首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The hypothalamic arcuate nucleus (ARCN) of female rats at 5, 20, 45 and 90 days of age was examined ultrastructurally. Axodendritic and axosomatic synapses were counted in 18,000 m2 area of the ARCN in each brain. Axodendritic and axosomatic synapses in the ARCN of day 5 rats were very small in number. Axon terminals contained small spherical vesicles (SSVs, 40–60 nm in diameter). Occasionally large granular vesicles (LGVs, 75–130 nm in diameter) were found to coexist with SSVs in the endings. Pre- and postsynaptic membranes were thin. The ARCN at this age exhibited a large extracellular space which decreased with advancing age. In day 20 rats, axodendritic and axosomatic synapses increased in number up to about one-half of those of day 45 or day 90 animals. Synaptic vesicles increased in number and mitochondria were frequently encountered in the axon terminals. Pre- and postsynaptic membranes became thicker than those of day 5 rats. Further increase in the number of axodendritic and axosomatic synapses in the ARCN of day 45 rats was observed, and there were no significant difference in the morphology and incidence of synapses between day 45 and day 90 rats. Synaptic vesicles were numerous and pre- and postsynaptic membranes were thick. In tissue incubated with 5-hydroxydopamine (5-OH-DA) before fixation, small granular vesicles (SGVs, about 50 nm in diameter) which were labeled with 5-OH-DA were detected in a certain number of endings in all material taken from each age group, but the incidence of synapses containing SGVs was usually low. From these results, it can be proposed that an increase in the number of synapses in the ARCN is correlated with functional maturation of the ARC neurons. Acknowledgements. The authors wish to thank Prof. T. Kojima, Nihon University, for valuable suggestions during the initial stage of this study. This study was supported by grants from the Ministry of Education of Japan  相似文献   

2.
Sexual receptivity, lordosis, can be induced by sequential estradiol and progesterone or extended exposure to high levels of estradiol in the female rat. In both cases estradiol initially inhibits lordosis through activation of β-endorphin (β-END) neurons of the arcuate nucleus of the hypothalamus (ARH) that activate μ-opioid receptors (MOP) in the medial preoptic nucleus (MPN). Subsequent progesterone or extended estradiol exposure deactivates MPN MOP to facilitate lordosis. Opioid receptor-like receptor-1 (ORL-1) is expressed in ARH and ventromedial hypothalamus (VMH). Infusions of its endogenous ligand, orphanin FQ (OFQ/N, aka nociceptin), into VMH–ARH region facilitate lordosis. Whether OFQ/N acts in ARH and/or VMH and whether OFQ/N is necessary for steroid facilitation of lordosis are unclear. In Exp I, OFQ/N infusions in VMH and ARH that facilitated lordosis also deactivated MPN MOP indicating that OFQ/N facilitation of lordosis requires deactivation of ascending ARH-MPN projections by directly inhibiting ARH β-END neurons and/or through inhibition of excitatory VMH–ARH pathways to proopiomelanocortin neurons. It is unclear whether OFQ/N activates the VMH output motor pathways directly or via the deactivation of MPN MOP. In Exp II we tested whether ORL-1 activation is necessary for estradiol-only or estradiol + progesterone lordosis facilitation. Blocking ORL-1 with UFP-101 inhibited estradiol-only lordosis and MPN MOP deactivation but had no effect on estradiol + progesterone facilitation of lordosis and MOP deactivation. In conclusion, steroid facilitation of lordosis inhibits ARH β-END neurons to deactivate MPN MOP, but estradiol-only and estradiol + progesterone treatments appear to use different neurotransmitter systems to inhibit ARH-MPN signaling.  相似文献   

3.
P2X receptors are expressed on ventrolateral medulla projecting paraventricular nucleus (PVN) neurons. Here, we investigate the role of adenosine 5′-triphosphate (ATP) in modulating sympathetic nerve activity (SNA) at the level of the PVN. We used an in situ arterially perfused rat preparation to determine the effect of P2 receptor activation and the putative interaction between purinergic and glutamatergic neurotransmitter systems within the PVN on lumbar SNA (LSNA). Unilateral microinjection of ATP into the PVN induced a dose-related increase in the LSNA (1 nmol: 38 ± 6 %, 2.5 nmol: 72 ± 7 %, 5 nmol: 96 ± 13 %). This increase was significantly attenuated by blockade of P2 receptors (pyridoxalphosphate-6-azophenyl-20,40-disulphonic acid, PPADS) and glutamate receptors (kynurenic acid, KYN) or a combination of both. The increase in LSNA elicited by L-glutamate microinjection into the PVN was not affected by a previous injection of PPADS. Selective blockade of non-N-methyl-D-aspartate receptors (6-cyano-7-nitroquinoxaline-2,3-dione disodium salt, CNQX), but not N-methyl-D-aspartate receptors (NMDA) receptors (DL-2-amino-5-phosphonopentanoic acid, AP5), attenuated the ATP-induced sympathoexcitatory effects at the PVN level. Taken together, our data show that purinergic neurotransmission within the PVN is involved in the control of SNA via P2 receptor activation. Moreover, we show an interaction between P2 receptors and non-NMDA glutamate receptors in the PVN suggesting that these functional interactions might be important in the regulation of sympathetic outflow.  相似文献   

4.
Summary The arcuate nucleus, median eminence, and the lateral preoptic area from the brains of aldehyde-perfused male and female rats were examined by electron microscopy. In the lateral preoptic area, three neuronal types are described: a small light neuron, a larger light one, and a dark neuron resembling the larger light one in size and nuclear shape. Many myelinated axons are interposed among single neurons or neuronal pairs. The relationship of structures to each other is discussed. Several observations not previously reported are illustrated from tissue of the arcuate nucleus and median eminence.  相似文献   

5.
The role of the suprachiasmatic nucleus/medial preoptic area region of the hypothalamus in the expression of rat hypothalamic growth hormone-releasing factor-induced feeding in the rat was examined. Rats were tested for their 90-min food intake following microinjections of growth hormone-releasing factor (0.0, 0.01, 0.1 or 1.0 pmol) aimed at the suprachiasmatic nucleus/medial preoptic area region. It was found that growth hormone-releasing factor dose-dependently stimulated food intake with the 1.0 pmol dose being the most effective, increasing food intake by approximately 200%. Injections outside the suprachiasmatic nucleus/medial preoptic area region were ineffective. These data are taken to suggest that the suprachiasmatic nucleus/medial preoptic area region of the hypothalamus is important for the central stimulatory effects of growth hormone-releasing factor on feeding.  相似文献   

6.
G.P. Smith  C. Jerome  P. Kulkosky  K.J. Simansky   《Peptides》1984,5(6):1149-1157
Ceruletide (caerulein), a decapeptide extracted from the skin of the frog, Hyla caerulea, is very similar in structure to the C-terminal octapeptide of cholecystokinin (CCK-8). Although ceruletide and CCK-8 act through similar or identical receptors to produce the same visceral effects, previous studies in the rat suggested that peripherally administered ceruletide acted directly on the ventromedial hypothalamic (VMH) area to decrease food intake, but peripherally administered CCK-8 acted at a vagally innervated abdominal site to decrease food intake. Since it is unprecedented for these two peptides to produce the same effect by acting at different sites, we investigated the site of action of ceruletide's satiety effect in the rat and compared it to the site of action of CCK-8. The major results were: (1) intraperitoneal administration of ceruletide and CCK-8 inhibited food intake, but intraventricular administration did not; (2) the satiety effect of ceruletide and CCK-8 was not changed by bilateral lesions of the VMH; and (3) the satiety effect of ceruletide and CCK-8 was abolished or markedly reduced by bilateral abdominal vagotomy. We conclude that ceruletide acts at the same vagally innervated abdominal site to produce satiety as CCK-8 does and that neither peptide acts directly on the VMH area.  相似文献   

7.
In many rodent species, including Syrian hamsters, the expression of appropriate social behavior depends critically on the perception and identification of conspecific odors. The behavioral response to these odors is mediated by a network of steroid-sensitive ventral forebrain nuclei including the medial amygdala (Me), posterior bed nucleus of the stria terminalis (BNST), and medial preoptic area (MPOA). Although it is well-known that Me, BNST, and MPOA are densely interconnected and each uniquely modulates odor-guided social behaviors, the degree to which conspecific odor information and steroid hormone cues are directly relayed between these nuclei is unknown. To answer this question, we injected the retrograde tracer, cholera toxin B (CTB), into the BNST or MPOA of male subjects and identified whether retrogradely-labeled cells in Me and BNST 1) expressed immediate early genes (IEGs) following exposure to male and/or female odors or 2) expressed androgen receptor (AR). Although few retrogradely-labeled cells co-localized with IEGs, a higher percentage of BNST- and MPOA-projecting cells in the posterior Me (MeP) expressed IEGs in response to female odors than to male odors. The percentage of retrogradely-labeled cells that expressed IEGs did not, however, differ between and female and male odor-exposed groups in the anterior Me (MeA), posterointermediate BNST (BNSTpi), or posteromedial BNST (BNSTpm). Many retrogradely-labeled cells co-localized with AR, and a higher percentage of retrogradely-labeled MeP and BNSTpm cells expressed AR than retrogradely-labeled MeA and BNSTpi cells, respectively. Together, these data demonstrate that Me, BNST, and MPOA interact as a functional circuit to process sex-specific odor cues and hormone information in male Syrian hamsters.  相似文献   

8.
目的:探讨蓝斑(LC)、中缝大核(NRM)和迷走神经背核(DMV),及其相关递质和受体对胃运动的调节途径及机制,阐明它们在调节胃运动中的相互关系。方法:实验采用了核团定位电刺激、损毁和核团微量注射等实验方法,以记录胃内压,统计胃收缩幅度作为胃运动变化的指标。结果:①刺激LC显著降低胃收缩幅度(P〈0.01),损毁DMV可以减弱此效应,而阻断DMV上的肾上腺素能α受体,可以反转此抑胃效应。②刺激NRM显著降低胃收缩幅度(P〈0.01),损毁DMV后此效应被消除;阻断DMV上的5-HT2A受体使胃收缩幅度大幅度降低(P〈0.01),此时再刺激NRM不能进一步的抑制胃运动;而损毁LC后刺激NRM,可消除NRM的抑胃效应,在LC注射5-HT2A受体阻断剂也可以消除该效应。结论:①LC可能通过DMV的5-HT2A受体和α受体对生理条件下正常胃的运动起着重要的双向调节作用;②NRM通过LC上的5-HT2A受体而发挥其对胃运动的抑制效应。  相似文献   

9.
This study was performed to observe the effects of ghrelin on the activity of gastric distention (GD) sensitive neurons in the arcuate nucleus of hypothalamus (Arc) and on gastric motility in vivo in streptozocin (STZ) induced diabetes mellitus (DM) rats. Electrophysiological results showed that ghrelin could excite GD-excitatory (GD-E) neurons and inhibit GD-inhibitory (GD-I) neurons in the Arc. However, fewer GD-E neurons were excited by ghrelin and the excitatory effect of ghrelin on GD-E neurons was much weaker in DM rats. Gastric motility research in vivo showed that microinjection of ghrelin into the Arc could significantly promote gastric motility and it showed a dose-dependent manner. The effect of ghrelin promoting gastric motility in DM rats was weaker than that in normal rats. The effects induced by ghrelin could be blocked by growth hormone secretagogue receptor (GHSR) antagonist [d-Lys-3]-GHRP-6 or BIM28163. RIA and real-time PCR data showed that the levels of ghrelin in the plasma, stomach and ghrelin mRNA in the Arc increased at first but decreased later and the expression of GHSR-1a mRNA in the Arc maintained a low level in DM rats. The present findings indicate that ghrelin could regulate the activity of GD sensitive neurons and gastric motility via ghrelin receptors in the Arc. The reduced effects of promoting gastric motility induced by ghrelin could be connected with the decreased expression of ghrelin receptors in the Arc in diabetes. Our data provide new experimental evidence for the role of ghrelin in gastric motility disorder in diabetes.  相似文献   

10.
Naked mole-rats (Heterocephalus glaber) are eusocial rodents that live in large subterranean colonies including a single breeding female and 1-3 breeding males; all other members of the colony, known as subordinates, are reproductively suppressed. We recently found that naked mole-rats lack many of the sex differences in the brain and spinal cord commonly found in other rodents. Instead, neural morphology is influenced by breeding status, such that breeders, regardless of sex, have more neurons than subordinates in the ventromedial nucleus of the hypothalamus (VMH), and larger overall volumes of the bed nucleus of the stria terminalis (BST), paraventricular nucleus (PVN) and medial amygdala (MeA). To begin to understand how breeding status influences brain morphology, we examined the distribution of androgen receptor (AR) immunoreactivity in gonadally intact breeders and subordinates of both sexes. All animals had AR+ nuclei in many of the same regions positive for AR in other mammals, including the VMH, BST, PVN, MeA, and the ventral portion of the premammillary nucleus (PMv). We also observed diffuse labeling throughout the preoptic area, demonstrating that distribution of the AR protein in presumptive reproductive brain nuclei is well-conserved, even in a species that exhibits remarkably little sexual dimorphism. In contrast to other rodents, however, naked mole-rats lacked AR+ nuclei in the suprachiasmatic nucleus and hippocampus. Males had more AR+ nuclei in the MeA, VMH, and PMv than did females. Surprisingly, breeders had significantly fewer AR+ nuclei than subordinates in all brain regions examined (VMH, BST, PVN, MeA, and PMv). Thus, social status is strongly correlated with AR immunoreactivity in this eusocial species.  相似文献   

11.
Male European starlings (Sturnus vulgaris) sing throughout the year, but the social factors that motivate singing behavior differ depending upon the context in which song is produced. In a non-breeding context (when testosterone concentrations are low), starlings form large, mixed-sex flocks and song is involved in flock cohesion and perhaps maintenance of social hierarchies. In contrast, in a breeding context (when testosterone concentrations are high), male song plays a direct role in mate attraction. How the nervous system ensures that song production occurs in an appropriate context in response to appropriate stimuli is not well understood. The song control system regulates song production, learning, and, to some extent, perception; however, these nuclei do not appear to regulate the social context in which song is produced. A network of steroid hormone sensitive nuclei of the basal forebrain and midbrain regulates social behavior. The present study used the immediate early gene cFOS to explore possible involvement of these regions in context-dependent song production. Numbers of cFOS-labeled cells in the medial bed nucleus of the stria terminalis, anterior hypothalamus, and ventromedial nucleus of the hypothalamus related positively only to song produced in a breeding context. In contrast, numbers of cFOS-labeled cells in three zones of the lateral septum related positively only to song produced in a non-breeding context. Taken together, these data suggest differential regulation of male starling song by social behavior nuclei depending upon the breeding context in which it is produced.  相似文献   

12.
Ozone (O3) has been reported to affect sleep patterns and also striatal and mesencephalic contents of 5-hydroxy-indole-acetic acid (5-HIAA) in rats. The aim of this work was to elucidate the effects of O3 exposure in rats upon extracellular 5-HIAA levels in the dorsal raphe (DR) and the hypothalamic medial preoptic area (MPO), two structures involved in sleep-wake homeostasis. Exposure to O3 followed a bell-shaped diurnal pattern, similar to that observed in cities with high air pollution levels. The highest O3 concentration employed was 0.5 ppm. Simultaneous polygraphic records were performed to evaluate the concomitant effects of this exposure model on sleep patterns. Results showed that extracellular 5-HIAA levels increased by 28% in the DR (P=0.0213) while paradoxical sleep (PS) decreased by 56% (P=0.0000) during the light O3 exposure phase. A decrease of 32% in 5-HIAA levels in the MPO (P=0.0450), and of 22% in slow wave sleep (SWS) (P=0.0002) and an increase of 21% in wakefulness (P=0.0430) during the dark post-exposure (Dpost) phase were also observed. We propose that the decrease in PS is the behavioral expression of disruptions of serotonergic DR modulation and, that post-exposure effects observed in the MPO can be explained on the basis of the hypothalamic role in the sleep-wake cycle.  相似文献   

13.
《Journal of Physiology》1997,91(1):31-37
We investigated the influence of ibotenic acid lesions of the medial hypothalamus (MH) on salt appetite and arterial blood pressure responses induced by angiotensinergic and adrenergic stimulation of the median preoptic nucleus (MnPO) of rats. Previous injection of the adrenergic agonists norepinephrine, clonidine, phenylephrine, and isoproterenol into the MnPO of sham MH-lesioned rats caused no change in the sodium intake induced by ANG II. ANG II injected into the MnPO of MH-lesioned rats increased sodium intake compared with sham-lesioned rats. Previous injection of clonidine and isoproterenol increased, whereas phenylephrine abolished the salt intake induced by ANG II into the MnPO of MH-lesioned rats. Previous injection of norepinephrine and clonidine into the MnPO of sham MH-lesioned rats caused no change in the mean arterial pressure (MAP) induced by ANG II. Under the same conditions, previous injection of phenylephrine increased, whereas isoproterenol reversed the increase in MAP induced by angiotensin II (ANG II). ANG II injected into the MnPO of MH-lesioned rats induce a decrease in MAP compared with sham-lesioned rats. Previous injection of phenylephrine or norepinephrine into the MnPO of MH-lesioned rats induced a negative MAP, whereas pretreatment with clonidine or isoproterenol increased the MAP produced by ANG II injected into the MnPO of sham- or MH-lesioned rats. These data show that ibotenic acid lesion of the MH increases the sodium intake and pressor responses induced by the concomitant angiotensinergic, α2 and β adrenergic activation of the MnPO, whereas α1 activation may have opposite effects. MH involvement in excitatory and inhibitory mechanisms related to sodium intake and MAP control is suggested.  相似文献   

14.
The magnocellular division of the medial preoptic area (MPN mag) integrates pheromonal and hormonal signals to play a critical role in the expression of male typical sex behavior. The MPN mag contains two morphologically distinct neuronal populations; the percentage of each type within the nucleus is sex specific. Males have more neurons with a single nucleolus whereas females have more with multiple nucleoli. To determine which neuronal subtype mediates pheromonal induction of copulation, tissue from male and female hamsters exposed to female pheromones was immunolabeled for the immediate early protein (EGR-1). Subsequently the tissue was counterstained and the number of ERG-1 neurons with one or two nuclei was determined. The results indicate that pheromones stimulate neurons with single nucleoli in males but fail to stimulate either neuronal subtype in females suggesting that synaptic input to the MPN mag is sexually differentiated.  相似文献   

15.
We analyzed background impulse activity of neurons of the supraoptic nucleus of the rat hypothalamus in the course of 15-day-long isolated action of generalized vibrational stimulation and combination of such stimulation with irradiation of the animal’s head with low-intensity extrahigh-frequency (EHF, millimeter-range) electromagmetic waves. The distributions of the neurons by the level of regularity and dynamics of spike trains, separate frequency ranges of impulsation, and pattern of interspike interval (ISI) histograms were estimated. We also calculated the mean frequency of discharges and coefficient of variation of ISIs. A trend toward decreases in the deviations of some parameters of neuronal spike activity generated by supraoptic neurons, which were evident within early time intervals of isolated action of vibration (5 to 10 days), was observed under the influence of EHF electromagnetic irradiation; thus, the latter factor probably exerts a sedative effect. Neirofiziologiya/Neurophysiology, Vol. 39, No. 6, pp. 433–442, November–December, 2007.  相似文献   

16.
Using the electromyographic method in acute experiments on anaesthetized with urethanum rats the different influence of locus coeruleus, nucleus medialis parabrachialis and nuclei raphae on respiratory centre activity has been established. The effect of the locus coeruleus depended on parameters of stimulation and on the character of the tested structures between each other and the bilateral regions of the respiratory centre.  相似文献   

17.
Orexin, which is mainly produced by orexin-expressing neurons in the lateral hypothalamus (LH), plays an important role in pain modulation. Both kinds of orexin-1 (Ox1) and orexin-2 (Ox2) receptors have been found at high density in the ventral tegmental area (VTA) and nucleus accumbens (NAc). However, the quantity of Ox1 receptors in the VTA is more than that in the NAc. Additionally, it seems that the functional interaction between the LH, VTA and NAc implicates pain processing and modulation. In this study, we tried to examine the involvement of Ox2 receptors in the NAc and VTA using tail-flick test as an animal model of acute pain following microinjection of effective dose of carbachol (125 nmol/0.5 μl saline) into the LH. In this set of experiments, different doses of TCS OX2 29 as an Ox2 receptor antagonist were microinjected into the VTA (1, 7 and 20 nmol/0.3 μl DMSO) and the NAc (2, 10, 20 and 40 nmol/0.5 μl DMSO) 5 min prior to carbachol administration. Administration of TCS OX2 29 into the VTA and NAc dose-dependently blocked intra-LH carbachol-induced antinociception. However, the inhibitory effect of TCS OX2 29 as an Ox2 receptor antagonist was more potent in the VTA than that in the NAc. It seems that VTA orexinergic receptors are more effective on LH stimulation-induced antinociception and the modulation of pain descending inhibitory system originated from the LH than those of the same receptors in the nucleus accumbens in rats.  相似文献   

18.
Neuropeptide Y (NPY) is the most potent stimulant of feeding when administered by intracerebroventricular injection. Despite this, there is conflicting evidence as to its importance in the regulation of daily food intake and energy balance. It has been suggested that whilst it is important in the response to starvation it has little role in the regulation of daily food intake. To investigate the role of NPY in the regulation of food intake, anti-sense cRNA to NPY was expressed in the arcuate nucleus of adult male rats. The anti-sense NPY (AS-NPY) construct was initially tested in vitro and there was a decrease of approximately 50% in NPY release from anti-sense treated cells compared to controls (16.3 +/- 2.0 fmol/L [AS-NPY] vs 37.3 +/- 7.7 fmol/L [control], mean +/- SEM p < 0.05). NPY release from hypothalamic explants from anti-sense injected animals was decreased by over 50% compared to those from controls at both 15 and 20 days after AAV injection (15 days 42% +/- 6.5% [AS-NPY] vs 100% +/- 36% [control], 20 days 41% +/- 6% [AS-NPY] vs 100% +/- 27% [control] mean+/-SEM, p < 0.05). In a study lasting for 50 days, weight gain was significantly lower in anti-sense injected animals from day 16 (day 16: 6.25 +/- 1.10 g [AS-NPY] vs 9.42 +/- 0.65 g [control] mean +/- SEM, p < 0.05) and remained so until the end of the study when they had gained approximately 40% less weight than controls (day 50: 52.0 +/- 9.6 g [AS-NPY] vs 82.0 +/- 6.3 g [control] mean +/- SEM, p < 0.01). Cumulative food intake was significantly lower in the anti-sense injected animals from day 23 (day 23: 225.8 +/- 1.9 g [AS-NPY] vs 250.6 +/- 8.7 g [control], mean +/- SEM, p < 0.05) and remained so until the end of the study (day 50: 834.5 +/- 14.8 g [AS-NPY] vs 926.0 +/- 31.7 g [control], mean +/- SEM, p < 0.05). Similarly mean daily food intake was also reduced in the anti-sense injected animals (days 7-14: 24.9 +/- 0.4 g/day [AS-NPY] vs 27.2 +/- 0.4 g/day [control], mean +/- SEM, p < 0.01). These data are supportive of a role for NPY in the regulation of daily food intake as well as in response to starvation.  相似文献   

19.
In the Royal College of Surgeons (RCS) rat, characterized by inherited retinal dystrophy, retinal projections to the brain were studied using anterograde neuronal transport of cholera toxin B subunit upon injection into one eye. The respective immunoreactivity was found predominantly contralateral to the injection site in the lateral geniculate nucleus, superior colliculus, nucleus of the optic tract, medial terminal nucleus of the accessory optic tract, and bilateral hypothalamic suprachiasmatic nuclei. Although terminal density was somewhat reduced in dystrophic rats, the projection patterns in these animals appeared similar to those seen in their congenic controls and were comparable to the visual pathways described for the rat previously. In dystrophic rats, the number of cell bodies exhibiting immunoreactivity to vasoactive intestinal polypeptide, viz. a population of suprachiasmatic neurons receiving major retinohypothalamic input, was reduced by one-third, and some differences were observed in the termination pattern of the geniculohypothalamic tract, as revealed by immunoreactivity to neuropeptide Y in the suprachiasmatic nucleus.This study was supported by grants from the DFG (Re 644/2-1) and the NMFZ, Mainz (to S.R.).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号