRNA, increased mRNA levels of the DNA methyltransferase DNMT3a, and increased DNA methylation at specific CpG sites within the HSD11B2 gene promoter. Within the fetal hypothalamus, though we find no stress-induced effects on HSD11B2 mRNA levels, prenatal stress induced decreased CpG methylation within the HSD11B2 promoter and increased methylation at sites within exon 1. Within the fetal cortex, HSD11B2 mRNA and DNA methylation levels were not altered by prenatal stress, though we did find stress-induced elevations in DNMT1 mRNA in this brain region. Within individuals, we identified CpG sites within the HSD11B2 gene promoter and exon 1 at which DNA methylation levels were highly correlated between the placenta and fetal cortex. Overall, our findings implicate DNA methylation as a mechanism by which prenatal stress alters HSD11B2 gene expression. These findings highlight the tissue specificity of epigenetic effects, but also raise the intriguing possibility of using the epigenetic status of placenta to predict corresponding changes in the brain.  相似文献   

3.
Exposure to excess glucocorticoids (GCs) during embryonic development influences offspring phenotypes and behaviors and induces epigenetic modifications of the genes in the hypothalamic–pituitary–adrenal (HPA) axis and in the serotonergic system in mammals. Whether prenatal corticosterone (CORT) exposure causes similar effects in avian species is less clear. In this study, we injected low (0.2 μg) and high (1 μg) doses of CORT into developing embryos on day 11 of incubation (E11) and tested the changes in aggressive behavior and hypothalamic gene expression on posthatch chickens of different ages. In ovo administration of high dose CORT significantly suppressed the growth rate from 3 weeks of age and increased the frequency of aggressive behaviors, and the dosage was associated with elevated plasma CORT concentrations and significantly downregulated hypothalamic expression of arginine vasotocin (AVT) and corticotropin-releasing hormone (CRH). The hypothalamic content of glucocorticoid receptor (GR) protein was significantly decreased in the high dose group (p < 0.05), whereas no changes were observed for GR mRNA. High dose CORT exposure significantly increased platelet serotonin (5-HT) uptake, decreased whole blood 5-HT concentration (p < 0.05), downregulated hypothalamic tryptophan hydroxylase 1 (TPH1) mRNA and upregulated 5-HT receptor 1A (5-HTR1A) and monoamine oxidase A (MAO-A) mRNA, but not monoamine oxidase B (MAO-B). High dose CORT also significantly increased DNA methylation of the hypothalamic GR and CRH gene promoters (p < 0.05). Our findings suggest that embryonic exposure to CORT programs aggressive behavior in the chicken through alterations of the HPA axis and the serotonergic system, which may involve modifications in DNA methylation.  相似文献   

4.
《Epigenetics》2013,8(2):97-106
Background: In animal models, variations in early maternal care are associated with differences in hypothalamic-pituitary-adrenal (HPA) stress response in the offspring, mediated via changes in the epigenetic regulation of glucocorticoid receptor (GR) gene (Nr3c1) expression. Objective: To study this in humans, relationships between prenatal exposure to maternal mood and the methylation status of a CpG-rich region in the promoter and exon 1F of the human GR gene (NR3C1) in newborns and HPA stress reactivity at age 3 months were examined. Methods: The methylation status of a CpG-rich region of the NR3C1 gene, including exon 1F, in genomic DNA from cord blood mononuclear cells was quantified by bisulfite pyrosequencing in infants of depressed mothers treated with a serotonin reuptake inhibitor antidepressant (SRI) (n=33), infants of depressed non treated mothers (n=13) and infants of non depressed/non treated mothers (n=36). To study the functional implications of the newborn methylation status of NR3C1 in newborns, HPA function was assessed at 3 months using salivary cortisol obtained before and following a non noxious stressor and at a late afternoon basal time. Results: Prenatal exposure to increased third trimester maternal depressed/anxious mood was associated with increased methylation of NR3C1 at a predicted NGFI-A binding site. Increased NR3C1 methylation at this site was also associated with increased salivary cortisol stress responses at 3 months, controlling for prenatal SRI exposure, postnatal age, and pre and postnatal maternal mood. Conclusions: Methylation status of the human NR3C1 gene in newborns is sensitive to prenatal maternal mood and may offer a potential epigenetic process that links antenatal maternal mood and altered HPA stress reactivity during infancy.  相似文献   

5.
6.
Detrimental consequences of prenatal stress include increased hypothalamic-pituitary-adrenal (HPA) function, anxiety and depression-like behavior in adult offspring. To identify the role of maternal corticosterone milieu in the fetal programming of adult function, we measured these same behavioral and hormonal endpoints after maternal adrenalectomy (ADX) and replacement with normal or moderately high levels of corticosterone (CORT). Adult male and female offspring exhibited differing HPA responses to maternal ADX. In female offspring of ADX mothers, exaggerated plasma ACTH stress responses were reversed by the higher, but not the lower, dose of maternal CORT. In contrast, male offspring of both ADX and ADX dams with higher CORT replacement showed exaggerated ACTH stress responses. Hypothalamic glucocorticoid receptor (GR) expression was decreased in these latter groups, while hippocampal GR increased only in the ADX offspring. Activity of young offspring of ADX dams replaced with the higher dose of CORT decreased in the open field test of exploration/anxiety, while immobility behavior of adult offspring in the forced swim test of depression increased following maternal ADX or higher levels of CORT replacement. Interestingly, for some measures, none or moderately high CORT replacement resulted in similar deficits in this study. These findings are in accord with consequences of prenatal stress or prenatal dexamethasone exposure, suggesting that a common mechanism may underlie the effects of too low or too high maternal glucocorticoids on adult HPA function and behavior.  相似文献   

7.
Sun K  He P  Yang K 《Biology of reproduction》2002,67(5):1450-1455
Glucocorticoids are involved in the modulation of the release of parturition hormones from the fetal membranes and placenta, where their actions are determined by the prereceptor glucocorticoid metabolizing enzyme 11beta-hydroxysteroid dehydrogenase (11beta-HSD). Two distinct isozymes of 11beta-HSD have been characterized. In the fetal membranes, 11beta-HSD1 is the predominate isozyme; it converts biologically inert 11-ketone glucocorticoid metabolites into active glucocorticoids. Sequence analysis of the cloned 11beta-HSD1 gene revealed a putative glucocorticoid response element in the promoter region. However, whether glucocorticoids modulate 11beta-HSD1 expression in the fetal membranes is unknown. In this study, 11beta-HSD1 and glucocorticoid receptor (GR) were coexpressed in the chorionic trophoblast. Radiometric conversion assay and Northern blot analysis revealed that both 11beta-HSD1 reductase activity and mRNA levels were increased by dexamethasone (1 microM, 0.1 microM) in the cultured chorionic trophoblast, and the effects were blocked by GR antagonist RU486 (1 microM). Prior induction of 11beta-HSD1 by dexamethasone potentiated the subsequent stimulation of prostaglandin H synthetase 2 expression and secretion of prostaglandin E(2) by cortisone in the chorionic trophoblast. There is colocalization of 11beta-HSD1 and GR in the chorionic trophoblast. By binding to GR, glucocorticoids induce the expression of 11beta-HSD1 by a possible intracrine mechanism, thereby amplifying the actions of glucocorticoids on prostaglandin production in the fetal membranes. This cascade of events initiated by glucocorticoids may play an important role in the positive feed-forward mechanisms of labor.  相似文献   

8.
Corticosteroids and the brain   总被引:5,自引:0,他引:5  
Mineralocorticoid (MR) and glucocorticoid receptors (GR) are expressed in the central nervous system. Radioligand binding studies, autoradiography, immunocytochemistry and in situ hybridization have shown that MR and GR are found in abundance in neurons of the limbic system (hippocampus), a structure involved in mood, affect and subtle control of the hypothalamic-pituitary-adrenal (HPA) axis. In the hippocampus MR binds corticosterone (CORT) as well as aldosterone (ALDO) with high affinity. MR seems mainly occupied by CORT in the face of its 2-3 order higher circulating concentration. GR binds CORT with a 6-10-fold lower affinity. MR and GR gene expression, as well as the native receptor proteins, seem to be controlled in a coordinative manner. When GR is down-regulated by excess homologous steroid, MR appears to be increased. Down regulation of MR reduces GR as well. MR and GR display a differential ontogenetic pattern. Ontogeny, particularly that of GR, can be permanently influenced when animals are exposed during the first post-natal week of maternal deprivation, handling, CORT or ACTH1-24 injections. These MR and GR changes persist into senescence and have been proposed to result in altered CORT responsiveness, stress regulation, behavioural adaptation and brain aging.  相似文献   

9.
Mice in which exon 2 of the glucocorticoid receptor (GR) has been disrupted [GR exon 2 knockout (GR2KO)] have been used as a model to study the requirement for this receptor in a number of biological systems. A recent report showed that these mice actually express a truncated ligand-binding GR fragment, prompting us to ask whether this mutation truly results in a glucocorticoid-insensitive phenotype. Based on cDNA microarray analysis of fetal thymocytes, we found that glucocorticoids were able to enhance or repress activation-induced gene expression in GR2KO and wild-type thymocytes to a similar degree. Moreover, although changes in gene expression induced by glucocorticoids alone were blunted, the expression of a substantial number of genes in GR2KO thymocytes was modulated by stimulation with glucocorticoids. Among these genes, as confirmed by quantitative real-time PCR, was the classic glucocorticoid-responsive gene glutamine synthetase as well as genes implicated in T cell development and function such as IL-7 receptor alpha-chain and glucocorticoid-induced leucine zipper (GIL2). Thus, the truncated C-terminal GR2KO product, which lacks the major transactivation domain, retains, to a large extent, the ability to regulate gene expression both positively and negatively in a ligand-responsive manner when expressed in vivo.  相似文献   

10.
《Epigenetics》2013,8(6):816-822
“Fetal programming” is a term used to describe how early-life experience influences fetal development and later disease risk. In humans, prenatal stress-induced fetal programming is associated with increased risk of preterm birth, and a heightened risk of metabolic and neurological diseases later in life. A critical determinant of this is the regulation of fetal exposure to glucocorticoids by the placenta. Glucocorticoids are the mediators through which maternal stress influences fetal development. Excessive fetal glucocorticoid exposure during pregnancy results in low birth weight and abnormalities in a number of tissues. The amount of fetal exposure to maternal glucocorticoids depends on the expression of HSD11B2, an enzyme predominantly produced by the syncytiotrophoblast in the placenta. This protects the fetus by converting active glucocorticoids into inactive forms. In this review we examine recent findings regarding placental HSD11B2 that suggest that its epigenetic regulation may mechanistically link maternal stress and long-term health consequences in affected offspring.  相似文献   

11.
The DDT1 MF2 smooth muscle cell line was derived from an estrogen/androgeninduced leiomyosarcoma arising in the hamster ductus deferens. Growth of this cell line is arrested in Go/G1 by treatment with glucocorticoids. To facilitate the study of the mechanism of glucocorticoid-induced cell growth arrest, a glucocorticoid-resistant variant cell line, DDT1 MF2 GR1 (GR1), was developed by genetic selection. Growth of this mutant cell line is completely resistant to the inhibitory action of glucocorticoids. However, we now demonstrate that both primary and secondary glucocorticoid-induced events still exist in the GR1 cell line. By analyzing the expression and genetic pattern of glucocorticoid receptor, no detectable rearrangement of the glucocorticoid receptor gene was found although the expression of both mRNA and protein levels of the receptor were lower in the variant compared to wild-type cells. In addition, we found that the expression of two growth-associated genes, Ha-ras and transforming growth factor β1 (TGF-β1) are down-regulated by glucocorticoids in wild-type DDT1 MF2 cells but not in GR1 cells. These results indicated that the function or activity of glucocorticoid receptor in the GR1 cells is not qualitatively altered. Our data suggest that a lower glucocorticoid receptor level is not the real cause or at least not the single cause for the GR1 cell's loss of sensitivity to the inhibitory action of glucocorticoid. Instead, we postulate the existence of a defect downstream of the primary site of action of glucocorticoid receptor complexes in GR1 cells. © 1993 Wiley-Liss, Inc.  相似文献   

12.
Although glucocorticoids are frequently administered to patients with hormone refractory prostate cancer, their therapeutic effectiveness is limited by the development of glucocorticoid resistance. The molecular mechanisms of glucocorticoid resistance are unknown but are believed to involve neuropeptide growth factors and cytokines. We examined the functional interaction between bombesin and dexamethasone in PC-3 cells and found that bombesin could act as a survival factor by interfering with dexamethasone-mediated growth inhibition. Because glucocorticoids exert their effects through glucocorticoid receptors (GRs), we measured the expression of GR alpha and GR beta isoforms in the presence of bombesin. Western blotting and real time PCR revealed bombesin induced expression of GR beta, but not GR alpha. Because GR isoforms are generated by alternative splicing of a common GR gene, we examined the expression of serine-arginine (SR) proteins involved in alternative splicing, and found that the expression of SRp30 was induced by bombesin in PC-3 cells. To characterize the role of SRp30 in splicing of GR isoforms, siRNAs specific to various SRp30 isoforms were transfected into PC-3 cells. We found that suppression of SRp30c expression by siRNA specifically antagonized bombesin's effect on glucocorticoid-mediated inhibition of PC cells, suggesting that bombesin-induced expression of SRp30c affects GR pre-mRNA splicing, leading to increased GR beta expression and contributing to glucocorticoid resistance in PC cells.  相似文献   

13.
The secretion of glucocorticoids in mammals is under circadian control, but glucocorticoids themselves are also implicated in modulating circadian clock gene expression. We have shown that the expression of the circadian clock protein PER1 in the forebrain is modulated by stress, and that this effect is associated with changes in plasma corticosterone levels, suggesting a possible role for glucocorticoids in the mediation of stress-induced changes in the expression of PER1 in the brain. To study this, we assessed the effects of adrenalectomy and of pretreatment with the glucocorticoid receptor antagonist, mifepristone, on the expression of PER1 in select limbic and hypothalamic regions following acute exposure to a neurogenic stressor, restraint, or a systemic stressor, 2-Deoxy-D-glucose (2DG) in rats. Acute restraint suppressed PER1 expression in the oval nucleus of the bed nucleus of the stria terminalis (BNSTov) and the central nucleus of the amygdala (CEAl), whereas 2DG increased PER1 in both regions. Both stressors increased PER1 expression in the paraventricular (PVN) and dorsomedial (DMH) nuclei of the hypothalamus, and the piriform cortex (Pi). Adrenalectomy and pretreatment with mifepristone reversed the effects of both stressors on PER1 expression in the BNSTov and CEAl, and blocked their effects in the DMH. In contrast, both treatments enhanced the effects of restraint and 2DG on PER1 levels in the PVN. Stress-induced PER1 expression in the Pi was unaffected by either treatment. PER1 expression in the suprachiasmatic nucleus, the master circadian clock, was not altered by either exposure to stress or by the glucocorticoid manipulations. Together, the results demonstrate a key role for glucocorticoid signaling in stress-induced changes in PER1 expression in the brain.  相似文献   

14.
15.
Glucocorticoids are essential for normal hypothalamic-pituitary-adrenal (HPA) axis activity; however, recent studies warn that exposure to excess endogenous or synthetic glucocorticoid during a specific period of prenatal development adversely affects HPA axis stability. We administered dexamethasone (DEX) to pregnant rats during the last week of gestation and investigated subsequent HPA axis regulation in adult male offspring in unrestrained and restraint-stressed conditions. With the use of real-time PCR and RIA, we examined the expression of regulatory genes in the hippocampus, hypothalamus, and pituitary, including corticotropin-releasing hormone (CRH), arginine vasopressin (AVP), glucocorticoid receptors (GR), mineralcorticoid receptors (MR), and 11-beta-hydroxysteroid dehydrogenase-1 (11beta-HSD-1), as well as the main HPA axis hormones, adrenal corticotropic hormone (ACTH) and corticosterone (CORT). Our results demonstrate that the DEX-exposed group exhibited an overall change in the pattern of gene expression and hormone levels in the unrestrained animals. These changes included an upregulation of CRH in the hypothalamus, a downregulation of MR with a concomitant upregulation of 11beta-HSD-1 in the hippocampus, and an increase in circulating levels of both ACTH and CORT relative to unrestrained control animals. Interestingly, both DEX-exposed and control rats exhibited an increase in pituitary GR mRNA levels following a 1-h recovery from restraint stress; however, the increased expression in DEX-exposed rats was significantly less and was associated with a slower return to baseline CORT compared with controls. In addition, circulating levels of ACTH and CORT as well as hypothalamic CRH and hippocampal 11beta-HSD-1 expression levels were significantly higher in the DEX-exposed group compared with controls following restraint stress. Taken together, these data demonstrate that late-gestation DEX exposure in rats is associated with persistent changes in both the modulation of HPA axis activity and the HPA axis-mediated response to stress.  相似文献   

16.
The present study investigated the effect of prenatal dexamethasone (Dex) exposure on early perinatal events, hippocampal function, and response to stress. Pregnant rats received Dex in the evening water (2.5 microg/ml) or tap water (Veh) from gestational day 15 until delivery. On the day of parturition, pups were randomized, cross-fostered, and reduced to eight or nine per dam. Four groups resulted: Veh-Veh (offspring exposed to Veh in utero, rearing mother treated with Veh during gestation), Veh-Dex, Dex-Veh, and Dex-Dex. Spatial visual memory was evaluated with the Morris water maze. The corticosterone response to restraint stress was examined, and the expression of hippocampal glucocorticoid and mineralocorticoid receptors mRNA was determined by in situ hybridization. Exposure to Dex caused restlessness in mothers, low birth weights, and poor weight gain in the offspring. The Dex-Dex males had impaired spatial learning, inability to rapidly terminate the adrenocortical response to stress, and decreased hippocampal glucocorticoid receptor (GR) mRNA expression. In contrast, Dex-exposed animals reared by Veh-treated mothers had adequate spatial learning, enhanced glucocorticoid feedback, and increased hippocampal GR mRNA. We conclude that the environment provided by a healthy mother during the postnatal period can prevent the detrimental effects of prenatal Dex administration on cognition, GR mRNA expression of the hippocampus, and the quality of the stress response.  相似文献   

17.
18.
Targeted mutagenesis of the glucocorticoid receptor has revealed an essential function for survival and the regulation of multiple physiological processes. To investigate the effects of an increased gene dosage of the receptor, we have generated transgenic mice carrying two additional copies of the glucocorticoid receptor gene by using a yeast artificial chromosome. Interestingly, overexpression of the glucocorticoid receptor alters the basal regulation of the hypothalamo-pituitary-adrenal axis, resulting in reduced expression of corticotropin-releasing hormone and adrenocorticotrope hormone and a fourfold reduction in the level of circulating glucocorticoids. In addition, primary thymocytes obtained from transgenic mice show an enhanced sensitivity to glucocorticoid-induced apoptosis. Finally, analysis of these mice under challenge conditions revealed that expression of the glucocorticoid receptor above wild-type levels leads to a weaker response to restraint stress and a strongly increased resistance to lipopolysaccharide-induced endotoxic shock. These results underscore the importance of tight regulation of glucocorticoid receptor expression for the control of physiological and pathological processes. Furthermore, they may explain differences in the susceptibility of humans to inflammatory diseases and stress, depending on individual prenatal and postnatal experiences known to influence the expression of the glucocorticoid receptor.  相似文献   

19.
Animal studies find that prenatal stress is associated with increased physiological and emotional reactivity later in life, mediated via fetal programming of the HPA axis through decreased glucocorticoid receptor (GR) gene expression. Post-natal behaviours, notably licking and grooming in rats, cause decreased behavioural indices of fear and reduced HPA axis reactivity mediated via increased GR gene expression. Post-natal maternal behaviours may therefore be expected to modify prenatal effects, but this has not previously been examined in humans. We examined whether, according to self-report, maternal stroking over the first weeks of life modified associations between prenatal depression and physiological and behavioral outcomes in infancy, hence mimicking effects of rodent licking and grooming. From a general population sample of 1233 first time mothers recruited at 20 weeks gestation we drew a stratified random sample of 316 for assessment at 32 weeks based on reported inter-partner psychological abuse, a risk to child development. Of these 271 provided data at 5, 9 and 29 weeks post delivery. Mothers reported how often they stroked their babies at 5 and 9 weeks. At 29 weeks vagal withdrawal to a stressor, a measure of physiological adaptability, and maternal reported negative emotionality were assessed. There was a significant interaction between prenatal depression and maternal stroking in the prediction of vagal reactivity to a stressor (p = .01), and maternal reports of infant anger proneness (p = .007) and fear (p = .043). Increasing maternal depression was associated with decreasing physiological adaptability, and with increasing negative emotionality, only in the presence of low maternal stroking. These initial findings in humans indicate that maternal stroking in infancy, as reported by mothers, has effects strongly resembling the effects of observed maternal behaviours in animals, pointing to future studies of the epigenetic, physiological and behavioral effects of maternal stroking.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号