首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MutS inhibits RecA-mediated strand transfer with methylated DNA substrates   总被引:1,自引:0,他引:1  
DNA mismatch repair (MMR) sensitizes human and Escherichia coli dam cells to the cytotoxic action of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) while abrogation of such repair results in drug resistance. In DNA methylated by MNNG, MMR action is the result of MutS recognition of O6-methylguanine base pairs. MutS and Ada methyltransferase compete for the MNNG-induced O6-methylguanine residues, and MMR-induced cytotoxicity is abrogated when Ada is present at higher concentrations than normal. To test the hypothesis that MMR sensitization is due to decreased recombinational repair, we used a RecA-mediated strand exchange assay between homologous phiX174 substrate molecules, one of which was methylated with MNNG. MutS inhibited strand transfer on such substrates in a concentration-dependent manner and its inhibitory effect was enhanced by MutL. There was no effect of these proteins on RecA activity with unmethylated substrates. We quantified the number of O6-methylguanine residues in methylated DNA by HPLC-MS/MS and 5–10 of these residues in phiX174 DNA (5386 bp) were sufficient to block the RecA reaction in the presence of MutS and MutL. These results are consistent with a model in which methylated DNA is perceived by the cell as homeologous and prevented from recombining with homologous DNA by the MMR system.  相似文献   

2.
To maintain genomic integrity cells have to respond properly to a variety of exogenous and endogenous sources of DNA damage. DNA integrity is maintained by the coordinated action of DNA damage response mechanisms and DNA repair. In addition, there are also mechanisms of damage tolerance, such as translesion synthesis (TLS), which are important for survival after DNA damage but are potentially error-prone. Here, we investigate the role of DNA polymerase κ (pol κ) in TLS across alkylated lesions by silencing this polymerase (pol) in human cells using transient small RNA interference. We show that human pol κ has a significant protective role against methyl nitrosourea (MNU)-associated cytotoxicity without affecting significantly mutagenicity. The increase in MNU-induced cytotoxicity when pol κ is down-regulated was affected by the levels of O6-methylguanine DNA methyltransferase and fully abolished when mismatch repair (MMR) was defective. Following MNU treatment, the cell cycle profile was unaffected by the pol κ status. The downregulation of pol κ caused a severe delay in the onset of the second mitosis that was fully dependent on the presence of O6-methylguanine ( O6-meGua) lesions. After MNU exposure, in the absence of pol κ, the frequency of sister chromatid exchanges was unaffected whereas the induction of RAD 51 foci increased. We propose that pol κ partially protects human cells from the MMR-dependent cytotoxicity of O6-meGua lesions by restoring the integrity of replicated duplexes containing single-stranded gaps generated opposite O6-meGua facilitated by RAD 51 binding.  相似文献   

3.
4.
《Mutation Research Letters》1995,346(4):231-245
We have shown previously that certain alkylation products, or alkylation derived lesions, which induce chromosome aberrations (abs) persist for at least two cell cycles in Chinese hamster ovary cells. The increase in abs in the second cycle after treatment contrasts with the classical observation of reduction in ab yield with successive mitoses following ionizing radiation. Here we present evidence that processing of lesions by mismatch repair is a mechanism for ab induction by methylating agents.Our previous studies implicated O6-methylguanine (O6MeG) as an important lesion in induction of abs, particularly in the second cell cycle after treatment. In the absence of repair of O6MeG by alkylguanine DNA alkyltransferase (AGT), new abs were induced in the second cycle after treatment with e.g. methylnitronitrosoguanidine (MNNG) and methylnitrosourea (MNU). Thus, we hypothesized that abs were produced not by O6MeG or its repair in the first S phase, but by subsequent processing of the lesions. We suggested that after replication proceeded past the O6MeG lesion in the first S phase, inserting an incorrect base on the newly synthesized strand, recognition and repair by mismatch repair in the second S phase led to a chromosome ab. Here we used MT1 cells, a human lymphoblastoid cell line that has a defect in strand-specific mismatch repair. MT1 cells are alkylation tolerant and have a mutator phenotype, compared with their parent line, TK6; both MT1 and TK6 cells lack AGT so do not remove the methyl group from O6MeG. While the initial levels of abs at the first metaphase were similar in MT1 and TK6 cells, ab levels in MT1 cells were greatly reduced in the second and third cell cycles following treatment with MNNG, dimethylnitrosamine and MNU, in contrast with the parent TK6 cells, which had more abs in the second cell cycle than in the first. This supports the hypothesis that repair of mismatched base pairs involving O6MeG is one mechanism for induction of chromosome abs. In contrast to the difference in response to methylating agents between TK6 cells and mismatch repair-deficient MT1 cells, the profile of ab induction by an ethylating agent, ethylnitronitrosourea, was similar in MT1 cells to those for TK6 cells and CHO cells.  相似文献   

5.
Since the milestone work of Evans and Scott, demonstrating the replication dependence of alkylation-induced aberrations, and Obe and Natarajan, pointing to the critical role of DNA double-strand breaks (DSBs) as the ultimate trigger of aberrations, the field has grown extensively. A notable example is the identification of DNA methylation lesions provoking chromosome breakage (clastogenic) effects, which made it possible to model clastogenic pathways evoked by genotoxins. Experiments with repair-deficient mutants and transgenic cell lines revealed both O6-methylguanine (O6MeG) and N- methylpurines as critical lesions. For S(N)2 agents such as methyl- methanesulfonate (MMS), base N-methylation lesions are most critical, likely because of the formation of apurinic sites blocking replication. For S(N)1 agents, such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), O6-methylguanine (O6MeG) plays the major role both in recombination and clastogenicity in the post-treatment cell cycle, provided the lesion is not pre-replicatively repaired by O6-methylguanine-DNA methyltransferase (MGMT). The conversion probability of O6MeG into SCEs and chromosomal aberrations is estimated to be about 30:1 and >10,000:1 respectively, indicating this mispairing pro-mutagenic lesion to be highly potent in inducing recombination giving rise to SCEs. O6MeG needs replication and mismatch repair to become converted into a critical secondary genotoxic lesion. Here it is proposed that this secondary lesion can be tolerated by a process termed recombination bypass. This process is supposed to be important in the tolerance of lesions that can not be processed by translesion synthesis accomplished by low-fidelity DNA polymerases. Recombination bypass results in SCEs and might represent an alternative pathway of tolerance of non-instructive lesions. In the case of O6MeG-derived secondary lesions, recombination bypass appears to protect against cell killing since SCEs are already induced with low, non-toxic doses of MNNG. Saturation of lesion tolerance by recombination bypass or translesion synthesis may cause block of DNA replication leading to DSBs at stalled replication forks, which result in chromatid-type aberrations. Along with this model, several putative consequences of methylation-induced aberrations will be discussed such as cell death by apoptosis as well its role in tumor promotion and progression.  相似文献   

6.
Escherichia coli dam mutants are sensitized to the cytotoxic action of base analogs, cisplatin and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), while their mismatch repair (MMR)-deficient derivatives are tolerant to these agents. We showed previously, using pulse field gel electrophoresis (PFGE), that MMR-mediated double-strand breaks (DSBs) are produced by cisplatin in dam recB(Ts) cells at the non-permissive temperature. We demonstrate here that the majority of these DSBs require DNA replication for their formation, consistent with a model in which replication forks collapse at nicks or gaps formed during MMR. DSBs were also detected in dam recB(Ts) ada ogt cells exposed to MNNG in a dose- and MMR-dependent manner. In contrast to cisplatin, the formation of these DSBs was not affected by DNA replication and it is proposed that two separate mechanisms result in DSB formation. Replication-independent DSBs arise from overlapping base excision and MMR repair tracts on complementary strands and constitute the majority of detectable DSBs in dam recB(Ts) ada ogt cells exposed to MNNG. Replication-dependent DSBs result from replication fork collapse at O(6)-methylguanine (O(6)-meG) base pairs undergoing MMR futile cycling and are more likely to contribute to cytotoxicity. This model is consistent with the observation that fast-growing dam recB(Ts) ada ogt cells, which have more chromosome replication origins, are more sensitive to the cytotoxic effect of MNNG than the same cells growing slowly.  相似文献   

7.
Resistance of mammalian cells to S(N)1-type methylating agents such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) generally arises through increased expression of methylguanine methyltransferase (MGMT), which reverts the cytotoxic O(6)-methylguanine ((Me)G) to guanine, or through inactivation of the mismatch repair (MMR) system, which triggers cell death through aberrant processing of (Me)G/T mispairs generated during DNA replication when MGMT capacity is exceeded. Given that MMR and (Me)G-detoxifying proteins are functionally conserved through evolution, and that MMR-deficient Escherichia coli dam(-) strains are also resistant to MNNG, the finding that MMR status did not affect the sensitivity of Saccharomyces cerevisiae to MNNG was unexpected. Because (Me)G residues in DNA trigger homologous recombination (HR), we wondered whether the efficient HR in S. cerevisiae might alleviate the cytotoxic effects of (Me)G processing. We now show that HR inactivation sensitizes S. cerevisiae to MNNG and that, as in human cells, defects in the MMR genes MLH1 and MSH2 rescue this sensitivity. Inactivation of the EXO1 gene, which encodes the only exonuclease implicated in MMR to date, failed to rescue the hypersensitivity, which implies that scExo1 is not involved in the processing of (Me)G residues by the S. cerevisiae MMR system.  相似文献   

8.
Methylation damage response in hematopoietic progenitor cells   总被引:1,自引:0,他引:1  
The cellular response to methylation DNA damage was compared in multipotent CD34(+) hematopoietic stem cells and mature CD34(-) cells isolated from cord blood of the same donor. Cytofluorimetric analysis of freshly isolated cord blood cells indicated that both cell types were in the G0/G1 phase of the cell cycle. Quantitative RT-PCR identified a general trend towards high expression of several DNA repair genes in CD34(+) cells compared to their terminally differentiated CD34(-) counterparts. The overexpressed genes included members of the mismatch repair (MMR) (MSH2, MSH6, MLH1, PMS2), base excision repair (AAG, APEX), DNA damage reversal (O(6)-methylguanine DNA methyltransferase) (MGMT), and DNA double strand breaks repair pathways. These differences in gene expression were not apparent in CD34(+) and CD34(-) cells obtained following expansion of CD34(+) cells in a medium containing early acting cytokines. Early progenitor CD34(+) and early precursor CD34(-) cells form the two populations isolated under these experimental conditions, and both contain a significant proportion of cycling cells. The methylating agent N-methyl-N-nitrosourea (MNU) induced similar levels of apoptosis in these cycling CD34(+) and CD34(-) cells. Cytotoxicity required the presence of the MGMT inhibitor O(6)-benzylguanine and the timing of MNU cell death (48 and 72h) was similar in CD34(+) and CD34(-) cells. These data indicate that cycling CD34(+) and CD34(-) cells are equally sensitive to methylation damage. MGMT provides significant protection against MNU toxicity and MGMT and MMR play the expected roles in the MNU sensitivity of these cells.  相似文献   

9.
O(6)-methylguanine (O(6)MeG) is a highly critical DNA adduct induced by methylating carcinogens and anticancer drugs such as temozolomide, streptozotocine, procarbazine and dacarbazine. Induction of cell death by O(6)MeG lesions requires mismatch repair (MMR) and cell proliferation and is thought to be dependent on the formation of DNA double-strand breaks (DSBs) or, according to an alternative hypothesis, direct signaling by the MMR complex. Given a role for DSBs in this process, either homologous recombination (HR) or non-homologous end joining (NHEJ) or both might protect against O(6)MeG. Here, we compared the response of cells mutated in HR and NHEJ proteins to temozolomide and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). The data show that cells defective in HR (Xrcc2 and Brca2 mutants) are extremely sensitive to cell death by apoptosis and chromosomal aberration formation and less sensitive to sister-chromatid exchange (SCE) induction than the corresponding wild-type. Cells defective in NHEJ were not (Ku80 mutant), or only slightly more sensitive (DNA-PK(cs) mutant) to cell death and showed similar aberration and SCE frequencies than the corresponding wild-type. Transfection of O(6)-methylguanine-DNA methyltransferase (MGMT) in all of the mutants almost completely abrogated the genotoxic effects in both HR and NHEJ defective cells, indicating the mutant-specific hypersensitivity was due to O(6)MeG lesions. MNNG provoked H2AX phosphorylation 24-48h after methylation both in wild-type and HR mutants, which was not found in MGMT transfected cells. The gammaH2AX foci formed in response to O(6)MeG declined later in wild-type but not in HR-defective cells. The data support a model where DSBs are formed in response to O(6)MeG in the post-treatment cell cycle, which are repaired by HR, but not NHEJ, in a process that leads to SCEs. Therefore, HR can be considered as a mechanism that causes tolerance of O(6)MeG adducts. The data implicate that down-regulation or inhibition of HR might be a powerful strategy in improving cancer therapy with methylating agents.  相似文献   

10.
A line of HeLa cells was shown to be particularly sensitive to N-methyl-N-nitrosourea (MNU) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), but not to variety of other cytotoxic agents. A resistant line (designated HeLa/A22), was derived by treating Hela cells repeatedly with MNU. Both the sensitive (HeLa) and resistant (Hela/A22) cells have a mer phenotype based both on their reduced rates of loss of O6-methylguanine (O6-MeG) from DNA and their low levels of the enzyme O6-methylguanine methyltransferase (MT). HeLa cells are therfore sensitive to unrepaired O6-MeG in DNA while the Hela/A22 cells are resistant to unexcised O6-MeG and thus the A22 cells have the mer rem+ phentype. MNU produced an imediate dose-dependent inhibition of DNA synthesis in cultures of both sensitive resistant cells which increased with time until about 4 h after treatment. DNA synthesis then recovered to near control rates in both sensitive and resistant cells before then exhibiting a progressive decrease after 24 h. DNA synthesis was more depressed at these late times after treatment in cultures of sensitive cells than in those of similarly-treated resistant cells. DNA synthesis remained depressed in sensitive cells but recovered 3 days after treatment in resistant cells.

Post treatment of incubation of MNU-treated HeLa cells with caffeine did not increase the toxic action of MNU. In contrast, post treatment of the resistant HeLa/A22 cells with caffeine resulted in a dramatic increase in the toxic effects of a higher equitoxic dose of MNU. The depressed rate of DNA synthesis observed in both cell lines after doses of MNU was partially reversed by post treatment with caffeine in both sensitive and resistant cells. These observations can be interpreted in terms of the effects of caffeine on DNA replication in treated cells.  相似文献   


11.
Cell killing by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), N-methyl-N-nitrosourea (MNU), N-ethyl-N-nitrosourea (ENU), and methyl methanesulfonate (MMS) was measured in Chinese hamster ovary (CHO) cells using the colony-formation assay. Cell killing by these agents was determined in exponentially growing asynchronous cells, in synchronous cells as a function of cell-cycle position and in nondividing cells. Distinct differences in the cytotoxic effect of the 4 alkylating agents were found in respect to dose-response, cell cycle phase-sensitivity and growth state. MNNG and MNU showed the same biphasic dose-survival relationship in exponentially growing cells, with an initial steep decline followed by a shallow component. The shallow component disappeared in growth-arrested cells. MNNG and MNU differed, however, in the cell-cycle age response. No cell-cycle phase difference was seen with MNNG, whereas cells in G1 seemed more sensitive to MNU than cells in S phase. MMS and ENU both showed shouldered dose-response curves for exponentially growing asynchronous cells, and the same cell-cycle pattern for synchronous cultures with cells in early S phase being the most sensitive. However, survival of nondividing cells versus dividing cells was reduced much more by MMS than by ENU. Caffeine, which interferes with the regulation of DNA synthesis and is known to modify cell killing by DNA-damaging agents, enhanced cell killing by all agents. It is concluded that there must be a number of factors which contribute to cell killing by monofunctional alkylating agents, and that besides alkylation of DNA reaction with other cellular macromolecules should be considered.  相似文献   

12.
In both pro- and eukaryotes, the mutagenic and toxic DNA adduct O6-methylguanine (O6MeG) is subject to repair by alkyltransferase proteins via methyl group transfer. In addition, in prokaryotes, there are proteins with sequence homology to alkyltransferases, collectively designated as alkyltransferase-like (ATL) proteins, which bind to O6-alkylguanine adducts and mediate resistance to alkylating agents. Whether such proteins might enable similar protection in higher eukaryotes is unknown. Here we expressed the ATL protein of Escherichia coli (eATL) in mammalian cells and addressed the question whether it is able to protect them against the cytotoxic effects of alkylating agents. The Chinese hamster cell line CHO-9, the nucleotide excision repair (NER) deficient derivative 43-3B and the DNA mismatch repair (MMR) impaired derivative Tk22-C1 were transfected with eATL cloned in an expression plasmid and the sensitivity to N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) was determined in reproductive survival, DNA double-strand break (DSB) and apoptosis assays. The results indicate that eATL expression is tolerated in mammalian cells and conferes protection against killing by MNNG in both wild-type and 43-3B cells, but not in the MMR-impaired cell line. The protection effect was dependent on the expression level of eATL and was completely ablated in cells co-expressing the human O6-methylguanine-DNA methyltransferase (MGMT). eATL did not protect against cytotoxicity induced by the chloroethylating agent lomustine, suggesting that O6-chloroethylguanine adducts are not target of eATL. To investigate the mechanism of protection, we determined O6MeG levels in DNA after MNNG treatment and found that eATL did not cause removal of the adduct. However, eATL expression resulted in a significantly lower level of DSBs in MNNG-treated cells, and this was concomitant with attenuation of G2 blockage and a lower level of apoptosis. The results suggest that eATL confers protection against methylating agents by masking O6MeG/thymine mispaired adducts, preventing them from becoming a substrate for mismatch repair-mediated DSB formation and cell death.  相似文献   

13.
To examine involvement of mismatch repair system in alkylation-induced apoptosis and mutagenesis, cell lines defective in the Mgmt gene encoding a DNA repair enzyme, O(6)-methylguanine-DNA methyltransferase, and/or the Mlh1 gene encoding a protein involved in mismatch repair were established from gene-targeted mice. Mgmt(-/-) cells are hypersensitive to the killing effect of N-methyl-N-nitrosourea (MNU) and this effect of MNU was overcome by introducing an additional mutation in the Mlh1 gene. Mgmt(-/-)Mlh1(-/-) cells are more resistant to MNU than are wild-type cells. When the human Mgmt cDNA sequence with a strong promoter was introduced, the wild-type cells acquired the same high level of resistance to MNU as that of Mgmt(-/-)Mlh1(-/-) cells. Although no apparent increase in MNU-induced mutant frequency was observed in such methyltransferase-overproducing wild-type cells, mutant frequency of Mgmt(-/-)Mlh1(-/-) cells became 10-fold higher after being treated with MNU. Mgmt(-/-)Mlh1(+/-) cells carrying approximately half the normal level of MLH1 protein showed a normal level of spontaneous mutant frequency, yet were still highly responsive to the mutagenic effect of the alkylating carcinogen. This haploinsufficient character of Mlh1 mutation was also observed in cell survival assays; Mgmt(-/-)Mlh1(+/-) cells were as resistant to MNU as were Mgmt(-/-)Mlh1(-/-) cells. While caspase-3 was induced in Mgmt(-/-)Mlh1(+/+) cells after treatment with MNU, no induction occurred in Mgmt(-/-)Mlh1(+/-) cells or in Mgmt(-/-)Mlh1(-/-) cells. The cellular content of MLH1 protein seems to be critical for determining if damaged cells enter into either a death or mutation-inducing pathway. The haploinsufficient phenotype of Mlh1-heterozygous cells may be explained by competition in heterodimer formation between MLH1 homologues.  相似文献   

14.
The ability of seven methylating agents to form 7-methylguanine and O6-methylguanine was compared to their ability to initiate carcinogenesis as measured by the initiation of GGTase-positive foci. The seven methylating agents studied were methyl-N-nitroso-p-toluenesulfonamide (diazald), dimethylhydrazine (DMH), dimethylnitrosamine (DMN), dimethylsulfate (DMS), methyl methanesulfonate (MMS), methyl-N-nitro-N-nitrosoguanidine (MNNG) and methyl-N-nitrosourea (MNU). The DNA methylation and initiation of GGTase-positive foci was determined in partial hepatectomized rats. The formation of foci was promoted by 500 ppm sodium phenobarbital in the drinking water. While six of the seven compounds (DMH, DMN, DMS, MMS, MNNG and MNU) produced 7-methylguanine, only the four compounds (DMH, DMN, MNNG and MNU) that produced O6-methylguanine initiated GGTase-positive foci. The extent of O6-methylguanine produced by the methylating agents did not correspond with their potency to initiate GGTase-positive foci. Therefore, the initiation of GGTase-positive foci required the formation of O6-methylguanine. However, some sequential event altered the quantitative relationship of O6-methylguanine formation to the incidence of GGTase-positive foci.  相似文献   

15.
Tsai YC  Wang Y  Urena DE  Kumar S  Chen J 《DNA Repair》2011,10(4):363-372
Human Rad51 (hRad51) promoted homology recognition and subsequent strand exchange are the key steps in human homologous recombination mediated repair of DNA double-strand breaks. However, it is still not clear how hRad51 deals with sequence heterology between the two homologous chromosomes in eukaryotic cells, which would lead to mismatched base pairs after strand exchange. Excessive tolerance of sequence heterology may compromise the fidelity of repair of DNA double-strand breaks. In this study, fluorescence resonance energy transfer (FRET) was used to monitor the heterology tolerance of human Rad51 mediated strand exchange reactions, in real time, by introducing either G-T or I-C mismatched base pairs between the two homologous DNA strands. The strand exchange reactions were much more sensitive to G-T than to I-C base pairs. These results imply that the recognition of homology and the tolerance of heterology by hRad51 may depend on the local structural motif adopted by the base pairs participating in strand exchange. AnhRad51 mutant protein (hRad51K133R), deficient in ATP hydrolysis, showed greater heterology tolerance to both types of mismatch base pairing, suggesting that ATPase activity may be important for maintenance of high fidelity homologous recombination DNA repair.  相似文献   

16.
17.
The decrease in microbial mutagenicity of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and N-methyl-N-nitrosourea (MNU) was compared in an animal mediation with rats and in direct incubation with human as well as rat blood and blood components. The mutagenic activity was assayed by reverse mutation from streptomycin (SM) dependence to non-dependence in Escherichia coli, strain Sd-B (TC). The mutagenic response curves of both MNNG and MNU were approximately linear and parallel at non-cytotoxic concentrations. However, the mutagenic capabilities of MNNG were estimated to be 10-fold more potent than those of MNU. The mutagenic activity in blood and liver preparations from rats killed immediately after intravenous injection of MNNG, 50 mg/kg, was negative. Results with MNU, 100 mg/kg, were positive in both cases.For the detection of mutagenicity, blood was diluted 50 times for the final testing mixture (1 ml) to avoid bactericidal effects of the blood itself. When a larger amount of liver preparation was used in the tests, and diluted 8 times, mutagenic activity was still detected 15 min after injection of MNU, 80 mg/kg. Comparisons of the diminished rate of mutagenicity between MNNG and MNU during certain periods of incubation with blood indicated that MNNG was inactivated much more rapidly than MNU with both human and rat blood. Plasma showed a moderate inactivating effect on both MNNG and MNU. Red blood cells inactivated MNNG at a remarkably rapid rate similar to that of whole blood, but was less effective on MNU. In further experiments with red- cell components, the cell contents inactivated both MNNG and MNU at rates similar to those with red cells, but cell membrane had absolutely no effect in decreasing the mutagenicity in either MNNG or MNU.  相似文献   

18.
Mitochondrial DNA (mtDNA) mutations are implicated in pathogenesis of human diseases including cancer. To prevent mutations cells have developed repair systems to counteract harmful genetic changes caused by DNA damaging agents. One such DNA repair protein is the O(6)-Methylguanine-DNA methyltransferase (MGMT) that prevents certain types of alkylation damage. Yet, the role of MGMT in preventing alkylation induced DNA damage in mtDNA is unclear. We explored the idea of increasing cell survival after alkylation damage by overexpressing MGMT in mitochondria. We show that overexpression of this repair protein in mitochondria increases cell survival after treatment with the DNA damaging agent MNNG.  相似文献   

19.
We partially depleted the O6-methylguanine-DNA methyltransferase activity in four O6-methylguanine (O6-mGua) repair-proficient (Mer+) human cell strains with exogenous O6-mGua (2 mM for 3 h, a non-toxic regimen) and then challenged them with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). MT-partially depleted HT29 cells removed O6-mGua from DNA at about half the rate of control cells, while removal of 3-methyladenine was unaffected. In spite of partial depletion of MT, however, cell killing by MNNG in a colony-forming assay with HT29, A549, A498 or KD cells was not greatly affected. (This is in contrast to the dramatic potentiation of CNU cytotoxicity observed previously.) In an attempt to sensitize Mer+ strains to killing by MNNG, we treated cells with O6-mGua following MNNG exposure (0.4 mM for 4 days), in addition to the pre-MNNG treatment of 2 mM O6-mGua for 3 h. This sensitized KD and HT29 cells 2-fold to killing by MNNG, based on the dose at 10% survival, but did not sensitive Mer- A1336. However, post-treatment alone was as effective as combined pre- and post-treatment in sensitizing KD cells to killing. Thus, when the O6-mGua post-treatment was begun, greater than 50% of O6-mGua was already removed from cell DNA. Our findings may be accounted for by at least two schemes, one in which nonlethal O6-mGua are removed from DNA rapidly, while potentially lethal O6-mGua are repaired later. The other scheme proposes that exogenous O6-mGua increases the lethality of a non-O6-mGua lesion by reducing its repair both in Mer+ and Mer- cells. Both schemes are consistent with the hypothesis that O6-mGua may be a lethal DNA lesion in human cells.  相似文献   

20.
Dunkern T  Roos W  Kaina B 《Mutation research》2003,544(2-3):167-172
Agents inducing O(6)-methylguanine (O(6)MeG) in DNA, such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), are not only highly mutagenic and carcinogenic but also cytotoxic because of the induction of apoptosis. In CHO fibroblasts, apoptosis triggered by O(6)MeG requires cell proliferation and MutSalpha-dependent mismatch repair and is related to the induction of DNA double-strand breaks (DSBs). Furthermore, it is mediated by Bcl-2 degradation and does not require p53 for which the cells were mutated [Cancer Res. 60 (2000) 5815]. Here we studied cytotoxicity and apoptosis induced by MNNG in a pair of human lymphoblastoid cells expressing wild-type p53 (TK6) and mutant p53 (WTK1) and show that TK6 cells are more sensitive than WTK1 cells to cell killing (determined by a metabolic assay) and apoptosis. Apoptosis was a late response observed <24h after treatment and was related to accumulation of p53 and upregulation of Fas/CD95/Apo-1 receptor as well as Bax. The data indicate that MNNG induces apoptosis in lymphoblastoid cells by activating the p53-dependent Fas receptor-driven pathway. This is in contrast to CHO fibroblasts in which, in response to O(6)MeG, the mitochondrial damage pathway becomes activated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号