首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work from our laboratory has shown that there is a much higher level of bFGF and GFAP immunoreactivity in area 2 of the cingulate cortex (Cg2) of rats on day 16 of lactation than in cycling or late pregnant females. To examine the time course of this change, in the first of the current studies, we compared bFGF and GFAP immunoreactivity in the brains of lactating females on postpartum day 4 (PP4), day 10 (PP10), day 16 (PP16), and day 24 (PP24) with that of cycling and ovariectomized (OVX) females. In the second study, we investigated whether the maintenance of these changes in bFGF and GFAP depended on suckling stimulation by removing litters on day 1 or day 16 postpartum and examining the brains of the dams on day 4 (Pr4) or day 24 (Pr24) postpartum, respectively. bFGF and GFAP immunoreactivity within Cg2 and the medial preoptic area (MPOA) were measured. In both experiments astrocytic bFGF and GFAP surface density in the Cg2 varied significantly across groups. All postpartum rats, regardless of stage of lactation or presence of the litter, had significantly higher levels of bFGF and GFAP immunoreactivity than cycling animals. Thus, the maintenance of this upregulation in bFGF and GFAP immunoreactivity does not depend on suckling stimulation. Consistent with our previous report, astrocytic bFGF was also elevated in the MPOA of PP16 animals. These data suggest a robust, long-lasting, postpartum change in bFGF and GFAP immunoreactivity in Cg2 and a role for this area of the cortex in the physiological and behavioral adaptations that accompany reproductive experience.  相似文献   

2.
An upregulation of the astrocytic proteins GFAP and bFGF within area 2 of the cingulate cortex (Cg2) occurs within 3 hours of parturition in rats. These changes are the result of an interaction between hormonal state and maternal experience and are associated with increased dendritic spine density in this area. Here, we examined whether this upregulation of astrocytic proteins generalized to other glial markers and, in particular those associated with glutamate metabolism. We chose glial markers commonly used to reflect different aspects of glial function: vimentin, like GFAP, is a marker of intermediate filaments; glutamine synthetase (GS), and S-100beta, are used as markers for mature astrocytes and GS has also been used as a specific marker for glutamatergic enzymatic activity. In addition, we examined levels of proteins associated with glutamine synthetase, glutamate, glutamine and two excitatory amino acid transporters found in astrocytes, glt-1 and glast. S100beta immunoreactivity did not vary with reproductive state in either Cg2 or MPOA suggesting no change in the number of mature astrocytes across these conditions. Vimentin-ir did not differ across groups in Cg2, but expression of this protein decreased from Day 1 postpartum onwards in the MPOA. By contrast, GS-ir was increased within 24 h postpartum in Cg2 but not MPOA and similarly to GFAP and bFGF this upregulation of GS resulted from an interaction between hormonal state and maternal experience. Within Cg2, upregulation of GS was not accompanied by changes in the astrocytic glutamatergic transporters, glt-1 and glast, however, an increase in both glutamate and glutamine proteins were observed within the Cg2 of postpartum animals. Together, these changes suggest postpartum upregulation of glutamatergic activity and metabolism within Cg2 that is stimulated by pregnancy hormones and maternal experience.  相似文献   

3.
Previous studies have shown that sensory and motor experiences play an important role in the remodeling of dendritic spines of layer 5 (L5) pyramidal neurons in the cortex. In this study, we examined the effects of sensory deprivation and motor learning on dendritic spine remodeling of layer 2/3 (L2/3) pyramidal neurons in the barrel and motor cortices. Similar to L5 pyramidal neurons, spines on apical dendrites of L2/3 pyramidal neurons are plastic during development and largely stable in adulthood. Sensory deprivation via whisker trimming reduces the elimination rate of existing spines without significant effect on the rate of spine formation in the developing barrel cortex. Furthermore, we show that motor training increases the formation and elimination of dendritic spines in the primary motor cortex. Unlike L5 pyramidal neurons, however, there is no significant difference in the rate of spine formation between sibling dendritic branches of L2/3 pyramidal neurons. Our studies indicate that sensory and motor learning experiences have important impact on dendritic spine remodeling in L2/3 pyramidal neurons. They also suggest that the rules governing experience‐dependent spine remodeling are largely similar, but not identical, between L2/3 and L5 pyramidal neurons. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 277–286, 2016  相似文献   

4.
A thorough evaluation of hippocampal dendrites, axons and synaptic contacts has not been undertaken following prolonged periods of absence of corticosteroids despite the marked granule cell loss which occurs in the dentate gyrus of adrenalectomized rats. Thus, we have applied morphometric techniques to analyse the dendrites of granule and pyramidal cells, the mossy fiber system, and the number and morphology of synapses between the mossy fibers and the excrescences of CA3 pyramidal cells in rats submitted to different periods of adrenalectomy. In addition, to search for the presence of neuritic reorganisation in the hippocampal formation once normal corticosteroid levels were re-established, we incorporated in this study a group of rats replaced with corticosterone one month after adrenalectomy. The results obtained in adrenalectomized rats showed a striking impoverishment of the dendrites of surviving granule cells, subtle alterations in the apical dendritic arborization of CA3 pyramidal cells and no changes in the apical dendrites of CA1 pyramidal cells. In addition, in adrenalectomized rats there was a progressive reduction in the total number of synapses established between mossy fibers and CA3 pyramids, as a consequence of a reduction in the volume of the suprapyramidal part of the mossy fiber system, and profound changes in the morphology of mossy fiber terminals and CA3 dendritic excrescences. A remarkable reorganisation of neurites was found to occur following the administration of low doses of corticosterone, completely reversing the adrenalectomy-induced synaptic loss and partially restoring the morphology of hippocampal axons and dendrites. These plastic mechanisms provide a sound structural basis for the reversibility of cognitive deficits observed after corticosterone administration to adrenalectomized rats.  相似文献   

5.
1. In Golgi-Cox-impregnated coronal sections of albino rat brains at 1, 4, 26, 24, 30, 60 and 90 days it is presented the evolution of the spine-less, bare initial zone ("nude zone", NZ) at the proximal apical main dendrites of the layer V pyramidal neurons in the somatosensory and anterior limbie cortex. The quantitative results are analyzed by statistical methods. 2. The NZ is comprehended as a morphological correlate of the endodendritic neuroplasmic flow (Weiss 1944, Globus, Lux and Schuberl 1968, Kreutzberg 1973). The observed changes of the percental frequency and the average length of NZ increases rapidly. 3. The NZ occurs at first in the (12th) 16 postnatal day, thus in a time, when the organs of hearing and the eyes are differentiated completely. Between 16th and 24th day the percental frequency as well as the longitude of NZ increases. During this time the rats will be independent of the mother animals. With the full differentiation of the urogenital tract and especially with the sexual maturity the percentage frequency of NZ increases only at pyramidal cells in the anterior limbie cortex between 24th and 60th day. During 3rd month the NZ is occuring percental more frequently in the anterior limbic cortex than in the somatosensory cortex. At this time the average length of NZ is shorter in the limbic cortex. 4. As to the enriched, vivid movement of the animals and the playing impulse of the young rats the average length of NZ will be extended at pyramidal neurons in the somatosensory cortex during 2nd month, as well as the pattern of spine distribution will be changed along apical dendrites (Schlerhorn, unpublished). During the following (3rd) month the NZ will be shorteded in the somatosensory cortex, obviously caused by new formation of spines at the proximal main dendrites. 5. These newly formed spines in the initial zone of apical dendrites may be inhibitory spines. The inhibitory spines are stained only when using the mercury chromate impregnation according to Golgi-Cox, but not when using the silver chromate methods according to Golgi-Kopsch or Golgi-Bubenaite. The different tingibility of these spines by different Golgi techniques is discussed by Doedens, Nagel and Schierhorn (1974). The pyramidal neurons in the somatosensory cortex possess a longer average length of NZ (Lnz = 7,3[mum]) than the pyramidal cells in the anterior limbic cortex (Lnz = 6.2[mum]). As to NZ the differences between silver and mercury chromate stained pyramidal neurons are greater in the somatosensory cortex than in limbic cortex (see Tab. 7). Therefore we assume that there are in the initial zone of somatosensory pyramidal neurons more inhibitory spines than at the pyramidal neurons in the anterior limbic cortex. 6. The regional differences in the percentual frequency and in the average length of NZ between somatosensory and limbic cortex are new identifying marks of architectonic differentiation of the pyramidal neurons in cortical regions of phylogenetically different ages.  相似文献   

6.
In the present study, we investigated the effects of chronic exposure (14 and 28 days) to a 0.5 mT 50 Hz extremely low-frequency magnetic field (ELM) on the dendritic spine density and shape in the superficial layers of the medial entorhinal cortex (MEC). We performed Golgi staining to reveal the dendritic spines of the principal neurons in rats. The results showed that ELM exposure induced a decrease in the spine density in the dendrites of stellate neurons and the basal dendrites of pyramidal neurons at both 14 days and 28 days, which was largely due to the loss of the thin and branched spines. The alteration in the density of mushroom and stubby spines post ELM exposure was cell-type specific. For the stellate neurons, ELM exposure slightly increased the density of stubby spines at 28 days, while it did not affect the density of mushroom spines at the same time. In the basal dendrites of pyramidal neurons, we observed a significant decrease in the mushroom spine density only at the later time point post ELM exposure, while the stubby spine density was reduced at 14 days and partially restored at 28 days post ELM exposure. ELM exposure-induced reduction in the spine density in the apical dendrites of pyramidal neurons was only observed at 28 days, reflecting the distinct vulnerability of spines in the apical and basal dendrites. Considering the changes in spine number and shape are involved in synaptic plasticity and the MEC is a part of neural network that is closely related to learning and memory, these findings may be helpful for explaining the ELM exposure-induced impairment in cognitive functions.  相似文献   

7.
The hyperpolarization-activated cation current, I(h), plays an important role in regulating intrinsic neuronal excitability in the brain. In hippocampal pyramidal neurons, I(h) is mediated by h channels comprised primarily of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel subunits, HCN1 and HCN2. Pyramidal neuron h channels within hippocampal area CA1 are remarkably enriched in distal apical dendrites, and this unique distribution pattern is critical for regulating dendritic excitability. We utilized biochemical and immunohistochemical approaches in organotypic slice cultures to explore factors that control h channel localization in dendrites. We found that distal dendritic enrichment of HCN1 is first detectable at postnatal day 13, reaching maximal enrichment by the 3rd postnatal week. Interestingly we found that an intact entorhinal cortex, which projects to distal dendrites of CA1 but not area CA3, is critical for the establishment and maintenance of distal dendritic enrichment of HCN1. Moreover blockade of excitatory neurotransmission using tetrodotoxin, 6-cyano-7-nitroquinoxaline-2,3-dione, or 2-aminophosphonovalerate redistributed HCN1 evenly throughout the dendrite without significant changes in protein expression levels. Inhibition of calcium/calmodulin-dependent protein kinase II activity, but not p38 MAPK, also redistributed HCN1 in CA1 pyramidal neurons. We conclude that activation of ionotropic glutamate receptors by excitatory temporoammonic pathway projections from the entorhinal cortex establishes and maintains the distribution pattern of HCN1 in CA1 pyramidal neuron dendrites by activating calcium/calmodulin-dependent protein kinase II-mediated downstream signals.  相似文献   

8.
Chronic stress produces deficits in cognition accompanied by alterations in neural chemistry and morphology. Medial prefrontal cortex is a target for glucocorticoids involved in the stress response. We have previously demonstrated that 3 weeks of daily corticosterone injections result in dendritic reorganization in pyramidal neurons in layer II-III of medial prefrontal cortex. To determine if similar morphological changes occur in response to chronic stress, we assessed the effects of daily restraint stress on dendritic morphology in medial prefrontal cortex. Male rats were exposed to either 3 h of restraint stress daily for 3 weeks or left unhandled except for weighing during this period. On the last day of restraint, animals were overdosed and brains were stained using a Golgi-Cox procedure. Pyramidal neurons in lamina II-III of medial prefrontal cortex were drawn in three dimensions, and the morphology of apical and basilar arbors was quantified. Sholl analyses demonstrated a significant alteration of apical dendrites in stressed animals: overall, the number and length of apical dendritic branches was reduced by 18 and 32%, respectively. The reduction in apical dendritic arbor was restricted to distal and higher-order branches, and may reflect atrophy of terminal branches: terminal branch number and length were reduced by 19 and 35%. On the other hand, basilar dendrites were not affected. This pattern of dendritic reorganization is similar to that seen after daily corticosterone injections. This reorganization likely reflects functional changes in prefrontal cortex and may contribute to stress-induced changes in cognition.  相似文献   

9.
10.
Therapeutic irradiation of the brain is a common treatment modality for brain tumors, but can lead to impairment of cognitive function. Dendritic spines are sites of excitatory synaptic transmission and changes in spine structure and number are thought to represent a morphological correlate of altered brain functions associated with hippocampal dependent learning and memory. To gain some insight into the temporal and sub region specific cellular changes in the hippocampus following brain irradiation, we investigated the effects of 10 Gy cranial irradiation on dendritic spines in young adult mice. One week or 1 month post irradiation, changes in spine density and morphology in dentate gyrus (DG) granule and CA1 pyramidal neurons were quantified using Golgi staining. Our results showed that in the DG, there were significant reductions in spine density at both 1 week (11.9%) and 1 month (26.9%) after irradiation. In contrast, in the basal dendrites of CA1 pyramidal neurons, irradiation resulted in a significant reduction (18.7%) in spine density only at 1 week post irradiation. Analysis of spine morphology showed that irradiation led to significant decreases in the proportion of mushroom spines at both time points in the DG as well as CA1 basal dendrites. The proportions of stubby spines were significantly increased in both the areas at 1 month post irradiation. Irradiation did not alter spine density in the CA1 apical dendrites, but there were significant changes in the proportion of thin and mushroom spines at both time points post irradiation. Although the mechanisms involved are not clear, these findings are the first to show that brain irradiation of young adult animals leads to alterations in dendritic spine density and morphology in the hippocampus in a time dependent and region specific manner.  相似文献   

11.
Summary Cells in the visual cortex (area 17) of adult rats were impregnated by the rapid Golgi method and characterized by light microscopy. Selected cells were then sectioned for electron microscopy and their cytological characteristics and the pattern of synapses on their cell bodies and dendrites were studied Twelve classical pyramidal cells from layers II–VI, two pyramid-like cells from layer VI, two inverted pyramidal cells from layers V and VI, ten spine-free non-pyramidal cells from layers II–VI and two spinous non-pyramidal cells from layer IV were examined.The cytoplasmic features of the identified cells, where these could be discerned, corresponded to those previously reported for the different cell types in conventionally prepared tissue. Pyramidal Cells received exclusively type 2 synaptic contacts on their cell bodies, type 1 contacts on their dendritic spines and a mixture of synaptic types (type II predominating) on their shafts, where synaptic density was relatively low. This pattern of synaptic contacts was consistent for all portions of the dendritic tree; inverted pyramidal cells and pyramid-like cells showed the same synaptic organization as classical pyramids. The axon collaterals of pyramidal cells established type I contacts with dendritic spines (or, rarely, shafts) of unknown origin. Non-Pyramidal Cells received both type 1 and type 2 contacts (the former predominating) on their cell bodies and dendrites. The spinous variety also received type I contacts on their dendritic spines. Axon terminal of spine-free non-pyramidal cells established type II synaptic contacts with dendritic shafts of unknown origin. The similarity in synaptic organization between the spine-free and spinous non-pyramidal cells examined in this study suggest that the latter correspond to the sparsely spinous stellate cells rather than to the spinous stellate cells of cat and monkey visual cortex.We thank the Medical Research Council for financial support  相似文献   

12.
Zuo Y  Lin A  Chang P  Gan WB 《Neuron》2005,46(2):181-189
Synapse formation and elimination occur throughout life, but the magnitude of such changes at distinct developmental stages remains unclear. Using transgenic mice overexpressing yellow fluorescent protein and transcranial two-photon microscopy, we repeatedly imaged dendritic spines on the apical dendrites of layer 5 pyramidal neurons. In young adolescent mice (1-month-old), 13%-20% of spines were eliminated and 5%-8% formed over 2 weeks in barrel, motor, and frontal cortices, indicating a cortical-wide spine loss during this developmental period. As animals mature, there is also a substantial loss of dendritic filopodia involved in spinogenesis. In adult mice (4-6 months old), 3%-5% of spines were eliminated and formed over 2 weeks in various cortical regions. Over 18 months, only 26% of spines were eliminated and 19% formed in adult barrel cortex. Thus, after a concurrent loss of spines and spine precursors in diverse regions of young adolescent cortex, spines become stable and a majority of them can last throughout life.  相似文献   

13.

Background

Hippocampal CA1 pyramidal neurons receive two excitatory glutamatergic synaptic inputs: their most distal dendritic regions in the stratum lacunosum-moleculare (SLM) are innervated by the perforant path (PP), originating from layer III of the entorhinal cortex, while their more proximal regions of the apical dendrites in the stratum radiatum (SR) are innervated by the Schaffer-collaterals (SC), originating from hippocampal CA3 neurons. Endocannabinoids (eCBs) are naturally occurring mediators capable of modulating both GABAergic and glutamatergic synaptic transmission and plasticity via the CB1 receptor. Previous work on eCB modulation of excitatory synapses in the CA1 region largely focuses on the SC pathway. However, little information is available on whether and how eCBs modulate glutamatergic synaptic transmission and plasticity at PP synapses.

Methodology/Principal Findings

By employing somatic and dendritic patch-clamp recordings, Ca2+ uncaging, and immunostaining, we demonstrate that there are significant differences in low-frequency stimulation (LFS)- or DHPG-, an agonist of group I metabotropic glutamate receptors (mGluRs), induced long-term depression (LTD) of excitatory synaptic transmission between SC and PP synapses in the same pyramidal neurons. These differences are eliminated by pharmacological inhibition with selective CB1 receptor antagonists or genetic deletion of the CB1 receptor, indicating that these differences likely result from differential modulation via a CB1 receptor-dependent mechanism. We also revealed that depolarization-induced suppression of excitation (DSE), a form of short-term synaptic plasticity, and photolysis of caged Ca2+-induced suppression of Excitatory postsynaptic currents (EPSCs) were less at the PP than that at the SC. In addition, application of WIN55212 (WIN) induced a more pronounced inhibition of EPSCs at the SC when compared to that at the PP.

Conclusions/Significance

Our results suggest that CB1 dependent LTD and DSE are differentially expressed at the PP versus SC synapses in the same neurons, which may have an impact on synaptic scaling, integration and plasticity of hippocampal CA1 pyramidal neurons.  相似文献   

14.
Chronic stress produces deficits in cognition accompanied by alterations in neural chemistry and morphology. For example, both stress and chronic administration of corticosterone produce dendritic atrophy in hippocampal neurons (Woolley C, Gould E, McEwen BS. 1990. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res 531:225-231; Watanabe Y, Gould E, McEwen BS, 1992b. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res 588:341-345). Prefrontal cortex is also a target for glucocorticoids involved in the stress response (Meaney MJ, Aitken DH. 1985. [(3)H]Dexamethasone binding in rat frontal cortex. Brain Res 328:176-180); it shows neurochemical changes in response to stress (e.g., Luine VN, Spencer RL, McEwen BS. 1993. Effect of chronic corticosterone ingestion on spatial memory performance and hippocampal serotonergic function. Brain Res 616:55-70; Crayton JW, Joshi I, Gulati A, Arora RC, Wolf WA. 1996. Effect of corticosterone on serotonin and catecholamine receptors and uptake sites in rat frontal cortex. Brain Res 728:260-262; Takao K, Nagatani T, Kitamura Y, Yamawaki S. 1997. Effects of corticosterone on 5-HT(1A) and 5-HT(2) receptor binding and on the receptor-mediated behavioral responses of rats. Eur J Pharmacol 333:123-128; Sandi C, Loscertales M. 1999. Opposite effects on NCAM expression in the rat frontal cortex induced by acute vs. chronic corticosterone treatments. Brain Res 828:127-134), and mediates many of the behaviors that are altered by chronic corticosterone administration (e.g., Lyons DM, Lopez JM, Yang C, Schatzberg AF. 2000. Stress-level cortisol treatment impairs inhibitory control of behavior in monkeys. J Neurosci 20:7816-7821). To determine if glucocorticoid-induced morphological changes also occur in medial prefrontal cortex, the effects of chronic corticosterone administration on dendritic morphology in this corticolimbic structure were assessed. Adult male rats received s.c. injections of either corticosterone (10 mg in 250 microL sesame oil; n = 8) or vehicle (250 microL; n = 8) daily for 3 weeks. A third group of rats served as intact controls (n = 4). Brains were stained using a Golgi-Cox procedure and pyramidal neurons in layer II-III of medial prefrontal cortex were drawn; dendritic morphology was quantified in three dimensions. Sholl analyses demonstrated a significant redistribution of apical dendrites in corticosterone-treated animals: the amount of dendritic material proximal to the soma was increased relative to intact rats, while distal dendritic material was decreased relative to intact animals. Thus, chronic glucocorticoid administration dramatically reorganized apical arbors in medial prefrontal cortex. This reorganization likely reflects functional changes and may contribute to stress-induced changes in cognition.  相似文献   

15.
彭文华  曹军  徐林 《动物学研究》2005,26(5):534-538
在麻醉Wistar大鼠上,结合脑室给药,应用双电极刺激技术刺激海马独立的两条侧枝/联合纤维通路、TA通路,并在CA1区放射层记录兴奋性突触后电位(EPSP),对海马CA1区锥体细胞近、远端树突EPSP的空间整合进行了初步探讨。结果表明,海马CA1区锥体细胞近、远端树突的空间整合都是亚线性的;近端树突的空间整合不受期望值大小的影响,但远端树突的空间整合随期望值增加而减小(更趋于亚线性)。此外,荷包牡丹碱没有影响EPSP的空间整合;但瞬时A型钾通道(IAK^+)的拮抗剂氨基吡啶-4却使得近端树突的空间整合趋于线性发展。本研究表明,海马CA1锥体细胞近、远端树突不同的被动、主动特征使它们具有了不同的空间整合特性。由于近端树突接受海马内部侧枝/联合纤维投射的信息,远端树突通过TA通路接受内嗅皮层投射的信息,由此提示,CA1区锥体细胞对来自海马内部和直接来自皮层的信息输入采用了不同的整合方式。  相似文献   

16.
用6、12与31个月的雄性Wistar大鼠的大脑Krieg 2、3区皮质,对其V层大锥体细胞的五段50μm长度内的树突棘做形态学定量研究。在Golgi法的切片中共计数了三个年龄组的151个细胞的725段树突的棘密度。结果表明,老年大鼠比成年和青年大鼠的棘密度普遍下降。其中以基树突与侧树突棘度下降最显著(减少24%左右),顶树突只中段有明显减少。老年大鼠锥体细胞还常出现胞体、树突及其分支的明显形态改变。  相似文献   

17.
1. Extracellular HRP injections into the nucleus praeeminentialis dorsalis (NPd) of Apteronotus leptorhynchus retrogradely labeled a population of electrosensory lateral line lobe (ELL) efferent cells, deep basilar pyramidal cells, that differ morphologically from the previously described basilar and nonbasilar pyramidal cells. These neurons are found deep in the ELL cellular layers; they have small cell bodies and very short sparsely branching apical dendritic trees. The previously described basilar and nonbasilar pyramidal cells are larger, have extensive apical dendrites and are found more superficially. 2. Axon terminals of the deep basilar pyramidal cells were recorded from in the NPd and labeled with lucifer yellow. These NPd afferents have high, regular spontaneous firing rates, and respond tonically to changes in electric organ discharge amplitude. 3. Deep basilar pyramidal cell bodies were recorded from and labeled in the ELL, and these showed the same physiological responses as did the NPd afferent fibers. 4. In addition, basilar pyramidal cells were found which had spontaneous activity patterns and adaptation characteristics intermediate to those typical of the superficial basilar pyramidal cells and the deep basilar pyramidal cells. The size of the pyramidal cells' apical dendritic trees and the placement of their somata within the dorsoventral extent of the ELL cellular layers are highly correlated with the neurons' physiological properties.  相似文献   

18.
Dendritic spines receive most excitatory inputs in the CNS. Recent evidence has demonstrated that the spine head volume is linearly correlated with the readily releasable pool of neurotransmitter and the PSD size. These correlations can be used to functionally interpret spine morphology. Using Golgi impregnations and light microscopy, we reconstructed 23000 spines from pyramidal neurons in layers 2/3, 4, 5 and 6 of mouse primary visual cortex and CA1 hippocampal region and measured their spine head diameters and densities. Spine head diameters and densities are variable within and across cells, although they are similar between apical and basal dendrites. When compared to other regions, layer 5 neurons have larger spine heads and CA1 neurons higher spine densities. Interestingly, we detect a correlation between spine head diameter and interspine distance within and across cells, whereby larger spines are spaced further away from each other than smaller spines. Finally, in CA1 neurons, spine head diameters are larger, and spine density lower, in distal apical dendrites (>200 microm from soma) compared to proximal regions. These results reveal that spine morphologies and densities, and therefore synaptic properties, are jointly modulated with respect to cortical region, laminar position, and, in some cases, even the position of the spine along the dendritic tree. Individual neurons also appear to regulate their apical and basal spine densities and morphologies in concert. Our data provide evidence for a homeostatic control of excitatory synaptic strength.  相似文献   

19.
Peters  A.  Sethares  C. 《Brain Cell Biology》1997,26(12):779-797
In previous publications we proposed a model of cortical organization in which the pyramidal cells of the cerebral cortex are organized into modules. The modules are centred around the clusters of apical dendrites that originate from the layer 5 pyramidal cells. In monkey striate cortex such modules have an average diameter of 23 μm and the outputs originating from the modules are contained in the vertical bundles of myelinated axons that traverse the deeper layers of the cortex. The present study is concerned with how the double bouquet cells in layer 2/3 of striate cortex relate to these pyramidal cell modules. The double bouquet cells are visualized with an antibody to calbindin, and it has been shown that their vertically oriented axons, or horse tails, are arranged in a regular array, such that there is one horse tail per pyramidal cell module. Within layer 2/3 the double bouquet cell axons run alongside the apical dendritic clusters, while in layer 4C they are closely associated with the myelinated axon bundles. However, the apical dendrites are not the principal targets of the double bouquet cell axons. Most of the neuronal elements post-synaptic to them are the shafts of small dendrites (60%) and dendritic spines, with which they form symmetric synapses. This regular arrangement of the axons of the double-bouquet cells and their relationship to the components of the pyramidal cells modules supports the concept that there are basic, repeating neuronal circuits in the cortex.  相似文献   

20.
Kainic acid (KA) was injected into both lateral ventricles of the brain of adult laboratory rats with the aim of verifying whether damage to afferent fibres in the hippocampal CA1 area would also be reflected in changes in the dendritic arborization of the neurones after maturation of these structures was completed. A significant proportion of the afferent fibres ending in area CA1 comes from CA3-4. The neurodegenerative effect of KA on the neurones in CA3-4 thus leads to marked reconstruction of the dendritic network of the pyramidal cells in the CA1 area. In the CA1 area of the experimental animals, there are fewer segments in the proximal part of the basal dendrites and in the lateral branches of the apical dendrites. The total number of segments in the apical dendrites is smaller and the higher order segments are likewise reduced. In the experimental group, the segments of both the basal and the apical dendrites are shorter. In the experimental animals, dendritic spine density in the lateral preterminal branches, the distal part of the apical shaft, the terminal segments of the lateral branches and the apical preterminal branches are smaller than in the controls, whereas in the segments proximal to the soma of the pyramidal cells it is greater. It can be seen from the results that area CA1 of the hippocampus is endowed, even in adulthood, not only with high functional plasticity, but also with surprisingly high morphological plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号