首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contemporary adaptation of native prey species to invasive predators has been relatively well documented, but that of native predators to invasive prey has received less attention. Because the level of impact an invasive species will have on its predators versus its prey will determine changes in community trophic structure, it is important to understand how native predators respond to novel prey. Here we examine the response of native fence lizards to the invasion of red imported fire ants, a novel toxic prey. Examining invaded and uninvaded lizard populations, we tested whether or not aversion-learning occurs in juvenile fence lizards over successive feedings (within lifetime), how previous fire ant exposure may affect avoidance behavior (over generations), and whether population differences are consistent when prey choice exists. We also examine rates of phenotypic divergence in traits associated with the native species as both predator and prey. Aversion-learning did not occur in either population. Instead, the incidence of fire ant consumption increased over both successive feedings and generations. Lizards from the fire ant invaded population had a higher propensity to eat fire ants than fire ant-naïve lizards, even when given a choice between prey items. We found greater phenotypic divergence in traits associated with the native species as predator on, versus as prey to, fire ants. Although the strategy of eating these novel toxic prey can impose survival costs in the short term, over the longer-term, eating fire ants may cost little or even benefit survivors.  相似文献   

2.
The ability to use multiple cues in assessing predation risk is especially important to prey animals exposed to multiple predators. Wall lizards, Podarcis muralis, respond to predatory attacks from birds in the open by hiding inside rock crevices, where they may encounter saurophagous ambush smooth snakes. Lizards should avoid refuges with these snakes, but in refuges lizards can also find non‐saurophagous viperine snakes, which lizards do not need to avoid. We investigated in the laboratory whether wall lizards used different predator cues to detect and discriminate between snake species within refuges. We simulated predatory attacks in the open to lizards, and compared their refuge use, and the variation in the responses after a repeated attack, between predator‐free refuges and refuges containing visual, chemical, or visual and chemical cues of saurophagous or non‐saurophagous snakes. Time to enter a refuge was not influenced by potential risk inside the refuge. In contrast, in a successive second attack, lizards sought cover faster and tended to increase time spent hidden in the refuge. This suggests a case of predator facilitation because persistent predators in the open may force lizards to hide faster and for longer in hazardous refuges. However, after hiding, lizards spent less time in refuges with both chemical and visual cues of snakes, or with chemical cues alone, than in predator‐free refuges or in refuges with snake visual cues alone, but there were no differences in response to the two snake species. Therefore, lizards could be overestimating predation risk inside refuges. We discuss which selection pressures might explain this lack of discrimination of predatory from similar non‐predatory snakes.  相似文献   

3.
Luisa Amo 《Animal behaviour》2004,67(4):647-653
The threat sensitivity hypothesis assumes that multiple cues from a predator should contribute in an additive way to determine the degree of risk-sensitive behaviour. The ability to use multiple cues in assessing the current level of predation risk should be especially important to prey exposed to multiple predators. Wall lizards, Podarcis muralis, respond to predatory attacks from birds or mammals by hiding inside rock crevices, where they may encounter another predator, the smooth snake, Coronella austriaca. We investigated in the laboratory whether chemical cues may be important to wall lizards for detection of snakes. The greater tongue-flick rate and shorter latency to first tongue-flick in response to predator scents indicated that lizards were able to detect the snakes' chemical cues. We also investigated the use of different predatory cues by lizards when detecting the presence of snakes within refuges. We simulated successive predator attacks and compared the propensity of lizards to enter the refuge and time spent within it for predator-free refuges, refuges containing either only visual or chemical cues of a snake, or a combination of these. The antipredatory response of lizards was greater when they were exposed to both visual and chemical cues than when only one cue was presented, supporting the threat sensitivity hypothesis. This ability may improve the accuracy of assessments of the current level of predation risk inside the refuge. It could be especially important in allowing lizards to cope with threats posed by two types of predators requiring conflicting prey defences.  相似文献   

4.
Exposure to stressors can affect an organism's physiology and behavior as well as that of its descendants (e.g. through maternal effects, epigenetics, and/or selection). We examined the relative influence of early life vs. transgenerational stress exposure on adult stress physiology in a species that has populations with and without ancestral exposure to an invasive predator. We raised offspring of eastern fence lizards (Sceloporus undulatus) from sites historically invaded (high stress) or uninvaded (low stress) by predatory fire ants (Solenopsis invicta) and determined how this different transgenerational exposure to stress interacted with the effects of early life stress exposure to influence the physiological stress response in adulthood. Offspring from these high- and low-stress populations were exposed weekly to either sub-lethal attack by fire ants (an ecologically relevant stressor), topical treatment with a physiologically-appropriate dose of the stress-relevant hormone, corticosterone (CORT), or a control treatment from 2 to 43 weeks of age. Several months after treatments ended, we quantified plasma CORT concentrations at baseline and following restraint, exposure to fire ants, and adrenocorticotropic hormone (ACTH) injection. Exposure to fire ants or CORT during early life did not affect lizard stress physiology in adulthood. However, offspring of lizards from populations that had experienced multiple generations of fire ant-invasion exhibited more robust adult CORT responses to restraint and ACTH-injection compared to offspring from uninvaded populations. Together, these results indicate that transgenerational stress history may be at least as important, if not more important, than early life stress in affecting adult physiological stress responses.  相似文献   

5.
Lizards often respond to increased predation risk by increasing refuge use, but this strategy may entail a loss of thermoregulatory opportunities, which may lead to a loss of body condition. This may be especially important for pregnant oviparous female lizards, because they need to maintain optimal body temperatures as long as possible to maximize developmental embryos rate until laying. However, little is known about how increased time spent at low temperatures in refuges affects body condition and health state of pregnant female lizards. Furthermore, it is not clear how initial body condition affects refuge use. Female Iberian rock lizards forced to increase time spent at low temperatures showed lower body condition and tended to show lower cell-mediated immune responses than control females. Therefore, the loss of thermoregulatory opportunities seems to be an important cost for pregnant females. Nevertheless, thereafter, when we simulated two repeated predatory attacks, females modified refuge use in relation to their body condition, with females with worse condition decreasing time hidden after attacks. In conclusion, female lizards seemed able to compensate increased predation risk with flexible antipredatory strategies, thus minimizing costs for body condition and health state.  相似文献   

6.
Invasive species have altered natural communities and exposed native species to new selective pressures. These pressures are particularly acute when invasive species are predators of natives. The invasive red imported fire ant has expanded its range significantly in the southeast United States and has become an important predator of native species that share similar habitat preferences, like the prairie lizard, Sceloporus consobrinus. Recent studies indicate that lizards that have coexisted for a long period of time with fire ants have responded both plastically and adaptively to this invasion. However, despite considerable work, few “controlled” experiments have been conducted to explore the influence of fire ants on vertebrates in natural populations. In this study we released hatchling lizards on two experimental islands that differed in fire ant density to investigate the influence of fire ants on lizard survival, habitat/space use, and patterns of phenotypic selection. We demonstrate that fire ant presence significantly explains patterns of lizard survival among populations and over small spatial scales within populations. As a consequence of survival patterns or avoidance behavior, lizard habitat use was significantly altered in the presence of fire ants in high density. Finally, we found strong signatures of natural selection on lizard body size and body condition, but the patterns of selection did not appear to be influenced by variation in fire ant density. This study highlights the direct influence of predatory fire ants on hatchling lizard mortality and habitat use. These effects can have important demographic and population-level consequences.  相似文献   

7.
Refuges provide shelter from predators, and protection from exposure to the elements, as well as other fitness benefits to animals that use them. In ectotherms, thermal benefits may be a critical aspect of refuges. We investigated microhabitat characteristics of refuges selected by a heliothermic scincid lizard, Carlia rubrigularis, which uses rainforest edges as habitat. We approached lizards in the field, simulating a predator attack, and quantified the refuge type used, and effect of environmental temperatures (air temperature, substrate temperature and refuge substrate temperature) on the amount of time skinks remained in refuges after hiding (emergence time). In respone to our approach, lizards were most likely to flee into leaf litter, rather than into rocks or woody debris, and emergence time was dependent on refuge substrate temperature, and on refuge substrate temperature relative to substrate temperature outside the refuge. Lizards remained for longer periods in warmer refuges, and in refuges that were similar in temperature to outside. We examined lizard refuge choice in response to temperature and substrate type in large, semi‐natural outdoor enclosures. We experimentally manipulated refuge habitat temperature available to lizards, and offered them equal areas of leaf litter, woody debris and rocks. When refuge habitat temperature was unmanipulated, lizards (85%) preferred leaf litter, as they did in the field. However, when we experimentally manipulated the temperature of the leaf litter by shading, most skinks (75%) changed their preferred refuge habitat from leaf litter to woody debris or rocks. These results suggest that temperature is a critical determinant of refuge habitat choice for these diurnal ectotherms, both when fleeing from predators and when selecting daytime retreats.  相似文献   

8.
Johan Ahlgren  Christer Brönmark 《Oikos》2012,121(9):1501-1506
Prey species are often exposed to multiple predators, which presents several difficulties to prey species. This is especially true when the response to one predator influences the prey’s susceptibility to other predators. Predator‐induced defences have evolved in a wide range of prey species, and experiments involving predators with different hunting strategies allow researchers to evaluate how prey respond to multiple threats. Freshwater snails are known to respond to a variety of predators with both morphological and behavioural defences. Here we studied how freshwater snails Radix balthica responded behaviourally to fish and leech predators, both separately and together. Our aim was to explore whether conflicting predator‐induced responses existed and, if so, what effect they had on snail survival when both predatory fish and leeches were present. We found that although R. balthica increased refuge use when exposed to predatory fish, they decreased refuge use when exposed to predatory leeches. When both predators were present, snails showed a stronger response towards leech than fish and responded by leaving the refuge. This response made the snails more susceptible to fish predation, which increased snail mortality when exposed to both fish and leech compared to fish only. We show that predators that have a relatively low predation rate can substantially increase mortality rates by indirect effects. By forcing snails out of refuges such as rock and macrophyte habitats, leeches can indirectly increase predation from molluscivorous fish and may thus affect snail densities.  相似文献   

9.
Understanding the processes driving formation and maintenance of latitudinal clines has become increasingly important in light of accelerating global change. Many studies have focused on the role of abiotic factors, especially temperature, in generating clines, but biotic factors, including the introduction of non‐native species, may also drive clinal variation. We assessed the impact of invasion by predatory fire ants on latitudinal clines in multiple fitness‐relevant traits—morphology, physiological stress responsiveness, and antipredator behavior—in a native fence lizard. In areas invaded by fire ants, a latitudinal cline in morphology is opposite both the cline found in museum specimens from historical populations across the species’ full latitudinal range and that found in current populations uninvaded by fire ants. Similarly, clines in stress‐relevant hormone response to a stressor and in antipredator behavior differ significantly between the portions of the fence lizard range invaded and uninvaded by fire ants. Changes in these traits within fire ant‐invaded areas are adaptive and together support increased and more effective antipredator behavior that allows escape from attacks by this invasive predator. However, these changes may mismatch lizards to the environments under which they historically evolved. This research shows that novel biotic pressures can alter latitudinal clines in multiple traits within a single species on ecological timescales. As global change intensifies, a greater understanding of novel abiotic and biotic pressures and how affected organisms adapt to them across space and time will be central to predicting and managing our changing environment.  相似文献   

10.
Interspecific competition can limit the distribution of species along altitudinal gradients. It has been suggested that Western European rock lizards (genus Iberolacerta) are restricted to mountains due to the expansion of wall lizards (Podarcis), but there is no experimental evidence to corroborate this hypothesis. This study examines if interference competition with Podarcis muralis is a plausible explanation for the alpine confinement of Iberian rock lizards Iberolacerta cyreni. In a first experiment, we used an enclosure with four types of microhabitats to investigate whether adult rock and/or wall lizards shifted microhabitat or refuge preferences in the presence of the other species, and to detect aggressive interactions between them. In a second experiment, we staged heterospecific encounters between naïve, laboratory-born juveniles to identify behavioural differences and agonistic interactions. In the enclosure, neither rock nor wall lizards changed their microhabitat preferences in the presence of the other species. Nevertheless, rock lizards increased the diversity of microhabitats and nocturnal refuges used in the single species trials, which had twice the number of conspecifics. Aggressive interactions involved mainly large rock lizard males. Juveniles did not show any interspecific agonistic behaviour, but rock lizards spent more time basking and less time moving. Thus, we found no evidence of competition between both species in terms of habitat shifts or agonistic interactions, although intraspecific interactions seemed to explain the behaviour of adult rock lizards. We conclude that other factors are currently determining the alpine confinement of rock lizards.  相似文献   

11.
Prey often respond to predator presence by increasing theiruse of refuges. However, because the use of refuges may entailseveral costs, the decision of when to come out from a refugeshould be optimized. In some circumstances, if predators remainwaiting outside the refuge and try new attacks or if predator density increases, the prey may suffer successive repeated attacksin a short time. Successive attacks may represent an increasein the risk of predation, but the costs of refuge use alsomay increase with time spent in the refuge. Thus, prey shouldmake multiple related decisions on when to emerge from the refuge after each new attack. We simulated in the field repeatedpredatory attacks to the same individuals of the lizard Lacertamonticola and specifically examined the variation in successivetimes to emergence from a refuge under different thermal conditions(i.e., different costs of refuge use). The results showed thatrisk of predation but also thermal costs of refuge use affectedthe emergence decisions. Lizards increased progressively theduration of time spent in the refuge between successive emergencetimes when the costs of refuge use were lower, but tended tomaintain or to decrease the duration of time spent in the refugebetween successive emergence times when cost of refuge useincreased. Additionally, lizards that entered the refuge withhigher body temperatures had overall emergence times of longer duration. Optimization of refuge use and flexibility in theantipredator responses might help lizards to cope with increasedpredation risk without incurring excessive costs of refugeuse.  相似文献   

12.
13.
Human activities in protected areas can affect wildlife populations in a similar manner to predation risk, causing increases in movement and vigilance, shifts in habitat use and changes in group size. Nevertheless, recent evidence indicates that in certain situations ungulate species may actually utilize areas associated with higher levels of human presence as a potential refuge from disturbance-sensitive predators. We now use four-years of behavioral activity budget data collected from pronghorn (Antilocapra americana) and elk (Cervus elephus) in Grand Teton National Park, USA to test whether predictable patterns of human presence can provide a shelter from predatory risk. Daily behavioral scans were conducted along two parallel sections of road that differed in traffic volume - with the main Teton Park Road experiencing vehicle use that was approximately thirty-fold greater than the River Road. At the busier Teton Park Road, both species of ungulate engaged in higher levels of feeding (27% increase in the proportion of pronghorn feeding and 21% increase for elk), lower levels of alert behavior (18% decrease for pronghorn and 9% decrease for elk) and formed smaller groups. These responses are commonly associated with reduced predatory threat. Pronghorn also exhibited a 30% increase in the proportion of individuals moving at the River Road as would be expected under greater exposure to predation risk. Our findings concur with the ‘predator shelter hypothesis’, suggesting that ungulates in GTNP use human presence as a potential refuge from predation risk, adjusting their behavior accordingly. Human activity has the potential to alter predator-prey interactions and drive trophic-mediated effects that could ultimately impact ecosystem function and biodiversity.  相似文献   

14.
Downes S  Hoefer AM 《Oecologia》2007,153(3):775-785
We examined how a weed affected the basking and activity of a diurnal lizard, and the potential cascading effects of these shifts for life history strategies and expression of morphology. Hatchlings of the diurnal lizard Lampropholis delicata were raised to maturity in outdoor enclosures that mimicked high, moderate and low invasion by a sprawling plant (blue periwinkle, Vinca major). Skinks depend on sunlight for growth and maintenance. Periwinkle differs from displaced grassland by being structurally complex and blocking sunlight. Lizards restricted to the enclosure floor achieved preferred body temperatures only when exposure to periwinkle was moderate or low. However, lizards in high invasion enclosures could reach preferred body temperatures by climbing plants and basking on exposed canopy. This shift in basking strategy resulted in lizards growing longer hind limbs compared with animals that rarely (moderate invasion) and never (low invasion) climbed plants. Consequently, lizards reared in high invasion enclosures sprinted faster than conspecifics reared in lower invasion environments. Throughout the study there was no significant variation among treatments in the tendency of animals to be moving when they were not hidden. However, lizards in high invasion treatments hid more often during the day, were lighter in body mass, and females had lighter clutch masses and offspring than did those from moderate and low invasion enclosures. Thus, microhabitat degradation can drive a cascade of changes to an animal’s ecology.  相似文献   

15.
Aggressive encounters are accompanied by a release of stress hormone, and this corticosterone (CORT) secretion could influence aggressive behavior in subsequent encounters. We investigated the modulating effects of CORT on aggressive behavior in the context of a 5-day social experience in male green anole lizards. In Experiment 1, we measured plasma CORT levels in animals that were exposed for different times to aggressive males. In Experiment 2, using metyrapone, a CORT synthesis blocker, we tested whether CORT secretion in response to the aggressive stimulus plays a role in experience-dependent facilitation of aggressive behavior. We hypothesized that aggressive encounters would increase plasma CORT levels, and that blocking CORT synthesis with metyrapone treatment during the aggressive encounter would cause an animal to become more aggressive. We also tested whether blocking CORT would interfere with the influence of 5-day social experience on animals' behavior in a subsequent aggressive encounter. Animals that were exposed to another male showed higher plasma CORT levels immediately after the 10 min encounter than animals exposed to the non-social video, and this high level was maintained through day 5. Within the aggressive video groups, in Experiment 2, there was a distinctly different pattern in displays depending on drug condition: vehicle-injected animals showed gradual increases followed by decreases in aggressive behavioral responses to the video as the five days proceeded (habituation), while animals injected with metyrapone started out with high aggressive behavior and did not decrease behavioral responses at later trials (no habituation). Finally, when tested with a novel conspecific on day 6, animals previously injected with metyrapone showed no higher aggression than did animals previously injected with vehicle and exposed to the aggressive video. These results suggest that blocking CORT synthesis during the exposure to the aggressive video induced animals to remain aggressive toward the repetitive stimulus without habituating, while not becoming more aggressive than controls toward a novel challenger.  相似文献   

16.
Prey must balance gains from activities such as foraging and social behavior with predation risk. Optimal escape theory has been successful in predicting escape behavior of prey under a range of risk and cost factors. The optimal approach distance, the distance from the predator at which prey should begin to flee, occurs when risk equals cost. Optimal escape theory predicts that for a fixed cost, the approach distance increases as risk increases. It makes no predictions about approach distance for prey in refuges that provide only partial protection or about escape variables other than approach distance, such as the likelihood of stopping before entering refuge and escape speed. By experimentally simulating a predator approaching keeled earless lizards, Holbrookia propinqua, the predictions of optimal escape theory for two risk factors, predator approach speed and directness of approach were tested. In addition, predictions that the likelihood of fleeing into refuge without stopping and the speed of escape runs increase with risk, in this case predator approach speed, and that lizards in incompletely protective refuges permit closer approach than lizards not in refuges were also tested. Approach distance increased with predator approach speed and directness of approach, confirming predictions of optimal escape theory. Lizards were more likely to enter refuge and ran faster when approached rapidly, verifying that predation risk affects escape decisions by the lizards for escape variables not included in optimal escape theory. They allowed closer approach when in incompletely protective refuges than when in the open, confirming the prediction that risk affects escape decisions while in refuge. Optimal escape theory has been highly successful, but testing it has led to relative neglect of important aspects of escape other than approach distance.  相似文献   

17.
Prey species might use several possible ways to assess predation risk when encountering a predator. Animals may consider the risk level estimated in a first encounter to remain unchanged across subsequent encounters (fixed risk response), or they may update and change their responses across encounters in accordance with short‐term changes in risk levels (flexible risk response). We examined in the field how wall lizards assess risk level by analyzing time spent in refuges after simulated predator attacks. We first examined how risk was assessed when multiple consecutive sources of risk were present simultaneously. The results suggest that wall lizards assess risk based on multiple cues, such as approach speed, directness, and persistence (measured as the distance of the predator to their refuge after an attack). When risk was high lizards remained longer in their refuges. The first decision to appear partly from the refuge depended on both approach speed and persistence, whereas the decision to emerge completely depended only on persistence and not on approach speed. This suggests that wall lizards update information on predator threat and adjusted their emergence accordingly. In a second experiment, we analyzed how short‐term changes in risk level of successive attacks affected refuge use. Successive emergence times varied as a function of current risk level of each repeated attack, independently of the risk level of previous attacks. This indicated that lizards could track short‐term changes in risk level through time and modify their initial responses when required. Fine adjustments of refuge use may help lizards to minimize costs of refuge use in unfavorable and variable environments where antipredatory responses are costly.  相似文献   

18.
Relationships between predator avoidance behaviour and predation pressure were investigated in the wall lizard, Podarcis muralis. The wariness of lizards belonging to high (1185m) and low elevation (308m) populations under two different predation pressure levels was compared. Wall lizards belonging to the lowland population experienced greater predation pressure than those belonging to the highland population. Lizards belonging to the population under higher predation pressure had higher frequency of refuge use, and had longer flight initiation distances (i.e. the distance lizards allowed the observer to approach before fleeing). In contrast, neither the distance fled (i.e. the total distance they fled in one continuous movement from the lizard's initial position until hiding or stopping at a safe distance) nor the distance to the nearest refuge were significantly different between populations. Escape responses were independent of ambient temperature in the lowland population, but animals belonging to the highland population had longer flight initiation distances when the ambient temperatures were higher. These findings suggest that predator avoidance behaviour may vary with predation pressure.  相似文献   

19.
《Animal behaviour》2004,67(3):511-521
Predation risk may compromise the ability of animals to acquire and maintain body reserves by hindering foraging efficiency and increasing physiological stress. Locomotor performance may depend on body mass, so losing mass under predation risk could be an adaptive response of prey to improve escape ability. We studied individual variation in antipredatory behaviour, feeding rate, body mass and escape performance in the lacertid lizard Psammodromus algirus. Individuals were experimentally exposed to different levels of food availability (limited or abundant) and predation risk, represented by reduced refuge availability and simulated predator attacks. Predation risk induced lizards to reduce conspicuousness behaviourally and to avoid feeding in the presence of predators. If food was abundant, alarmed lizards reduced feeding rate, losing mass. Lizards supplied with limited food fed at near-maximum rates independently of predation risk but lost more mass when alarmed; thus, mass losses experienced under predation risk were higher than those expected from feeding interruption alone. Although body mass of lizards varied between treatments, no component of escape performance measured during predator attacks (endurance, speed, escape strategy) was affected by treatments or by variations in body mass. Thus, the body mass changes were consistent with a trade-off between gaining resources and avoiding predators, mediated by hampered foraging efficiency and physiological stress. However, improved escape efficiency is not required to explain mass reduction upon predator encounters beyond that expected from feeding interruption or predation-related stress. Therefore, the idea that animals may regulate body reserves in relation to performance demands should be reconsidered.  相似文献   

20.
Evolution has afforded many organisms the capacity to recognize predation threats and respond accordingly with behavioral and morphological defenses. Biological invasions may obviate these coevolved recognition systems resulting in biological interactions with native species that range from novelty advantages to disadvantages for the introduced species. Predator recognition initiates responses that can affect other community members through trait-mediated indirect interactions. In this study we use the Australian invasion of a marine, predatory crab (Carcinus maenas) to determine if populations of a native whelk (Haustrum vinosum) with different histories of Carcinus invasion (no previous exposure, 20 years of exposure and 100 years of exposure) recognize and respond to the introduced crab. Haustrum were subsampled from invaded and uninvaded populations then monitored for foraging behavior, shell growth and tissue growth while maintained in a common garden setting with and without waterborne cues from Carcinus. We found that both invaded and uninvaded populations of Haustrum recognize and respond to Carcinus by reducing shell growth and foraging. In feeding experiments, Carcinus showed a preference for small whelks but not thin-shelled whelks. Our results suggest that introduced populations of Carcinus in Australia do not benefit from a novelty advantage and that the induced morphological changes in Haustrum are not a defense, per se. Haustrum’s induced behavioral response to Carcinus may be more important in reducing predation than morphological defenses, and further propagate the invasive crab’s impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号