首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many plants use sophisticated strategies to maximize their reproductive success via outcrossing. Nicotiana attenuata flowers produce nectar with nicotine at concentrations that are repellent to hummingbirds, increasing the number of flowers visited per plant. In choice tests using native hummingbirds, we show that these important pollinators learn to tolerate high‐nicotine nectar but prefer low‐nicotine nectar, and show no signs of nicotine addiction. Nectar nicotine concentrations, unlike those of other vegetative tissues, are unpredictably variable among flowers, not only among populations, but also within populations, and even among flowers within an inflorescence. To evaluate whether variations in nectar nicotine concentrations increase outcrossing, polymorphic microsatellite markers, optimized to evaluate paternity in native N. attenuata populations, were used to compare outcrossing in plants silenced for expression of a biosynthetic gene for nicotine production (Napmt1/2) and in control empty vector plants, which were antherectomized and transplanted into native populations. When only exposed to hummingbird pollinators, seeds produced by flowers with nicotine in their nectar had a greater number of genetically different sires, compared to seeds from nicotine‐free flowers. As the variation in nectar nicotine levels among flowers in an inflorescence decreased in N. attenuata plants silenced in various combinations of three Dicer‐like (DCL) proteins, small RNAs are probably involved in the unpredictable variation in nectar nicotine levels within a plant.  相似文献   

2.
Floral visitor assemblages within plant populations are usually composed of different visitors, and the relative abundance of these visitors also varies. Therefore, identifying the relative strength of these floral visitors driving floral evolution within the population is an important step in predicting the evolutionary trajectory of floral traits. Using supplemental hand pollination and nectar-robbing exclusion treatments, we experimentally identified the relative strengths of legitimate pollinators (that visit flowers through the corolla tube entrance) and nectar robbers (that visit flowers by biting a hole in the corolla tube or using an existing hole) driving floral evolution within the Primula secundiflora population. We also estimated legitimate pollinator- and nectar robber-mediated selection separately for pin and thrum flowers. Both legitimate pollinators and nectar robbers mediated selection on pollination efficiency traits in P. secundiflora population. Legitimate pollinators mediated selection for wider corolla tubes, whereas nectar robbers mediated selection for longer corolla tubes. In addition, nectar robber-mediated selection on corolla tube length marginally varied between the pin and thrum flowers. Nectar robber mediated selection for longer corolla tube length in the pin flowers not in the thrum flowers. These results indicate that legitimate pollinators and nectar robbers within a population can drive differential evolutionary trajectories of floral traits.  相似文献   

3.
McCall AC  Karban R 《Oecologia》2006,146(4):566-571
Plants protect themselves against herbivory using a continuum of strategies, ranging from constitutive defenses to intermittent induced responses. Induced defenses may not provide immediate and maximum protection, but could be advantageous when continuous defense is either energetically or ecologically costly. As such, induced defenses in flowers could help defend relatively valuable tissue while keeping reproductive structures accessible and attractive to pollinators. Thus far, no one has demonstrated the efficacy of induced defenses against floral herbivores (florivores) in the field. Here we show that mechanical leaf damage in wild tobacco, Nicotiana attenuata (Solanaceae), reduced both flower and fruit herbivory in the field and that exogenous application of methyl jasmonate, a potent elicitor of induced responses, reduced both leaf and floral damage in natural populations. This result is consistent with a survey of damage in the field, which showed a negative relationship between leaf damage and flower and fruit damage. Although optimal defense theory predicts that induced defenses should be rare in reproductive tissues, owing to their high fitness value, our results suggest otherwise. Induced defenses in leaves and reproductive tissues may allow plants to respond effectively to the concomitant pressures of defending against herbivory and attracting pollinators.  相似文献   

4.
BACKGROUND AND AIMS: Herbivory on floral structures has been postulated to influence the evolution of floral traits in some plant species, and may also be an important factor influencing the occurrence and outcome of subsequent biotic interactions related to floral display. In particular, corolla herbivory may affect structures differentially involved in flower selection by pollinators and fruit predators (specifically, those ovopositing in ovaries prior to fruit development); hence floral herbivores may influence the relationships between these mutualistic and antagonistic agents. METHODS: The effects of corolla herbivory in Linaria lilacina (Scrophulariaceae), a plant species with complex flowers, were considered in relation to plant interactions with pollinators and fruit predators. Tests were made as to whether experimentally created differences in flower structure (resembling those occurring naturally) may translate into differences in reproductive output in terms of fruit or seed production. KEY RESULTS: Flowers with modified corollas, particularly those with lower lips removed, were less likely to be selected by pollinators than control flowers, and were less likely to be successfully visited and pollinated. As a consequence, fruit production was also less likely in these modified flowers. However, none of the experimental treatments affected the likelihood of visitation by fruit predators. CONCLUSIONS: Since floral herbivory may affect pollinator visitation rates and reduce seed production, differences among plants in the proportion of flowers affected by herbivory and in the intensity of the damage inflicted on affected flowers may result in different opportunities for reproduction for plants in different seasons.  相似文献   

5.
Exclusivity of pollinators, temporal partitioning of shared pollinators and divergence in pollen placement on the shared pollinators’ bodies are mechanisms that prevent interspecific pollen flow and minimize competitive interactions in synchronopatric plant species. We investigated the floral biology, flower visitors, pollinator effectiveness and seasonal flower availability of two syntopic legume species of the genus Vigna, V. longifolia and V. luteola, in ‘restinga’ vegetation of an island in southern Brazil. Our goal was to identify the strategies that might mitigate negative consequences of their synchronous flowering. Vigna longifolia and V. luteola were self-compatible, but depended on pollinators to set seeds. Only medium to large bees were able to trigger the ‘brush type’ pollination mechanism. Vigna longifolia, with its asymmetrical corolla and hugging mechanism, showed a more restrictive pollination system, with precise sites of pollen deposition/removal on the bee’s body, compared to V. luteola, with its zygomorphic corolla and cymbiform keel. There was a daily temporal substitution in flower visitation by the main pollinators. Vigna longifolia and V. luteola had overlapping flowering phenology but the densities of their flowers fluctuated, resulting in a seasonal partitioning of flower visitation. The differences in corolla symmetry and mainly the temporal partitioning among pollinators throughout the day and the flowering season proved to be important factors in maintaining the synchronopatry of V. longifolia and V. luteola.  相似文献   

6.
We quantified the differences in floral characters and attractiveness to flower visitors under natural conditions between the sexual types in the gynodioecious plant Glechoma longituba. We also manipulated flowers by altering corolla size or nectar volume, or by removing anthers, to examine the effect of these primary and secondary attractants (i.e. rewards and advertisements) on attractiveness. A change in corolla size and shape reduced visiting frequency and pollen load. Removal of anthers did not affect visiting rates, but significantly reduced pollination rates and stigmatic pollen load. A decrease in the nectar volume of a flower was associated with a reduction in handling time and pollen loads on stigmas. These results show that corolla size is an important advertisement to pollinators (particularly at greater distance), which associate hermaphrodite flowers with a larger corolla and a larger volume of nectar than female flowers. We found that artificial changes in population structure affected the behavior of pollinators as well as the pollination rates of flowers. We suggest that the pattern of distribution of hermaphrodite and female clones in a population may serve to avoid pollen limitation in a female clone or patch. This effect may ensure female reproductive success and allow for the maintenance of female individuals in natural populations of this gynodioecious plant.  相似文献   

7.
8.
The neotropical plant genus Drymonia displays a remarkable variety of floral shapes and colors. One feature that is particularly important to coevolution with pollinators involves the variable shapes and widths of corolla tubes. To evaluate the evolutionary context for changes in corolla shape, we constructed a phylogeny of 50 of the 75 species of Drymonia using molecular markers from plastid (trnK-matK) and nuclear regions (ITS and ETS). Mapping tube shapes on the phylogeny supports open, bell-shaped (campanulate) corolla shape as the ancestral character state for Drymonia, with multiple independent origins of constriction in the corolla tube. Corollas with constrictions take one of three tube shapes: a constricted flower opening and throat with a large, expanded pouch on the lower surface (hypocyrtoid); a constricted flower opening and throat lacking an expanded pouch on the lower surface (urceolate); or a constricted opening and throat where the sides of the corolla appear laterally compressed. Fieldwork demonstrates euglossine bees (mostly Euglossa spp. and Epicharis spp.) visit campanulate corollas while hummingbirds visit corollas that are constricted. Results support eight independent origins of constricted corolla tubes from ancestors with campanulate corolla tubes: 3 hypocyrtoid clades, 3 laterally compressed clades, and 3 urceolate clades (one of which represents a shift from a hypocyrtoid ancestor). Constricted corollas are associated with shifts from the ancestral condition of poricidal anther dehiscence, which presents pollen to pollinators in multiple small doses, to the derived condition of longitudinal anther dehiscence, which presents all pollen to pollinators simultaneously. The association of hummingbird pollination with constricted corolla tubes suggests that narrowing evolved as a barrier mechanism that prohibits the visitation of flowers by bees.  相似文献   

9.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the most abundant protein on the planet and in addition to its central role in photosynthesis it is thought to function as a nitrogen (N)-storage protein and a potential source of N for defense biosynthesis in plants. In a recent study in the wild tobacco Nicotiana attenuata, we showed that the decrease in absolute N invested in soluble proteins and RuBisCO elicited by simulated herbivory was much larger than the N-requirements of nicotine and phenolamide biosynthesis; 15N flux studies revealed that N for defensive phenolamide synthesis originates from recently assimilated N rather than from RuBisCO turnover. Here we show that a transgenic line of N. attenuata silenced in the expression of RuBisCO (asRUB) invests similar or even larger amounts of N into phenolamide biosynthesis compared with wild type plants, consistent with our previous conclusion that recently assimilated N is channeled into phenolamide synthesis after elicitation. We suggest that the decrease in leaf proteins after simulated herbivory is a tolerance mechanism, rather than a consequence of N-demand for defense biosynthesis.  相似文献   

10.

Background

It is normally thought that deep corolla tubes evolve when a plant''s successful reproduction is contingent on having a corolla tube longer than the tongue of the flower''s pollinators, and that pollinators evolve ever-longer tongues because individuals with longer tongues can obtain more nectar from flowers. A recent model shows that, in the presence of pollinators with long and short tongues that experience resource competition, coexisting plant species can diverge in corolla-tube depth, because this increases the proportion of pollen grains that lands on co-specific flowers.

Methodology/Principal Findings

We have extended the model to study whether resource competition can trigger the co-evolution of tongue length and corolla-tube depth. Starting with two plant and two pollinator species, all of them having the same distribution of tongue length or corolla-tube depth, we show that variability in corolla-tube depth leads to divergence in tongue length, provided that increasing tongue length is not equally costly for both species. Once the two pollinator species differ in tongue length, divergence in corolla-tube depth between the two plant species ensues.

Conclusions/Significance

Co-evolution between tongue length and corolla-tube depth is a robust outcome of the model, obtained for a wide range of parameter values, but it requires that tongue elongation is substantially easier for one pollinator species than for the other, that pollinators follow a near-optimal foraging strategy, that pollinators experience competition for resources and that plants experience pollination limitation.  相似文献   

11.
The functional significance of herbivore-induced plant traits known to directly or indirectly influence herbivore performance remains largely untested under field conditions due to the difficulty of uncoupling the response to herbivory from the act of herbivory. The signals that activate many of the induced responses in plants are endogenously produced in response to wounding, unlike many of the predator-induced responses found in aquatic invertebrates (which are activated by exogenous cues derived from predators). Jasmonates, endogenously-produced damage signals, activate diverse wound-induced responses in plants including induced nicotine production in Nicotiana sylvestris. The results presented here are from two experiments which illustrate the use of jasmonates to uncouple induced nicotine production in Nicotiana attenuata (Torrey ex. Watson) from wounding. The exogenous addition of methyl jasmonate (MJ) in small quantities (11 g for a 1.4 g dry mass plant) to roots of hydroponically-grown plants induces de novo nicotine synthesis and increases whole-plant nicotine concentrations just as wounding does. The MJ-induced changes were proportional to the quantity of MJ given. Moreover, the effects of MJ were additive to the effects of damage. Applications of MJ to shoots were less effective. Root treatments also worked with plants growing in a field plot. The application of MJ represents a promising tool for examining the functional significance of induced nicotine responses in plants growing in their native environments.  相似文献   

12.
Native flower visitors removed less nectar from trypsin proteinase inhibitor (TPI)-silenced Nicotiana attenuata plants (ir-pi) than from wild-type plants in four field seasons of releases, even when the nectar repellant, nicotine, was also silenced. Analysis of floral chemistry revealed no differences in the emission of the floral attractants benzylacetone and benzaldehyde or in the concentrations of nectar sugar and nicotine between wild-type and ir-pi flowers, suggesting that these two lines are equally able to attract insect visitors. TPI activity was found in all wild-type flower parts and was highest in anther heads, while TPI activity was not found in any parts of ir-pi flowers. The nectar of ir-pi flowers contained 3.6-fold more total proteins than the nectar of wild-type flowers. Proteomics analysis and hydrogen peroxide (H2O2) measurements revealed that ir-pi nectar contained more nectarins and nectar germin-like proteins and about 1.5-fold more H2O2 compared with wild-type nectar. Field experiments with wild-type flowers supplemented with a solution containing sugar and glucose oxidase demonstrated a causal association between the accumulation of H2O2 and the reduction in nectar removal. These results showed that silencing TPI expression increases the accumulation of nectar proteins and H2O2 levels, which in turn reduces nectar removal by native insect floral visitors. The effect of silencing TPIs on nectar protein accumulation suggests an endogenous regulatory function for TPIs in N. attenuata flowers. The repellency of H2O2 to floral visitors raises new questions about the qualities of nectar that make it attractive for pollinators.Floral nectar is an innovative feature of plants that is thought to have evolved as a reward for pollen-transporting floral visitors. Sugars (e.g. Glc, Fru, and Suc), amino acids, and lipids (Baker and Baker, 1982, 1986) provide nutritional rewards that are essential for many pollinators. But nectar is also known to contain other compounds, such as volatile organic compounds (VOCs), alkaloids, phenolics, and nonprotein amino acids (Baker, 1977, 1978; Raguso, 2004; Kessler and Baldwin, 2007), which do not increase the nutritional value of nectar. Nectar is also exploited as a food source by nectar robbers and nectar-infesting microorganisms, which do not provide mutualistic services to the plant and are known to directly reduce a plant''s fitness either by competing with pollinators or by infesting reproductive organs (Traveset et al., 1998; Irwin and Brody, 1999; Maloof and Inouye, 2000; Farkas et al., 2007). Therefore, flowers must solve the dilemma of repelling nectar thieves or florivores that provide no pollination services while simultaneously attracting fitness-enhancing pollinators.Most of the defensive compounds in nectar have been reported to act selectively (i.e. only on antagonists). For example, the floral nectar of Catalpa speciosa contains iridoid glycosides that fend off nectar robbers but not the plant''s specific pollinators (Stephenson, 1981). Similarly, the presence of phenols in the floral nectar of Aloe vryheidensis lowers its palatability to generalist floral visitors like sunbirds or honey bees while not affecting the attractiveness of the nectar to a specialist bird, the dark-capped bulbul (Johnson et al., 2006). In its native habitat, Nicotiana attenuata (Solanaceae) maximizes its maternal and paternal reproductive success while repelling herbivores, florivores, and nectar robbers by producing a sophisticated blend of both repellants (nicotine) and attractants (benzylacetone) in its nectar and floral head space (Kessler et al., 2008) as well as by changing its floral phenology in response to herbivore attack, so as to switch from the use of night-active hawkmoth pollinators, which oviposit herbivores on the plants they pollinate, to day-active hummingbird pollinators, which do not (Kessler et al., 2010). While this sophisticated use of chemical attractants and repellants is likely a common solution to the dilemma, very little is known about the function of most secondary metabolites found in nectar (Thornburg, 2007).Similar chemically mediated strategies are used to solve a similar problem when plants use a combination of direct and indirect defenses to protect their leaves from herbivore attack (Halitschke et al., 2008). In N. attenuata, attack by the specialist herbivore Manduca sexta elicits a remarkable array of direct and indirect defenses, most of which are elicited by the jasmonate signaling pathway in response to herbivore-specific elicitors (Baldwin, 2001; Kessler and Baldwin, 2002; Wu and Baldwin, 2009). These herbivory-elicited responses include the accumulation of toxins and digestibility reducers, which function as direct defenses, as well as the release of a complicated blend of VOCs (Gaquerel et al., 2009), which repel further oviposition by M. sexta moths and attract predacious bugs that feed on M. sexta eggs or larvae, thereby functioning as an indirect defense (Kessler and Baldwin, 2001).Once herbivores start feeding on N. attenuata leaves, they are frequently repelled by a suite of locally and systemically elicited direct defenses (Steppuhn et al., 2008). Trypsin protease inhibitors (TPIs) are an effective component of this inducible defensive system that reduces the performance of folivores by targeting their main proteolytic digestive enzymes and is strongly induced by herbivore attack (van Dam et al., 2000; Glawe et al., 2003; Zavala et al., 2004b, 2008; Horn et al., 2005). However, in N. attenuata, the biosynthesis of TPIs incurs substantial fitness costs (Zavala et al., 2004a); silencing the TPI gene in N. attenuata abolishes the plant''s capacity to produce TPIs and allows it to grow faster, flower earlier, and produce more seed capsules compared with TPI-producing genotypes (Zavala et al., 2004a). Similarly, restoring TPI production by transforming an ecotype of N. attenuata naturally deficient in TPI production (Wu et al., 2007) reduces lifetime seed production (Zavala et al., 2004a). TPIs are not only restricted to leaves but accumulates in reproductive organs, where they may protect these fitness-valuable tissues against attack from florivores and microbes. Atkinson et al. (1993) and Johnson et al. (2007) elegantly demonstrated that TPIs dramatically accumulate in Nicotiana alata stigmas to become the most abundant protein in these tissues. PIs have been reported to accumulate in Solanum americanum seeds, where they were shown to play an important role in seed development (Suk-Fong et al., 2006). These studies highlight that while it is clear that TPIs occur at high levels in reproductive organs, their role in floral function has not been thoroughly explored.As part of a research program to study the defensive functions of nicotine and TPIs against folivores, we planted N. attenuata plants that had been transformed with RNA interference constructs to silence their nicotine (ir-pmt), TPI (ir-pi), or both (ir-pmt/pi) in the plant''s native habitats in Utah during four field seasons. Serendipitously, we noticed that the amount of nectar removed by the native community of floral visitors from ir-pmt/pi plants did not differ from that removed from wild-type plants, although we had recently discovered that silencing nicotine alone (ir-pmt) consistently increased nectar removal (Kessler and Baldwin, 2007). These observations suggested that silencing TPIs alone might impede nectar removal by the native community of floral visitors. During two field seasons (2007 and 2009), we compared the amount of nectar removed from wild-type plants and from TPI-silenced plants (ir-pi) and found that, indeed, less nectar was consistently removed from ir-pi plants. To understand these observations, we compared the floral chemistry of wild-type and ir-pi plants, including floral volatiles, nectar sugar, nicotine, and proteomes. We found that silencing TPIs increased the accumulation of nectar proteins, especially the nectar germin-like proteins (GLPs) and nectarins, which are known to participate in the nectar redox cycle and generate hydrogen peroxide (H2O2; Carter and Thornburg, 2000). Consistent with data on nectar proteins, we also found significantly higher levels of H2O2 in the nectar of ir-pi plants compared with those of wild-type plants. To test whether the differences in the accumulation of H2O2 in the nectar of ir-pi and wild-type plants could explain the nectar removal observations in the field, we experimentally increased H2O2 in the nectar of wild-type plants to the levels found in ir-pi nectar using a mixture of Glc oxidase (GOX) and Glc and compared nectar removal by the native community of floral visitors.  相似文献   

13.
We examined performance of herbivores on plants lacking either jasmonate (JA, asLOX3) or ethylene (ET, mETR1) signaling or both (mETR1asLOX3). Plant defenses against Manduca sexta caterpillars were strongly impaired in JA-deficient asLOX3 plants; however, making asLOX3 plants ethylene insensitive did not further increase the performance of the larvae on a mETR1asLOX3 genetic cross. This result demonstrates the dominant role of JA over ET in the regulation of plant defenses against herbivores. However, ET-insensitivity combined with otherwise normal levels of JA in mETR1 plants promoted faster caterpillar growth, which correlated with reduced accumulation of the alkaloidal direct defense nicotine in mETR1 compared to WT plants. Our data points to an important accessory function of ET in the activation of JA-regulated plant defenses against herbivores at the level of alkaloid biosynthesis in the roots and/or accumulation in the leaves.Key words: herbivory, jasmonic acid and ethylene crosstalk, Nicotiana attenuata, nicotine, trypsin proteinase inhibitors (TPIs)  相似文献   

14.
Whether or not a plant can recover its investment of resources in a chemical defense is central to the mobile-immobile metabolite dichotomy of the resource availability theory. Biochemical measures of metabolite turnover have been used to estimate this trait, but they do not address the ecological question of resource recovery. Numerous studies have found that many Nicotiana species, which normally produce the nitrogen-intensive defense metabolite, nicotine, can rapidly take up and metabolize exogenously administered nicotine from hydroponic solutions. However, Baldwin et al. (1994) found no evidence for turnover of endogenously produced nicotine in pulse-chase experiments using 15NO3 as the biosynthetic precursor in N. sylvestris. Given that the capacity to metabolize nicotine exists, we asked (1) whether N. sylvestris could metabolize exogenously fed nicotine and sustain growth under nitrogen-limited conditions and (2) whether leaf damage alters the plants' ability to use nicotine as a nitrogen source. We fed plants with sufficient nicotine in hydroponic culture to increase their nitrogen pools by 70% at the time of nicotine feeding; in 6–10 consecutive harvests over 28–35 days, we measured the biomass of roots, leaves and stems, and the total nitrogen pools of these plant parts as well as the pools of nicotine, nornicotine and myosmine of these plant parts in undamaged nicotinefed and control plants and finally, in a separate experiment, in nicotine-fed damaged and undamaged plants. Nicotine feeding increased nicotine pools by 1.2 times, which was not sufficient to significantly increase total nitrogen pools at the end of the experiment. Nicotine-fed plants rapidly demethylated their acquired nicotine pools to nornicotine, but did not process the alkaloid pool further than myosmine over the duration of the experiment. Leaf damage significantly increased the nicotine pool, but did not significantly alter the processing of the exogenously acquired nicotine. We conclude that N. sylvestris does not recover the nitrogen invested in nicotine even under nitrogen-limited growth, that the rapid metabolism of exogenously introduced nicotine is likely a detoxification pathway, and that these plants are homeostatic with regard to their nicotine pools.  相似文献   

15.
Herbivory in some Nicotiana species is known to induce alkaloid production. This study examined herbivore-induced defenses in the nornicotine-rich African tobacco N. africana, the only Nicotiana species indigenous to Africa. We tested the predictions that: 1) N. africana will have high constitutive levels of leaf, flower and nectar alkaloids; 2) leaf herbivory by the African bollworm Helicoverpa armigera will induce increased alkaloid levels in leaves, flowers and nectar; and 3) increased alkaloid concentrations in herbivore-damaged plants will negatively affect larval growth. We grew N. africana in large pots in a greenhouse and exposed flowering plants to densities of one, three and six fourth-instar larvae of H. armigera, for four days. Leaves, flowers and nectar were analyzed for nicotine, nornicotine and anabasine. The principal leaf alkaloid was nornicotine (mean: 28 µg/g dry mass) followed by anabasine (4.9 µg/g) and nicotine (0.6 µg/g). Nornicotine was found in low quantities in the flowers, but no nicotine or anabasine were recorded. The nectar contained none of the alkaloids measured. Larval growth was reduced when leaves of flowering plants were exposed to six larvae. As predicted by the optimal defense theory, herbivory had a localized effect and caused an increase in nornicotine concentrations in both undamaged top leaves of herbivore damaged plants and herbivore damaged leaves exposed to one and three larvae. The nicotine concentration increased in damaged compared to undamaged middle leaves. The nornicotine concentration was lower in damaged leaves of plants exposed to six compared to three larvae, suggesting that N. africana rather invests in new growth as opposed to protecting older leaves under severe attack. The results indicate that the nornicotine-rich N. africana will be unattractive to herbivores and more so when damaged, but that potential pollinators will be unaffected because the nectar remains alkaloid-free even after herbivory.  相似文献   

16.
Abstract We address how a conflict between pollinator attraction and avoidance of flower predation influences the evolution of flower shape in Polemonium viscosum. Flower shape in P. viscosum is the product of an isometric relationship between genetically correlated (rA= 0.70) corolla flare and length. Bumblebee pollinators preferentially visit flowers that are more flared and have longer tubes, selecting for a funnel‐shaped corolla. However, flower shape also influences nectar‐foraging ants that sever the style at its point of attachment to the ovary. Surveys of ant damage show that plants having flowers with flared, short corollas are most vulnerable to ant predation. Consistent with this result, the ratio of corolla length to flare is significantly greater in a krummholz (high predation risk) population than in a tundra (low predation risk) population. To explicitly test whether the evolution of a better defended flower would exact a cost in pollination, we created tubular flowers by constricting the corolla during development. Performance of tubular flowers and natural controls was compared for defensive and attractive functions. In choice trials, ants entered control flowers significantly more often than tubular ones, confirming that the evolution of tubular flowers would reduce the risk of predation. However, in a bumblebee‐pollinated population, tubular flowers received significantly less pollen and set fewer seeds than controls. A fitness model incorporating these data predicts that in the absence of the genetic correlation between corolla length and flare, intermittent selection for defense could allow tubular flowers to spread in the krummholz population. However, in the tundra, where bumblebees account for nearly all pollination, the model predicts that tubular flowers should always confer a fitness disadvantage.  相似文献   

17.
Plants might be under selection for both attracting efficient pollinators and deterring wasteful visitors. Particular floral traits can act as exploitation barriers by discouraging the unwelcome visitors. In the genus Penstemon, evolutionary shifts from insect pollination to more efficient hummingbird pollination have occurred repeatedly, resulting in the convergent evolution of floral traits commonly present in hummingbird-pollinated flowers. Two of these traits, a reduced or reflexed lower petal lip and a narrow corolla, were found in a previous flight-cage study to affect floral handling time by bumble bees, therefore potentially acting as “anti-bee” traits affecting preference. To test whether these traits do reduce bumble bee visitation in natural populations, we manipulated these two traits in flowers of bee-pollinated Penstemon strictus to resemble hummingbird-adapted close relatives and measured the preferences of free-foraging bees. Constricted corollas strongly deterred bee visitation in general, and particularly reduced visits by small bumble bees, resulting in immediate specialization to larger, longer-tongued bumble bees. Bees were also deterred—albeit less strongly—by lipless flowers. However, we found no evidence that lip removal and corolla constriction interact to further affect bee preference. We conclude that narrow corolla tubes and reduced lips in hummingbird-pollinated penstemons function as exploitation barriers that reduce bee access to nectaries or increase handling time.  相似文献   

18.

Background and Aims

Floral rewards may be associated with certain morphological floral traits and thus act as underlying factors promoting selection on these traits. This study investigates whether some traits that are under pollinator-mediated selection (flower number, stalk height, corolla diameter, corolla tube length and corolla tube width) in the Mediterranean herb E. mediohispanicum (Brassicaceae) are associated with rewards (pollen and nectar).

Methods

During 2005 the phenotypic traits and the visitation rate of the main pollinator functional groups were quantified in 720 plants belonging to eight populations in south-east Spain, and during 2006 the same phenotypic traits and the reward production were quantified in 400 additional plants from the same populations.

Key Results

A significant correlation was found between nectar production rate and corolla tube length, and between pollen production and corolla diameter. Visitation rates of large bees and butterflies were significantly higher in plants exhibiting larger flowers with longer corolla tubes.

Conclusions

The association between reward production and floral traits may be a factor underlying the pattern of visitation rate displayed by some pollinators.Key words: Erysimum, floral traits, nectar, pollen, pollinator visitation rate, reward  相似文献   

19.
Andrew C. McCall 《Oikos》2006,112(3):660-666
Resistance to leaf herbivory is well-documented in plants. In contrast, resistance to herbivory in flowers has received very little attention, even though reproductive tissues are often essential for plant reproduction. Plants may protect reproductive tissues with a range of defenses from constitutive to induced, although ecological costs associated with constitutive defense or resistance are expected to be higher than costs associated with induced responses. Induced responses in flowers may be effective against floral herbivores while minimizing the negative impacts of resistance on pollinators. This study examines induced responses in Nemophila menziesii (Hydrophyllaceae), a plant that frequently receives high levels of floral herbivory. I report that natural caterpillar herbivory increased levels of resistance against caterpillars later in the season. Similarly, artificial clipping to flowers consistently reduced natural damage to flowers vs unclipped controls over two years. Neither whole-plant nor individual seed set was affected by the reduction of floral damage. Induced resistance in reproductive tissues may benefit plants that are exposed to both floral herbivory and pollinator activity and can be an important link between plant antagonists and plant mutualists.  相似文献   

20.
Javier Herrera 《Annals of botany》2009,103(7):1119-1127

Background and Aims

While pollinators may in general select for large, morphologically uniform floral phenotypes, drought stress has been proposed as a destabilizing force that may favour small flowers and/or promote floral variation within species.

Methods

The general validity of this concept was checked by surveying a taxonomically diverse array of 38 insect-pollinated Mediterranean species. The interplay between fresh biomass investment, linear size and percentage corolla allocation was studied. Allometric relationships between traits were investigated by reduced major-axis regression, and qualitative correlates of floral variation explored using general linear-model MANOVA.

Key Results

Across species, flowers were perfectly isometrical with regard to corolla allocation (i.e. larger flowers were just scaled-up versions of smaller ones and vice versa). In contrast, linear size and biomass varied allometrically (i.e. there were shape variations, in addition to variations in size). Most floral variables correlated positively and significantly across species, except corolla allocation, which was largely determined by family membership and floral symmetry. On average, species with bilateral flowers allocated more to the corolla than those with radial flowers. Plant life-form was immaterial to all of the studied traits. Flower linear size variation was in general low among conspecifics (coefficients of variation around 10 %), whereas biomass was in general less uniform (e.g. 200–400 mg in Cistus salvifolius). Significant among-population differences were detected for all major quantitative floral traits.

Conclusions

Flower miniaturization can allow an improved use of reproductive resources under prevailingly stressful conditions. The hypothesis that flower size reflects a compromise between pollinator attraction, water requirements and allometric constraints among floral parts is discussed.Key words: Allometry, biomass, corolla, drought, evolution, flower, Mediterranean, sclerophyllous, size, variation, water  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号