首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: Wine is the product of complex interactions between yeasts and bacteria in grape must. Amongst yeast populations, two groups can be distinguished. The first, named non-Saccharomyces (NS), colonizes, with many other micro-organisms, the surface of grape berries. In the past, NS yeasts were primarily considered as spoilage micro-organisms. However, recent studies have established a positive contribution of certain NS yeasts to wine quality. Amongst the group of NS yeasts, Brettanomyces bruxellensis, which is not prevalent on wine grapes, plays an important part in the evolution of wine aroma. Some of their secondary metabolites, namely volatile phenols, are responsible for wine spoilage. The other group contributing to wine aroma, which is also the main agent of alcoholic fermentation (AF), is composed of Saccharomyces species. The fermenting must is a complex microbial ecosystem where numerous yeast strains grow and die according to their adaptation to the medium. Yeast-yeast interactions occur during winemaking right from the onset of AF. The aim of this study was to describe the interactions between B. bruxellensis, other NS and Saccharomyces cerevisiae during laboratory and practical scale winemaking. METHODS AND RESULTS: Molecular methods such as internal transcribed spacer-restriction fragment length polymorphism and polymerase chain reaction and denaturing gradient gel electrophoresis were used in laboratory scale experiments and cellar observations. The influence of different oenological practices, like the level of sulphiting at harvest time, cold maceration preceding AF, addition of commercial active dry yeasts on B. bruxellensis and other yeast interactions and their evolution during the initial stages of winemaking have been studied. Brettanomyces bruxellensis was the most adapted NS yeast at the beginning of AF, and towards the end of AF it appeared to be more resistant than S. cerevisiae to the conditions of increased alcohol and sugar limitation. CONCLUSIONS: Among all NS yeast species, B. bruxellensis is better adapted than other wild yeasts to resist in must and during AF. Moreover, B. bruxellensis appeared to be more tolerant to ethanol stress than S. cerevisiae and after AF B. bruxellensis was the main yeast species in wine. SIGNIFICANCE AND IMPACT OF THE STUDY: Brettanomyces bruxellensis interacts with other yeast species and adapts to the wine medium as the dominant yeast species at the end of AF. Contamination of B. bruxellensis might take place at the beginning of malolactic fermentation, which is a critical stage in winemaking.  相似文献   

2.
AIMS: The objective of this study was to investigate the effects of free molecular and bound forms of sulphur dioxide and oxygen on the viability and culturability of a selected strain of Acetobacter pasteurianus and a selected strain of Brettanomyces bruxellensis in wine. METHODS AND RESULTS: Acetic acid bacteria and Brettanomyces/Dekkera yeasts associated with wine spoilage were isolated from bottled commercial red wines. One bacterium, A. pasteurianus strain A8, and one yeast, B. bruxellensis strain B3a, were selected for further study. The resistance to sulphur dioxide and the effect of oxygen addition on these two selected strains were determined by using plating and epifluorescence techniques for monitoring cell viability in wine. Acetobacter pasteurianus A8 was more resistant to sulphur dioxide than B. bruxellensis B3a, with the latter being rapidly affected by a short exposure time to free molecular form of sulphur dioxide. As expected, neither of these microbial strains was affected by the bound form of sulphur dioxide. The addition of oxygen negated the difference observed between plate and epifluorescence counts for A. pasteurianus A8 during storage, while it stimulated growth of B. bruxellensis B3a. CONCLUSIONS: Acetobacter pasteurianus A8 can survive under anaerobic conditions in wine in the presence of sulphur dioxide. Brettanomyces bruxellensis B3a is more sensitive to sulphur dioxide than A. pasteurianus A8, but can grow in the presence of oxygen. Care should be taken to exclude oxygen from contact with wine when it is being transferred or moved. SIGNIFICANCE AND IMPACT OF THE STUDY: Wine spoilage can be avoided by preventing growth of undesirable acetic acid bacteria and Brettanomyces/Dekkera yeasts through the effective use of sulphur dioxide and the management of oxygen throughout the winemaking process.  相似文献   

3.
基于ITS1 DNA序列分析的几种酵母菌的分子分类   总被引:1,自引:0,他引:1  
采用ITS1序列分析的手段。对来自Dekkera/Brettanomyces/Eeniella的15株菌株进行了分子分类学的研究。研究结果支持4个Dekkera/Brettanomyces种类的确认;D.anomala/B.anomalus,D.bruxellensis/B.bruxellensis,D.custersiana和D.naardenensis,以及把E.nana合并于Brettanomyces属的建议,此外,研究也揭示了ITS1在酵母分子分类学中的价值。  相似文献   

4.
Brettanomyces bruxellensis spoilage is a serious problem for the wine industry. Mainly, by producing 4-ethylphenol and 4-ethylguaiacol, it confers off-odors to the wine and changes its aromatic quality. The presence of B. bruxellensis cells on the berry was speculated but it had never been clearly demonstrated. On grape berries, the microbial ecosystem is highly diverse and the population of B. bruxellensis can be very small. The aim of our study was to reveal and confirm the presence of B. bruxellensis on the surface of grape berries. We developed an enrichment medium for B. bruxellensis in order to overcome the detection limit of the molecular methods (species-specific PCR, ITS-RFLP PCR, PCR-DGGE). This medium, named EBB medium, made it possible to detect B. bruxellensis after 10 days of culture. For the first time, the presence of B. bruxellensis has been clearly established in several vineyards and at different stages of the grape development after the veraison. This work led to the conclusion that the grape berry is the primary source of B. bruxellensis. Grape growers and winemakers should take these results into account when deciding on the treatment to apply in the vineyards and the must. With the information provided here, B. bruxellensis prevention could start in the vineyard.  相似文献   

5.
Sequencing of the complete 26S rRNA genes of all Dekkera/Brettanomyces species colonizing different beverages revealed the potential for a specific primer and probe design to support diagnostic PCR approaches and FISH. By analysis of the complete 26S rRNA genes of all five currently known Dekkera/Brettanomyces species (Dekkera bruxellensis, D. anomala, Brettanomyces custersianus, B. nanus and B. naardenensis), several regions with high nucleotide sequence variability yet distinct from the D1/D2 domains were identified. FISH species-specific probes targeting the 26S rRNA gene's most variable regions were designed. Accessibility of probe targets for hybridization was facilitated by the construction of partially complementary 'side'-labeled probes, based on secondary structure models of the rRNA sequences. The specificity and routine applicability of the FISH-based method for yeast identification were tested by analyzing different wine isolates. Investigation of the prevalence of Dekkera/Brettanomyces yeasts in the German viticultural regions Wonnegau, Nierstein and Bingen (Rhinehesse, Rhineland-Palatinate) resulted in the isolation of 37 D. bruxellensis strains from 291 wine samples.  相似文献   

6.
Statistics-based experimental design was used to investigate the effect of medium components (starch, peptone, ammonium sulfate, yeast extract, and CaCl2.2H2O) on hen's egg white lysozyme production by Aspergillus niger HEWL WT-13-16. A 2(5-1) fractional factorial design augmented with center points revealed that peptone, starch, and ammonium sulfate were the most significant factors, whereas the other factors were not important within the levels tested. The method of steepest ascent was used to approach the proximity of optimum. This task was followed by a central composite design to develop a response surface for medium optimization. The optimum medium composition for lysozyme production was found to be: starch 34 g L-1, peptone 34 g L-1, ammonium sulfate 11.9 g L-1, yeast extract 0.5 g L-1, and CaCl2.2H2O 0.5 g L-1. This medium was projected to produce, theoretically, 212 mg L-1 lysozyme. Using this medium, an experimental maximum lysozyme concentration of 209+/-18 mg L-1 verified the applied methodology.  相似文献   

7.
The effect of reduced nutritional levels (particularly nitrogen source) for immobilized K. fragilis type yeast were studied using a trickle flow, "differential" plug flow type reactor with cells immobilized by adsorption onto an absorbant packing matrix. Minimizing nutrient levels in a feed stream to an immobilized cell reactor (ICR) might have the benefits of reducing cell growth and clogging problems in the ICR, reducing feed preparation costs, as well as reducing effluent disposal costs. In this study step changes in test feed medium nutrient compositions were introduced to the ICR, followed by a return to a basal medium. Gas evolution rates were monitored and logged on a continuous basis, and effluent cell density was used as an indicator of cell growth rate of the immobilized cell mass. Startup of the reactor using a YEP medium showed a rapid buildup of cells in the reactor during the initial 110 h operation. The population density then stabilized at 1.6 x 10(11) cells/g sponge. A defined medium containing a complex mix of essential nutrients with an inorganic nitrogen source (ammonium sulfate) was able to maintain 90% of the productivity in the ICR as compared to the YEP medium, but proved unable to promote growth of the immobilized cell mass during startup. Experiments on reduced ammonium sulfate in the defined medium, and reduced yeast extract and peptone in YEP medium indicated that stable productivity could be maintained for extended periods (80 h) in the complete absence of any nutrients besides a few salts (potassium phosphate and magnesium sulfate). It was found that productivity rates dropped by 35-65% from maximal values as nitrogenous nutrients were eliminated from the test mediums, while growth rates (as determined by shed cell density from the reactor) dropped by 75-95%. Thus, nutritional deficiencies largely decoupled growth and productivity of the immobilized yeast which suggests productivity is both growth- and non-growth-associated for the immobilized cells. A yeast extract concentration of 0.375 g/L with or without 1 g/L ammonium sulfate was determined to be the minimum level which gave a sustained increase in productivity rates as compared to the nutritionally deficient salt medium. This represents a 94% reduction in complex nitrogenous nutrient levels compared to standard YEP batch medium (3 g/L YE and 3.5 g/L peptone).  相似文献   

8.
A new fluorescence in situ hybridization method using peptide nucleic acid (PNA) probes for identification of Brettanomyces is described. The test is based on fluorescein-labeled PNA probes targeting a species-specific sequence of the rRNA of Dekkera bruxellensis. The PNA probes were applied to smears of colonies, and results were interpreted by fluorescence microscopy. The results obtained from testing 127 different yeast strains, including 78 Brettanomyces isolates from wine, show that the spoilage organism Brettanomyces belongs to the species D. bruxellensis and that the new method is able to identify Brettanomyces (D. bruxellensis) with 100% sensitivity and 100% specificity.  相似文献   

9.
Growth of Pathogenic Leptospira in Chemically Defined Media   总被引:10,自引:2,他引:8  
A protein-free chemically defined medium for cultivation of pathogenic Leptospira was developed. The medium permitted continued serial subculturing of 9 serogroups (52 strains) of the 12 serogroups (61 strains) tested. Growth was initiated from small inocula, and the growth rate and maximal cell yields were similar to those on serum-containing media. The nutritional requirements of serogroups L. canicola, L. pomona, and L. grippotyphosa were studied in a basal medium composed of inorganic salts, a fatty acid, vitamin B(12), and thiamine. All strains tested utilized ammonium chloride as the sole nitrogen source. A fatty acid, vitamin B(12), and ferrous ions were essential. Growth was stimulated by thiamine, potassium, and calcium ions.  相似文献   

10.
Effects of yeast extract, and ammonium sulfate were investigated on the production of L-ornithine by an arginine auxotroph.Brevibacterium ketoglutamicum in flask and batch cultures. Yeast extract as an arginine source and ammonium sulfate as an inorganic nitrogen source had significant effects on L-ornithine, production and cell growth. L-ornithine production was repressed by the excessive addition of arginine. Reversion of auxotrophic cells to the wild type was observed when the initial yeast extract concentration was too low. There existed optimum concentrations of yeast extract and ammonium sulfate for L-ornithine production. The effects of yeast extract and ammonium sulfate concentrations on the Leudeking-Piret model parameters were examined to analyze, the relationship between cell growth and L-ornithine production.  相似文献   

11.
Mushrooms or fruiting bodies of many basidiomycetes are commonly produced in solid-state fermentation, generally after 20-60 days of growth. However, it is also possible to produce biomass from these fungi, in submerged fermentation in shorter time. This work was aimed at evaluating biomass production with the basidiomycete Pleurotus sajor-caju, in a submerged process and to determine the proportion of chemical components of this biomass. Initially, an optimization of the culture medium was done to produce a faster growth of microbial mass by changing the concentrations of ammonium sulfate, soy protein and yeast extract. Using the optimized culture medium, values of approximately 5.5 g L(-1) of biomass in a medium with 10 g L(-1) of glucose were attained. When the optimized culture medium was tested in a 5-L stirred tank bioreactor, using 10 g L(-1) of glucose or sucrose as carbon source, values of 8.18 and 5.94 g L(-1) of biomass concentration were obtained, respectively. In the medium with glucose, high yields (0.82 g g(-1)) and productivity of 0.085 g L(-1) h(-1) were obtained. The exopolysaccharide content (1.58 g dry matter L(-1)) in the culture was higher in the fermentation with sucrose. The nutritional composition of the biomass obtained in the submerged fermentation was similar to that of the fruiting body in terms of quantities of total carbohydrates, ash and calories, but total fat and protein were higher.  相似文献   

12.
AIMS: Brettanomyces bruxellensis is a well-known wine spoilage yeast that causes undesirable off-flavours. Likewise, glucan-producing strains of ropy Pediococcus damnosus are considered as spoilage micro-organisms because the synthesis of glucan leads to an unacceptable viscosity of wine. METHODS AND RESULTS: We developed a real-time PCR method to detect and quantify these two spoilage micro-organisms in wine. It is based on specific primer pairs for amplification of target DNA, and includes a melting-curve analysis of PCR products as a confirmatory test. CONCLUSIONS: The detection limit in wine was 10(4) CFU ml(-1) for B. bruxellensis and 40 CFU ml(-1) for ropy Pediococcus damnosus. The real-time PCR proved to be reliable for the early, sensitive detection and quantification of B. bruxellensis and ropy P. damnosus in wine. SIGNIFICANCE AND IMPACT OF THE STUDY: The real-time PCR-based method described in this study provides a new tool for monitoring spoilage micro-organisms in wine. Time-consuming culture and colony isolation steps are no longer needed, so winemakers can intervene before spoilage occurs.  相似文献   

13.
In this paper we describe the development of a PCR protocol to specifically detect Brettanomyces bruxellensis and B. anomalus. Primers DB90F and DB394R, targeting the D1-D2 loop of the 26S rRNA gene, were able to produce amplicons only when the DNA from these two species were used. No amplification product was obtained when DNA from other Brettanomyces spp. or wine yeasts were used as the templates. The 305-bp product was subjected to restriction enzyme analysis with DdeI to differentiate between B. bruxellensis and B. anomalus, and each species could be identified on the basis of the different restriction profiles. After optimization of the method by using strains from international collections, wine isolates were tested with the method proposed. Total agreement between traditional identification and molecular identification was observed. The protocol developed was also used for direct detection of B. bruxellensis and B. anomalus in wines suspected to be spoiled by Brettanomyces spp. Application of culture-based and molecular methods led us to the conclusion that 8 of 12 samples were spoiled by B. bruxellensis. Results based on the application of molecular methods suggested that two of the eight positive samples had been infected more recently, since specific signals were obtained at both the DNA and RNA levels.  相似文献   

14.
Aims:  Brettanomyces / Dekkera bruxellensis is a particularly troublesome wine spoilage yeast. This work was aimed at characterizing its behaviour in terms of growth and volatile compound production in red wine.
Methods and Results:  Sterile red wines were inoculated with 5 × 103 viable cells ml−1 of three B. bruxellensis strains and growth and volatile phenol production were followed for 1 month by means of plate counts and gas chromatography-mass spectrometry (GC-MS) respectively. Maximum population levels generally attained 106–107 colony forming units (CFU) ml−1 and volatile phenol concentrations ranged from 500 to 4000 μg l−1. Brettanomyces bruxellensis multiplication was also accompanied by the production of organic acids (from C2 to C10), short chain acid ethyl-esters and the 'mousy off-flavour' component 2-acetyl-tetrahydropyridine.
Conclusions:  Different kinds of 'Brett character' characterized by distinct metabolic and sensory profiles can arise in wine depending on the contaminating strain, wine pH and sugar content and the winemaking stage at which contamination occurs.
Significance and Impact of the Study:  We identified new chemical markers that indicate wine defects caused by B. bruxellensis. Further insight was provided into the role of some environmental conditions in promoting wine spoilage.  相似文献   

15.
AIMS: To test the possibility that wines available in the marketplace may contain culturable yeasts and to evaluate the 5.8S-ITS rDNA sequence analysis as adequate means for the identification of isolates. METHODS AND RESULTS: As a case study, typical Greek wines were surveyed. Sequence analysis of the 5.8S-ITS rDNA was tested for its robustness in species or strain identification. Sixteen isolates could be assigned into the species Brettanomyces bruxellensis, Saccharomyces cerevisiae and Rhodotorula pinicola, whereas four isolates could not be safely identified. B. bruxellensis was the dominant species present in house wines, while non-Saccharomyces sp. were viable in aged wines of high alcohol content. CONCLUSIONS: Yeast population depends on postfermentation procedures or storage conditions. Although 5.8S-ITS rDNA sequence analysis is generally a rapid method to identify wine yeast isolates at the species level, or even below that, it may not be sufficient for some genera. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report to show that commercial wines may possess diverse and potentially harmful yeast populations. The knowledge of yeasts able to reside in this niche environment is essential towards integrated quality assurance programmes. For selected species, the 5.8S-ITS rDNA sequence analysis is a rapid and accurate means.  相似文献   

16.
The electrical impedance of the culture medium shows complex changes during the growth and fermentation process of yeast, and this prevents its possible application for the monitoring of certain yeast activities. Clarification of the mechanism of such changes is thus essential for practical use. As a first step toward this aim, the impedance, yeast concentration, and pH of a batch culture medium were measured using special cells with two compartments and also the usual type of cell with one compartment. In the special cells, the yeast was cultured in one compartment only. Conducting ions and nonconducting substances diffused through an intermediate porous membrane sandwiched between the two compartments. The impedances of the two compartments were measured simultaneously by the four-electrode method. The main mechanism responsible for increasing the impedance was the conducting ions produced by the yeast extract added as a nutrient to the culture broth by certain nonconducting substances during the process of growth. The increase in the yeast concentration was also a minor factor increasing the impedance. These increases surpassed the impedance decrease caused by the increase of H(+) ions produced by some accumulated acidic substances, and the impedance thus increased.  相似文献   

17.
Batch fermentations of glucose to ethanol by Z. Mobilis.(ATCC 10988) were examined in several semidefined nutrient media. The measurement of acid produced by the microorganism was used to study its transient fermentation characteristics. Limitation of nitrogen source in the semidefined medium of Rogers and coworkers(2) was found to limit the growth of this microorganism in the late stages of batch fermentations, when the initial glucose concentration was 75 g/L and higher. The microorganism exhibits a preference for inorganic nitrogen over preformed organic nitrogen provided by yeast extract. The microbial growth occurs exponentially in the presence of ammonium sulfate and yeast extract. However, in the absence of ammonium sulfate, the growth occurs in a linear fashion. The "linear" growth phase is characterized by poor cell-mass yields, and during this phase, growth and ethanol production are decoupled. An improved semi-defined growth medium is established which supports better growth rate and cellular yield, without affecting the ethanol yield.  相似文献   

18.
The use of date juice as a substrate for lactic acid production was investigated. Various nitrogen sources were compared with yeast extract for efficient lactic acid production by Lactobacillus casei subsp. rhamnosus. Among different nitrogen sources added to date juice (yeast extract, ammonium sulfate, tryptic soy, urea, peptone, and casein hydrolysate), yeast extract was the most efficient. The effect of yeast extract could have been due to its B vitamin content. The addition of five B vitamins at less than 25 mg/l to date juice with any nitrogen source enhanced lactic acid production to some extent, except for date juice with yeast extract or urea or peptone. The most significant increase was obtained with ammonium sulfate. Half of the yeast extract content (10 g/l) in a supplemented date juice could be replaced by a mixture of B vitamins at less than 25 mg/l, and ammonium sulfate at 2.6 g/l with no significant decrease in lactic acid production.  相似文献   

19.
The kinetics of Bacillus thuringiensis growth and its assimilation of nutrient substances were studied under the conditions of batch cultivation in a complex medium containing yeast extract and in a chemically defined medium with amino acids. The growth of B. thuringiensis can be divided into five phases: exponential growth; decelerated growth; stationary phase when protein crystals are formed; stationary phase when spores are formed; lysis of sporangia releasing spores. The first phase may in turn be subdivided into three stages according to changes in the specific growth rate and substrate assimilation: a high specific growth rate and no glucose assimilation; an abrupt drop in mu and the beginning of intensive glucose assimilation from the medium; a new rise in the specific growth rate. As follows from the results of studying the kinetics of B. thuringiensis growth in a chemically defined medium, the above changes in the exponential growth phase are due to the fact that the culture assimilates yeast extract components in the complex medium or amino acids in the chemically defined medium during this phase, and then starts to assimilate glucose and ammonium in the following phases of growth.  相似文献   

20.
AIMS: The nutritional requirements for mycelial growth of Cordyceps sinensis in semi-synthetic liquid media were investigated. The results provide a basis for further physiological study and industrial fermentation of the fungus. METHODS AND RESULTS: Nutritional requirements, including 17 carbohydrates, 16 nitrogen compounds, nine vitamins, four macro-elements, four trace-elements and eight ratios of carbon to nitrogen, were studied for their effects on the mycelial growth in submerged cultures of C. sinensis by using one-factor-at-a-time and orthogonal matrix methods. Among these variables, sucrose, peptone, folic acid, calcium, zinc and a carbon to nitrogen ratio 12 : 1 were identified as the requirements for the optimum mycelial growth. The concentrations of sucrose, peptone and yeast extract were optimized and the effects of medium composition on mycelial growth were found to be in the order sucrose > yeast extract > peptone. The optimal concentration for mycelial growth was determined as 50 g l(-1) sucrose, 10 g l(-1) peptone and 3 g l(-1) yeast extract. CONCLUSIONS: Under optimal culture conditions, over 22 g l(-1) of mycelial biomass could be obtained after 40 days in submerged cultures. SIGNIFICANCE AND IMPACT OF THE STUDY: Cordyceps sinensis, one of the most valued medicinal fungi, is shown to grow in axenic culture. This is the first report on nutritional requirements and design of a simplified semi-synthetic medium for mycelial growth of this psychrophilic species, which grows slowly below 20 degrees C. The results of this study will facilitate research on mass production of the fungus under defined culture conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号