首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Epigenetics refers to the study of heritable changes in gene function that do not involve changes in the DNA sequence. Such effects on cellular and physiological phenotypic traits may result from external or environmental factors or be part of normal developmental program. In eukaryotes, DNA wraps on a histone octamer (two copies of H2A, H2B, H3 and H4) to form nucleosome, the fundamental unit of chromatin. The structure of chromatin is subjected to a dynamic regulation through multiple epigenetic mechanisms, including DNA methylation, histone posttranslational modifications (PTMs), chromatin remodeling and noncoding RNAs. As conserved regulatory mechanisms in gene expression, epigenetic mechanisms participate in almost all the important biological processes ranging from basal development to environmental response. Importantly, all of the major epigenetic mechanisms in mammalians also occur in plants. Plant studies have provided numerous important contributions to the epigenetic research. For example, gene imprinting, a mechanism of parental allele-specific gene expression, was firstly observed in maize; evidence of paramutation, an epigenetic phenomenon that one allele acts in a single locus to induce a heritable change in the other allele, was firstly reported in maize and tomato. Moreover, some unique epigenetic mechanisms have been evolved in plants. For example, the 24-nt siRNA-involved RNA-directed DNA methylation (RdDM) pathway is plant-specific because of the involvements of two plant-specific DNA-dependent RNA polymerases, Pol IV and Pol V. A thorough study of epigenetic mechanisms is of great significance to improve crop agronomic traits and environmental adaptability. In this review, we make a brief summary of important progress achieved in plant epigenetics field in China over the past several decades and give a brief outlook on future research prospects. We focus our review on DNA methylation and histone PTMs, the two most important aspects of epigenetic mechanisms.  相似文献   

5.
真核生物的DNA以染色质形式通过逐级折叠压缩形成高级结构存在于细胞核中。染色质高级结构直接参与了真核基因的转录调控和其它与DNA相关的生物学事件,因此研究染色质高级结构对了解表观遗传学分子机制有着至关重要的作用。近些年,研究者们针对30 nm染色质高级结构提出了两个模型:螺线管模型和Zig-Zag模型。2014年,我们利用体外染色质组装体系重建了30 nm染色质纤维,运用高精度冷冻电镜技术得到了分辨率为11?的30 nm染色质纤维的精细结构,提出了30 nm染色质高级结构的左手双螺旋Zig-Zag模型。本文综述了30 nm染色质纤维结构研究方面的相关进展,并对30 nm染色质高级结构的表观遗传调控机理以及单分子成像和操纵技术在研究30 nm染色质高级结构中潜在的应用作出讨论和展望。  相似文献   

6.
7.
8.
苯丙胺类兴奋剂是全世界第二大滥用程度的药物,甲基苯丙胺作为苯胺类兴奋剂中的主要药物,是中国滥用的“头号毒品”。而现有的研究对甲基苯丙胺成瘾机制尚不清晰,且临床上对药物成瘾的治疗依然存在无药可医的局面。因此,发现新的成瘾机制和治疗策略尤为迫切。甲基苯丙胺成瘾与额前叶皮质(mPFC)、中脑腹侧被盖区(VTA)和伏隔核(NAc)中的多巴胺(DA)、谷氨酸(Glu)、去甲肾上腺素(NE)和血清素(SNRIS)等神经递质的异常释放有关。研究表明,这些神经递质受到表观遗传机制中组蛋白乙酰化、甲基化、泛素化和非编码RNA等调节,某些基因的表达在甲基苯丙胺的诱导过程中增强或被抑制,导致甲基苯丙胺依赖性产生。本文将针对表观遗传学对甲基苯丙胺成瘾机制的影响进行着重论述,以期推进临床开发甲基苯丙胺戒断药物的研究。  相似文献   

9.
核小体是真核生物染色质的基本单位,通过对组蛋白核心的N-端的乙酰化、甲基化、磷酸化、遍在蛋白化的修饰作用而影响细胞的功能。组蛋白乙酰化酶(histone acetylase HAT)及组蛋白去乙酰化酶(Histone Deacetylases HDAC)之间的动态平衡控制着染色质的结构和基因表达。当组蛋白去乙酰化水平增加,乙酰化水平相对降低,即会导致正常的细胞周期与代谢行为的改变而诱发肿瘤,及神经退行性变。组蛋白去乙酰化酶抑制剂(Histone Deacetylases-inhibitor HDACi)目前是国内外研究的热点。其中,曲古霉素A(Trichostatin A TSA),是最早发现的天然组蛋白去乙酰化酶抑制剂;伏立诺他(Suberoylanilide Hydroxamic Acid SAHA)已经美国FDA批准用于治疗皮肤T细胞淋巴瘤。本文就HDACi分类及其功能出发综述HDACi的作用机制及研究进展。  相似文献   

10.
11.
表观遗传学与人类疾病的研究进展   总被引:22,自引:0,他引:22  
张永彪  褚嘉祐 《遗传》2005,27(3):466-472
在过去的几年里,人们对表观遗传疾病的机理有了新的认识,这些疾病与染色质重塑、基因组印记、X染色体失活以及非编码RNA调控这4个表观遗传过程相关。这4个过程通过调节染色质结构,在染色体或基因簇水平上对基因表达进行调控;异常调控导致复杂的突变且表现为出生前后生长发育和神经功能的异常。对这些疾病的探讨为表观遗传机制的研究提供了很好的模型,进而有助于生物医学的研究。文章就表观遗传学和表观遗传疾病机制的研究进展做一综述。  相似文献   

12.
13.
14.
15.
16.
17.
The development and progression of melanoma have been attributed to independent or combined genetic and epigenetic events. There has been remarkable progress in understanding melanoma pathogenesis in terms of genetic alterations. However, recent studies have revealed a complex involvement of epigenetic mechanisms in the regulation of gene expression, including methylation, chromatin modification and remodeling, and the diverse activities of non-coding RNAs. The roles of gene methylation and miRNAs have been relatively well studied in melanoma, but other studies have shown that changes in chromatin status and in the differential expression of long non-coding RNAs can lead to altered regulation of key genes. Taken together, they affect the functioning of signaling pathways that influence each other, intersect, and form networks in which local perturbations disturb the activity of the whole system. Here, we focus on how epigenetic events intertwine with these pathways and contribute to the molecular pathogenesis of melanoma.  相似文献   

18.
19.
20.
Vascular endothelial cells (ECs) and smooth muscle cells (VSMCs) are constantly exposed to haemodynamic forces, including blood flow‐induced fluid shear stress and cyclic stretch from blood pressure. These forces modulate vascular cell gene expression and function and, therefore, influence vascular physiology and pathophysiology in health and disease. Epigenetics, including DNA methylation, histone modification/chromatin remodelling and RNA‐based machinery, refers to the study of heritable changes in gene expression that occur without changes in the DNA sequence. The role of haemodynamic force‐induced epigenetic modifications in the regulation of vascular gene expression and function has recently been elucidated. This review provides an introduction to the epigenetic concepts that relate to vascular physiology and pathophysiology. Through the studies of gene expression, cell proliferation, angiogenesis, migration and pathophysiological states, we present a conceptual framework for understanding how mechanical force‐induced epigenetic modifications work to control vascular gene expression and function and, hence, the development of vascular disorders. This research contributes to our knowledge of how the mechanical environment impacts the chromatin state of ECs and VSMCs and the consequent cellular behaviours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号