首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Many woody plant species in fire disturbed communities survive disturbance events by resprouting. The resprouting life history is predicted to be costly to plants as resources are diverted into storage for post-fire regrowth rather than allocated to current growth, and resprouting species typically grow more slowly than seeder species (species that do not resprout after disturbance events). Differences in allocation to current growth are also predicted to make resprouter species poorer competitors compared to seeder species. We tested the predictions that the evolution of a resprouter life history is associated with slow growth, increased allocation to storage, and low competitive ability in woody plant seedlings. We grew eight phylogenetically independent pairs of seeder and resprouter species in competition and no competition treatments in a field experiment near Sydney, Australia. The presence of competitors reduced plant growth rates across taxa and fire response life histories. However, relative to seeder species, resprouter species were not slower growing, they did not allocate more resources to storage, and they did not have lower competitive abilities. We propose that differences in resource allocation to storage are not responsible for differences in growth rate and competitive ability. Rather, growth rate and competitive ability in seedlings are associated with key aspects of plant life history such as life-span and body size at maturity. These traits that are sometimes, but not always, related to fire response life histories.  相似文献   

2.
A widely assumed but largely untested hypothesis central to ecology and evolutionary biology has been Charles Darwin's suggestion that closely related species will be more ecologically similar, and thus will compete more strongly with each other than they will with more distantly related species. We provide one of the first direct tests of the “competition-relatedness hypothesis” by combining two data sets: the relative competitive ability of 50 vascular plant species competing against 92 competitor species measured in five multi-species experiments, and measures of the phylogenetic relatedness of these species. In contrast to Darwin's assertion, there were weak relationships between the strength of competition and phylogenetic relatedness. Across all species studied, the competition-relatedness relationship was weak and not significant. This overall lack of pattern masked different responses of monocot and eudicot focal (phytometer) species. When monocots served as the focal (phytometer) species, the intensity of competition increased with the phylogenetic distance separating species, while competition decreased with phylogenetic distance for eudicot phytometers. These results were driven by the monocot-eudicot evolutionary split, such that monocots were poor competitors against eudicots, while eudicots are most strongly suppressed by other eudicots. There was no relationship between relatedness and competition for eudicots competing with other eudicots, while monocots did compete more intensely with closely related monocots than with distantly related monocots. Overall, the relationships between competition intensity and relatedness were weak compared to the strong and consistent relationships between competitive ability and functional traits such as plant size that have been reported by other studies. We suggest that Darwin's assertion that competition will be strongest among closely related species is not supported by empirical data, at least for the 142 vascular plant species in this study.  相似文献   

3.
Plants form mutualistic relationship with a variety of belowground fungal species. Such a mutualistic relationship can enhance plant growth and resistance to pathogens. Yet, we know little about how interactions between functionally diverse groups of fungal mutualists affect plant performance and competition. We experimentally determined the effects of interaction between two functional groups of belowground fungi that form mutualistic relationship with plants, arbuscular mycorrhizal (AM) fungi and Trichoderma, on interspecific competition between pairs of closely related plant species from four different genera. We hypothesized that the combination of two functionally diverse belowground fungal species would allow plants and fungi to partition their symbiotic relationships and relax plant–plant competition. Our results show that: 1) the AM fungal species consistently outcompeted the Trichoderma species independent of plant combinations; 2) the fungal species generally had limited effects on competitive interactions between plants; 3) however, the combination of fungal species relaxed interspecific competition in one of the four instances of plant–plant competition, despite the general competitive superiority of AM fungi over Trichoderma. We highlight that the competitive outcome between functionally diverse fungal species may show high consistency across a broad range of host plants and their combinations. However, despite this consistent competitive hierarchy, the consequences of their interaction for plant performance and competition can strongly vary among plant communities.  相似文献   

4.
Many empirical studies motivated by an interest in stable coexistence have quantified negative density dependence, negative frequency dependence, or negative plant–soil feedback, but the links between these empirical results and ecological theory are not straightforward. Here, we relate these analyses to theoretical conditions for stabilisation and stable coexistence in classical competition models. By stabilisation, we mean an excess of intraspecific competition relative to interspecific competition that inherently slows or even prevents competitive exclusion. We show that most, though not all, tests demonstrating negative density dependence, negative frequency dependence, and negative plant–soil feedback constitute sufficient conditions for stabilisation of two‐species interactions if applied to data for per capita population growth rates of pairs of species, but none are necessary or sufficient conditions for stable coexistence of two species. Potential inferences are even more limited when communities involve more than two species, and when performance is measured at a single life stage or vital rate. We then discuss two approaches that enable stronger tests for stable coexistence‐invasibility experiments and model parameterisation. The model parameterisation approach can be applied to typical density‐dependence, frequency‐dependence, and plant–soil feedback data sets, and generally enables better links with mechanisms and greater insights, as demonstrated by recent studies.  相似文献   

5.
We examined whether the intense root competition in a rough fescue grassland plant community in central Alberta, Canada, was important in structuring plant species diversity or community composition. We measured competition intensity across gradients of species richness, evenness, and community composition, using pairs of naturally occurring plants of 12 species. One plant in each pair was isolated from neighbors to measure competition; community structure and environmental conditions were also measured at each pair. We used structural equation modeling to examine how competition influenced community structure. Competition intensity was unrelated to species richness and community composition, but increased competition intensity was associated with a slight decline in evenness. Size-symmetric root competition was probably unimportant in structuring this plant community because there are no feedback mechanisms through which size-symmetric competition can magnify small initial differences and eventually lead to competitive exclusion. In plant communities with little shoot competition, competition and community structure should be unlinked regardless of competition intensity. In more productive systems, we propose that interactions between root and shoot competition may indirectly structure communities by altering the overall asymmetry of competition.  相似文献   

6.
Aims We present an improved model for the growth of individuals in plant populations experiencing competition.Methods Individuals grow sigmoidally according to the Birch model, which is similar to the more commonly used Richards model, but has the advantage that initial plant growth is always exponential. The individual plant growth models are coupled so that there is a maximum total biomass for the population. The effects of size-asymmetric competition are modeled with a parameter that reflects the size advantage that larger individual have over smaller individuals. We fit the model to data on individual growth in crowded populations of Chenopodium album .Important findings When individual plant growth curves were not coupled, there was a negative or no correlation between initial growth rate and final size, suggesting that competitive interactions were more important in determining final plant size than were plants' initial growth rates. The coupled growth equations fit the data better than individual, uncoupled growth models, even though the number of estimated parameters in the coupled competitive growth model was far fewer, indicating the importance of modeling competition and the degree of size-asymmetric growth explicitly. A quantitative understanding of stand development in terms of the growth of individuals, as altered by competition, is within reach.  相似文献   

7.
Conundrums of competitive ability in plants: what to measure?   总被引:8,自引:0,他引:8  
LonnieW. Aarssen  Teri Keogh 《Oikos》2002,96(3):531-542
A survey of recent literature indicates that competitive ability in plants has been measured, in most studies, only in terms of the relative intensity of size suppression experienced by competitors within one growing season. Far fewer studies have recorded relative success in terms of survival and even fewer studies have recorded fecundity under competition. Differences in size suppression are usually assumed to reflect differences in relative abilities to deny resources to competitors. However, most previous studies have failed to control or account for other sources of variation in the size suppression that plants experience under competition, i.e. variation between mixtures in the resource supply/demand ratio (approach to carrying capacity), or variation in the degree of niche overlap between competitors, or variation in the intensity of concurrent facilitative interactions between competitors. For future studies, much greater caution is required in recognizing these inherent limitations of traditional measures of competitive ability and, hence, guarding against unfounded conclusions or predictions about potential for competitive success that are based on these measures. There is also a significant challenge for future studies to adopt empirical approaches for minimizing these limitations. Some initial recommendations are considered here based on an emerging view of competitive ability measured in terms of traits associated with all three conventional components of Darwinian fitness, i.e. not just growth (plant size) but also survival and fecundity allocation (offspring production per unit plant size per unit time). According to this model, differences in competitive ability imply differences in the ability, despite intense competition (i.e. low resource supply/demand ratio), to recruit offspring into the next generation and thereby limit offspring recruitment by other plants. The important traits of competitive ability, therefore, are not only those that allow a plant to deny resources to competitors, suppress their sizes and hence, maximize the plant's own size, but also those traits that allow the plant to withstand suppression from competition enough to persist, both as an individual (through survival) and across generations (through descendants).  相似文献   

8.
Competition between herbivorous insects often occurs as a trait mediated indirect effect mediated by inducible changes in plant quality rather than a direct effect mediated by plant biomass. While plant-mediated competition likely influences many herbivores, progress linking studies of plant-mediated competition in terrestrial phytophagous insects to longer-term consequences for herbivore communities has been elusive, and there is little relevant theory to guide this effort. We present simple models describing plant-mediated interactions between two herbivorous insects or other functionally equivalent organisms. These models consider general features of plant-mediated competition including specificity of elicitation by and effects on herbivores, positive and negative interactions among herbivores, competition independent of changes in plant biomass, and the existence of multiple relevant plant traits. Our analyses generate four important conclusions. First, herbivores competing strongly via only one plant quality phenotype exhibit a limited range of outcomes. These include coexistence and competitive exclusion of either herbivore, but do not include initial condition dependence. Second, when the outcome of competition is competitive exclusion, the herbivore that persists is the one that can do so under the highest inducible reductions in plant quality. Third, competition via more than one inducible phenotype can exhibit a wider range of outcomes including multiple equilibria and initial condition dependence. Finally, transient dynamics may not predict the eventual outcome of competition when changes in plant quality are slow relative to herbivore population growth, especially when herbivores compete through multiple phenotypes. We interpret our results in terms of competition outcomes reported in the literature, and suggest directions for the future empirical study of herbivore competition mediated by inducible changes in plant quality.  相似文献   

9.
Using a sand dune chronosequence that spans 485 years of primary succession, we collected nearest-neighbor vegetation data to test two predictions associated with the traditional "size-advantage" hypothesis for plant competitive ability: (1) the relative representation of larger species should increase in later stages of succession; and (2) resident species that are near neighbors should, over successional time, become more similar in plant body size and/or seed size than expected by random assembly. The first prediction was supported over the time period between mid to later succession, but the second prediction was not; that is, there was no temporal pattern across the chronosequence indicating that either larger resident species, or larger seeded resident species, increasingly exclude smaller ones from local neighborhoods over time. Rather, neighboring species were generally more different from each other in seed sizes than expected by random assembly. As larger species accumulate over time, some relatively small species are lost from later stages of succession, but species size distributions nevertheless remain strongly right-skewed-even in late succession-and species of disparate sizes are just as likely as in early succession to coexist as immediate neighbors. This local-scale coexistence of disparate sized neighbors might be accounted for-as in traditional interpretations-in terms of species differences in "physical-space-niches" (e.g., involving different rooting depths), combined with possible facilitation effects. We propose, however, that this coexistence may also occur because competitive ability involves more than just a size advantage, with traits associated with survival (tolerance of intense competition) and fecundity (offspring production despite intense competition) being at least equally important.  相似文献   

10.
Although of primary importance to explain plant community structure, general relationships between plant traits, resource depletion and competitive outcomes remain to be quantified across species. Here, we used a comparative approach to test whether instantaneous measurements of plant traits can capture both the amount of resources depleted under plant cover over time (competitive effect) and the way competitors perceived this resource depletion (competitive response). We performed a large competition experiment in which phytometers from a single grass species were transplanted within 18 different monocultures grown in a common-garden experiment, with a time-integrative quantification of light and water depletion over the phytometers’ growing season. Resource-capturing traits were measured on both phytometers (competitive response traits) and monocultures (competitive effect traits). The total amounts of depleted light and water availabilities over the season strongly differed among monocultures; they were best estimated by instantaneous measurements of height and rooting depth, respectively, performed when either light or water became limiting. Specific leaf area and leaf water potential, two competitive response traits measured at the leaf level, were good predictors of changes in phytometer performance under competition, and reflected the amount of light and water, respectively, perceived by plants throughout their lifespan. Our results demonstrated the relevance of instantaneous measures of plant traits as indicators of resource depletion over time, validating the trait-based approach for competition ecology. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
The reasons why some plant species were selected as crops and others were abandoned during the Neolithic emergence of agriculture are poorly understood. We tested the hypothesis that the traits of Fertile Crescent crop progenitors were advantageous in the fertile, disturbed habitats surrounding early settlements and in cultivated fields. We screened functional traits related to competition and disturbance in a group of grass species that were increasingly exploited by early plant gatherers, and that were later domesticated (crop progenitors); and in a set of grass species for which there is archaeological evidence of gathering, but which were never domesticated (wild species). We hypothesised that crop progenitors would have greater seed mass, growth rate, height and yield than wild species, as these traits are indicative of greater competitive ability, and that crop progenitors would be more resilient to defoliation. Our results show that crop progenitors have larger seed mass than wild species, germinate faster and have greater seedling size. Increased seed size is weakly but positively correlated with a higher growth rate, which is primarily driven by greater biomass assimilation per unit leaf area. Crop progenitors also tend to have a taller stature, greater grain yield and higher resilience to defoliation. Collectively, the data are consistent with the hypothesis that adaptations to competition and disturbance gave crop progenitors a selective advantage in the areas surrounding early human settlements and in cultivated environments, leading to their adoption as crops through processes of unconscious selection.  相似文献   

12.
In competition‐dominated communities, traits promoting resource conservation and competitive ability are expected to have an important influence on species relative abundance (SRA). Yet, few studies have tested the trait‐abundance relations in the line of species trade‐off in resource conservation versus acquisition, indicating by multiple traits coordination. We measured SRA and key functional traits involving leaf economic spectrum (SLA, specific leaf area; LDMC, leaf dry matter content; LCC, leaf carbon concentration; LNC, leaf nitrogen concentration; LPC, leaf phosphorus concentration; Hs, mature height) for ten common species in all plots subjected to addition of nitrogen fertilizer (N), phosphorus fertilizer (P), or both of them (NP) in a Tibetan alpine meadow. We test whether SRA is positively related with traits promoting plant resource conservation, while negatively correlated with traits promoting plant growth and resource acquisition. We found that species were primarily differentiated along a trade‐off axis involving traits promoting nutrient acquisition and fast growth (e.g., LPC and SLA) versus traits promoting resource conservation and competition ability (e.g., large LDMC). We further found that SRA was positively correlated with plant height, LDMC, and LCC, but negatively associated with SLA and leaf nutrient concentration irrespective of fertilization. A stronger positive height‐SRA was found in NP‐fertilized plots than in other plots, while negative correlations between SRA and SLA and LPC were found in N or P fertilized plots. The results indicate that species trade‐off in nutrient acquisition and resource conservation was a key driver of SRA in competition‐dominated communities following fertilization, with the linkage between SRA and traits depending on plant competition for specific soil nutrient and/or light availability. The results highlight the importance of competitive exclusion in plant community assembly following fertilization and suggest that abundant species in local communities become dominated at expense of growth while infrequent species hold an advantage in fast growth and dispersals to neighbor meta‐communities.  相似文献   

13.
Eyal Ben‐Hur  Ronen Kadmon 《Oikos》2015,124(10):1346-1353
Competition–colonization tradeoff models explain the coexistence of competing species in terms of a tradeoff between competitive ability and colonization ability. One class of such models is based on the idea that seed size determines competitive ability, seed number determines colonization ability, and the two traits are negatively correlated such that higher competitive ability of large‐seeded species compensates for their smaller seed number. According to such models, species inhabiting the same community should show a distinct ranking of competitive ability and this ranking should be correlated with seed size. We tested these predictions using a greenhouse competition experiment focusing on 25 annual species that coexist in sandy habitats of the Mediterranean region in Israel. Rankings of species based on their competitive effects on two independent phytometers were positively correlated. Corresponding rankings based on competitive responses were also correlated. Rankings based on competitive effects were correlated with those based on competitive responses. Yet, in spite of the clear hierarchy in all measures of competitive ability, none of the measures was correlated with seed size. While lack of correlation between seed size and competitive ability has been documented in some systems, our study is the first time that absence of such correlation is documented in a system where the existence of competition is well established and the component species show a clear hierarchy of competitive ability.  相似文献   

14.
Karin Lönnberg  Ove Eriksson 《Oikos》2013,122(7):1080-1084
The coexistence of multiple seed size strategies within plant communities have been considered puzzling, based on a theoretical expectation of the existence of an optimal seed size under each set of specific environmental conditions. A model aimed at explaining the coexistence of different seed sizes has been suggested, where a seed size – seed number tradeoff is connected to a tradeoff between competition and colonization, leading to a competitive advantage in larger‐seeded species and a colonization advantage in smaller‐seeded species. Recently an alternative model has been suggested, based on a tradeoff between stress tolerance and fecundity, associated with the variation from large to small seeds. Here, we examine the role of seed size for recruitment in two‐species contests subjected to various treatments. In a garden experiment seeds of 14 plant species were combined pair‐wise into seven pairs, each with one larger‐seeded species and one smaller‐seeded species. Each species‐pair was sown with sparse and dense seed densities and subjected to different treatments of shading and litter. Recruitment was recorded during two years. Our results showed a general advantage of larger‐seeded species over smaller‐seeded species. This seed size advantage increased in treatments with litter, whereas there were minor effects of shade, and no effect of seed density was found. We thus found little support for a density dependent seed size game as assumed in models of a competition‐colonization tradeoff, whereas our results fit well with a model based on a tradeoff between stress tolerance and fecundity. Our experiment provides novel empirical data to theoretical models on co‐existence between multiple seed size strategies.  相似文献   

15.
The objective of this study is to examine whether habitat, herbivory and traits related to resource acquisition, resource conservation, reproduction and dispersal differ between narrow endemic plant species and their widespread congeners. We undertook pairwise contrasts of 25 ecological characteristics and biological traits in 20 congeneric pairs of narrow endemic and widespread plant species in the French Mediterranean region. Within each pair, the two species had the same life-form, pollination mode and dispersal mode. Endemic species differed significantly from widespread congeners for a number of attributes. Endemic species occur in habitats on steeper slopes, with higher rock cover and in lower and more open vegetation than their widespread congeners. Endemic species are significantly smaller than widespread species, but show no differences in traits related to resource acquisition (specific leaf area, leaf nitrogen content, maximum photosynthetic rate) or resource conservation (leaf dry matter content). After accounting for their smaller stature, endemic species produce fewer and smaller flowers with less stigma-anther separation and lower pollen/ovule ratios and produce fewer seeds per plant than their widespread congeners. No consistent variation in seed mass and propagule structure was found between congeneric species. Herbivory levels did not differ between congeneric species. Ecological characteristics, notably the occupation of rocky habitats with low aboveground competition, may thus have played an important role in the differentiation of narrow endemic species in the Western Mediterranean. Morphological and ecophysiological traits of narrow endemic species indicate that they are not more stress-tolerant than their widespread congeners. Lower investment in pollen transfer and seed production suggest that local persistence is a key feature of the population ecology of narrow endemic species.  相似文献   

16.
Phytoplankton species traits have been used to successfully predict the outcome of competition, but these traits are notoriously laborious to measure. If these traits display a phylogenetic signal, phylogenetic distance (PD) can be used as a proxy for trait variation. We provide the first investigation of the degree of phylogenetic signal in traits related to competition in freshwater green phytoplankton. We measured 17 traits related to competition and tested whether they displayed a phylogenetic signal across a molecular phylogeny of 59 species of green algae. We also assessed the fit of five models of trait evolution to trait variation across the phylogeny. There was no significant phylogenetic signal for 13 out of 17 ecological traits. For 7 traits, a non-phylogenetic model provided the best fit. For another 7 traits, a phylogenetic model was selected, but parameter values indicated that trait variation evolved recently, diminishing the importance of common ancestry. This study suggests that traits related to competition in freshwater green algae are not generally well-predicted by patterns of common ancestry. We discuss the mechanisms by which the link between phylogenetic distance and phenotypic differentiation may be broken.  相似文献   

17.
The leaf–height–seed (LHS) model has been proposed as a simple trait-based functional classification. We investigated whether the two components of competitive ability, i.e. competitive response (CR) and competitive effect (CE), are captured by the LHS model and whether these two components are independent for 12 coexisting Mediterranean grasses. Two greenhouse experiments were conducted to estimate competitive effect and response of 12 coexisting grass species from Mediterranean habitats in Jordan. We applied a phytometer design and calculated CR and CE using the relative interaction index (RII). Mature plant height, seed mass and leaf dry matter content (LDMC, used as the leaf trait) were measured for each species. Correlations and trade-offs between the three traits and the components of competitive ability, CR and CE, were analyzed with principal components analysis (PCA). The LHS model was a good predictor of competitive ability but CR and CE were independent and related to different traits. CR was positively correlated with seed mass and CE with plant height. LDMC was neither correlated to CR nor to CE. Based on these findings, we suggest that there are three primary strategies allowing coexistence in Mediterranean communities, which are related to competition: (1) large CE, i.e. large negative impact on other species associated with large stature, (2) large CR, i.e. resistance to competition associated with large seeds, and (3) competition avoidance associated with small seeds.  相似文献   

18.
Competitive ability in plants has been previously measured almost exclusively in terms of traits related to growth (biomass) or plant size. In this study, however, we used a multi‐species competition experiment with six annuals to measure relative competitive ability in terms of reproductive output, i.e. the number of offspring produced for the next generation. Under greenhouse conditions, plants of each species were started in pots from germinating seeds and were grown singly (free of competition) and at high density in both monocultures and in mixtures with all study species. Several traits traditionally regarded as determinants of competitive ability in plants were recorded for each species grown singly, including: seed mass, germination time, early growth rate and potential plant size (biomass and height). Under competition, several traits were recorded as indicators of relative performance in both monocultures and mixtures, including: biomass of survivors, total number of survivors, number of reproductive survivors, and reproductive output (total seed production) of the survivors. As expected, species that grew to a larger biomass in isolation had higher seed production in isolation. However, none of the traditional plant growth/size‐related traits, measured either in isolation or under competition, could predict between species variation in reproductive output under competition in either monocultures or mixtures. In mixtures, 97% of this variation in reproductive output could be explained by between‐species variation in the number of reproductive survivors. The results indicate that traits measured on plants grown singly may be poor predictors of reproductive output under competition, and that species’ rank order of competitive ability in terms of the biomass of survivors may bear no relationship to their rank order in terms of the number of offspring produced by these survivors. This has important implications for the interpretation of mechanisms of species coexistence and community assembly within vegetation.  相似文献   

19.
Much theoretical evidence has demonstrated that a trade‐off between competitive and dispersal ability plays an important role in facilitating species coexistence. However, experimental evidence from natural communities is still rare. Here, we tested the competition–dispersal trade‐off hypothesis in an alpine grassland in the Tianshan Mountains, Xinjiang, China, by quantifying competitive and dispersal ability using a combination of 4 plant traits (seed mass, ramet mass, height, and dispersal mode). Our results show that the competition–dispersal trade‐off exists in the alpine grassland community and that this pattern was primarily demonstrated by forbs. The results suggest that most forb species are constrained to be either good competitors or good dispersers but not both, while there was no significant trade‐off between competitive and dispersal ability for most graminoids. This might occur because graminoids undergo clonal reproduction, which allows them to find more benign microenvironments, forage for nutrients across a large area and store resources in clonal structures, and they are thus not strictly limited by the particular resources at our study site. To the best of our knowledge, this is the first time the CD trade‐off has been tested for plants across the whole life cycle in a natural multispecies plant community, and more comprehensive studies are still needed to explore the underlying mechanisms and the linkage between the CD trade‐off and community composition.  相似文献   

20.
Polyandry generates selection on males through sperm competition, which has broad implications for the evolution of ejaculates and male reproductive anatomy. Comparative analyses across species and competitive mating trials within species have suggested that sperm competition can influence the evolution of testes size, sperm production and sperm form and function. Surprisingly, the intraspecific approach of comparing among population variation for investigating the selective potential of sperm competition has rarely been explored. We sampled seven island populations of house mice and determined the frequency of multiple paternity within each population. Applying the frequency of multiple paternity as an index of the risk of sperm competition, we looked for selective responses in male reproductive traits. We found that the risk of sperm competition predicted testes size across the seven island populations of house mice. However, variation in sperm traits was not explained by sperm competition risk. We discuss these findings in relation to sperm competition theory, and other intrinsic and extrinsic factors that might influence ejaculate quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号