首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibition of the tumor-associated transmembrane carbonic anhydrase IX (CA IX) isozyme has been investigated with a series of aromatic and heterocyclic sulfonamides, including the six clinically used derivatives acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide and brinzolamide. Inhibition data for the physiologically relevant isozymes I and II (cytosolic forms) and IV (membrane-bound) were also provided for comparison. A very interesting and unusual inhibition profile against CA IX with these sulfonamides has been observed. Several nanomolar (K(I)-s in the range of 14-50 nM) CA IX inhibitors have been detected, both among the aromatic (such as orthanilamide, homosulfonilamide, 4-carboxy-benzenesulfonamide, 1-naphthalenesulfonamide and 1,3-benzenedisulfonamide derivatives) as well as the heterocylic (such as 1,3,4-thiadizole-2-sulfonamide, etc.) sulfonamides examined. Because CA IX is a highly active isozyme predominantly expressed in tumor tissues with poor prognosis of disease progression, this finding is very promising for the potential design of CA IX-specific inhibitors with applications as anti-tumor agents.  相似文献   

2.
A series of new compounds was obtained by reaction of aromatic/heterocyclic sulfonamides incorporating amino groups with N,N-diphenylcarbamoyl chloride and diphenylacetyl chloride. These sulfonamides were assayed for the inhibition of three carbonic anhydrase (CA, EC 4.2.1.1) isozymes: the cytosolic CA I and CA II, and the transmembrane, cancer-associated isozyme CA IX. Good inhibitors against all these isoforms were detected, and the inhibition profile of the newly investigated isozyme IX was observed to be different from that of the cytosolic isozymes, I and II. This may lead to the development of novel anticancer therapies based on the selective inhibition of CA IX.  相似文献   

3.
Polyfluorinated CAIs show very good inhibitory properties against different carbonic anhydrase (CA) isozymes, such as CA I, II, and IV, but such compounds have not been tested for their interaction with the transmembrane, tumor-associated isozyme CA IX. Thus, a series of such compounds has been obtained by attaching 2,3,5,6-tetrafluorobenzoyl- and 2,3,5,6-tetrafluorophenylsulfonyl- moieties to aromatic/heterocyclic sulfonamides possessing derivatizable amino moieties. Some of these compounds showed excellent CA IX inhibitory properties and also selectivity ratios favorable to CA IX over CA II, the other physiologically relevant isozyme with high affinity for sulfonamide inhibitors. The first subnanomolar and rather selective CA IX inhibitor has been discovered, as the 2,3,5,6-tetrafluorobenzoyl derivative of metanilamide showed an inhibition constant of 0.8 nM against hCA IX, and a selectivity ratio of 26.25 against CA IX over CA II. Several other low nanomolar CA IX inhibitors were detected among the new derivatives reported here. The reported derivatives constitute valuable candidates for the development of novel antitumor therapies based on the selective inhibition of tumor-associated CA isozymes.  相似文献   

4.
A series of new compounds was obtained by reaction of aromatic/heterocyclic sulfonamides incorporating amino groups with N,N-diphenylcarbamoyl chloride and diphenylacetyl chloride. These sulfonamides were assayed for the inhibition of three carbonic anhydrase (CA, EC 4.2.1.1) isozymes: the cytosolic CA I and CA II, and the transmembrane, cancer-associated isozyme CA IX. Good inhibitors against all these isoforms were detected, and the inhibition profile of the newly investigated isozyme IX was observed to be different from that of the cytosolic isozymes, I and II. This may lead to the development of novel anticancer therapies based on the selective inhibition of CA IX.  相似文献   

5.
Imine derivatives were obtained by condensation of sulfanilamide with substituted aromatic aldehydes. The Schiff bases were thereafter reduced with sodium borohydride, leading to the corresponding amines, derivatives of 4-sulfamoylphenyl-benzylamine. These sulfonamides were investigated as inhibitors of the human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms hCA I and II (cytosolic isozymes), as well as hCA IX and XII (transmembrane, tumor-associated enzymes). We noted that the compounds incorporating secondary amine moieties showed a better inhibitory activity against all CA isozymes compared to the corresponding Schiff bases. Low nanomolar CA II, IX and XII inhibitors were detected, whereas the activity against hCA I was less potent. The secondary amines incorporating sulfonamide or similar zinc-binding groups, poorly investigated chemotypes for designing metalloenzyme inhibitors, may offer interesting opportunities in the field due to the facile preparation and possibility to explore a vast chemical space.  相似文献   

6.
A series of sulfonamides incorporating 4-thioureido-benzolamide moieties have been prepared from aminobenzolamide and thiophosgene followed by the reaction of the thiocyanato intermediate with aliphatic/aromatic amines or hydrazines. The new derivatives have been investigated as inhibitors of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), and more precisely of the cytosolic isozymes hCA I and II, as well as the tumor-associated isozyme hCA IX (all of human origin). The new compounds showed excellent inhibitory properties against all three isozymes with inhibition constants in the range of 0.6-62 nM against hCA I, 0.5-1.7 nM against hCA II and 3.2-23 nM against hCA IX, respectively. These derivatives are interesting candidates for the development of novel therapies targeting hypoxic tumors.  相似文献   

7.
A series of phosphorylated aromatic/heterocyclic sulfonamides with the general formula ArSO2NHPO3H2 have been prepared by condensing ArSO2NH2 with phosphorus pentachloride, followed by controlled hydrolysis in the presence of formic acid. The new derivatives generally act as stronger inhibitors of two carbonic anhydrase (CA) isozymes, CA I and CA II, as compared to the parent unsubstituted sulfonamides from which they were obtained. The inhibition mechanism by this new class of CA inhibitors, as well as structure activity correlations for the series of investigated derivatives, are also discussed.  相似文献   

8.
A new series of thioureido-substituted sulfonamides were prepared by reacting 4-isothiocyanato- or 4-isothiocyanatoethyl-benzenesulfonamide with amines, hydrazines, or amino acids bearing moieties that can lead to an enhanced hydrosolubility, such as 2-dimethylamino-ethylamine, fluorine-containing aromatic amines/hydrazines, an aminodiol, heterocyclic polyamines (derivatives of morpholine and piperazine), 4-aminobenzoic acid, or natural amino acids (Gly, Cys, Asn, Arg, and Phe). The new compounds showed good inhibitory properties against three physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isozymes, with K(I)s in the range of 24-324 nM against the cytosolic isoform CA I, of 6-185 nM against the other cytosolic isozyme CA II, and of 1.5-144 nM against the transmembrane isozyme CA XII. Some of the new derivatives were also very effective in reducing elevated intraocular pressure in hypertensive rabbits as a glaucoma animal model. Considering that this is the first study in which potent CA II/CA XII inhibitors are designed and investigated in vivo, it may be assumed that the target isozymes of the antiglaucoma sulfonamides are indeed the cytosolic CA II and the transmembrane CA XII.  相似文献   

9.
A series of Schiff's bases was prepared by reaction of 3-formyl-chromone or 6-methyl-3-formyl-chromone with aromatic sulfonamides, such as sulfanilamide, homosulfanilamide, 4-aminoethyl-benzenesulfonamide, a pyrimidinyl-substituted sulfanilamide derivative, sulfaguanidine and 4-amino-6-trifluoromethyl-benzene-1,3-disulfonamide. The zinc complexes of these sulfonamides have also been obtained. The new derivatives and their Zn(II) complexes were investigated for the inhibition of four physiologically relevant isozymes of carbonic anhydrase (CA, EC 4.2.1.1): the cytosolic isoforms I and II, as well as the tumor-associated, transmembrane isozymes CA IX and XII. Except for the sulfaguanidine-derived compounds which were devoid of activity against all isozymes, the other sulfonamides and their metal complexes showed interesting inhibitory activity. Against isozyme CA I, the inhibition constants were in the range of 13-100 nM, against isozyme CA II in the range of 1.9-102 nM, against isozyme CA IX in the range of 6.3-48nM, and against CA XII in the range of 5.9-50nM. Generally, the formyl-chromone derived compounds were better CA inhibitors as compared to the corresponding 6-methyl-chromone derivatives, and for the simple, benzenesulfonamide derivatives activity increased with an increase of the spacer from sulfanilamide to homosulfanilamide and 4-aminoethylbenzenesulfonamide derivatives, respectively. Some of these compounds may show applications for the development of therapies targeting hypoxic tumors in which CA IX and XII are often highly overexpressed.  相似文献   

10.
A series of heterocyclic mercaptans incorporating 1,3,4-thiadiazole- and 1,2,4-triazole rings have been prepared and assayed for the inhibition of three physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isozymes, the cytosolic human isozymes I and II, and the transmembrane, tumor-associated hCA IX. Against hCA I the investigated thiols showed inhibition constants in the range of 97 nM to 548 microM, against hCA II in the range of 7.9-618 microM, and against hCA IX in the range of 9.3-772 microM. Thiadiazoles were generally more active than triazoles against all investigated isozymes. Generally, the best inhibitors were the simple derivative 5-amino-1,3,4-thiadiazole-2-thiol and its N-acetylated derivative, which were anyhow at least two orders of magnitude less effective inhibitors when compared to the corresponding sulfonamides, acetazolamide, and its deacetylated derivative. An exception was constituted by 5-(2-pyridylcarboxamido)-1,3,4-thiadiazole-2-thiol, which is the first hCA I-selective inhibitor ever reported, possessing an inhibition constant of 97 nM against isozyme I, and being a 105 times less effective hCA II inhibitor, and 3154 times less effective hCA IX inhibitor. Thus, the thiol moiety may lead to effective CA inhibitors targeting isozyme I, whereas it is a less effective zinc-binding function for the design of CA II and CA IX inhibitors over the sulfonamide group.  相似文献   

11.
Reaction of EDTA/DTPA dianhydride with aromatic/heterocyclic sulfonamides afforded a series of derivatives incorporating polyaminopolycarboxylate tails and benzenesulfonamide or 1,3,4-thiadiazole-2-sulfonamide heads. These compounds have been used as ligands to prepare Cu(II) complexes. Both parent sulfonamides as well as their copper complexes behaved as potent inhibitors of four carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic CA I and II, and transmembrane CA IX and XII. Some Cu(II) complexes showed subnanomolar affinities and some selectivity for the inhibition of the tumor-associated isoforms IX and XII and might be used as PET hypoxia markers of tumors.  相似文献   

12.
Carbonic anhydrase inhibitors: sulfonamides as antitumor agents?   总被引:6,自引:0,他引:6  
Novel sulfonamide inhibitors of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1) were prepared by reaction of aromatic or heterocyclic sulfonamides containing amino, imino, or hydrazino moieties with N,N-dialkyldithiocarbamates in the presence of oxidizing agents (sodium hypochlorite or iodine). The N,N-dialkylthiocarbamylsulfenamido-sulfonamides synthesized in this way behaved as strong inhibitors of human CA I and CA II (hCA I and hCA II) and bovine CA IV (bCA IV). For the most active compounds, inhibition constants ranged from 10(-8) to 10(-9) M (for isozymes II and IV). Three of the derivatives belonging to this new class of CA inhibitors were also tested as inhibitors of tumor cell growth in vitro. These sulfonamides showed potent inhibition of growth against several leukemia, non-small cell lung, ovarian, melanoma, colon, CNS, renal, prostate and breast cancer cell lines. With several cell lines. GI50 values of 10-75 nM were observed. The mechanism of antitumor action with the new sulfonamides reported here remains obscure, but may involve inhibition of CA isozymes which predominate in tumor cell membranes (CA IX and CA XII), perhaps causing acidification of the intercellular milieu, or inhibition of intracellular isozymes which provide bicarbonate for the synthesis of nucleotides and other essential cell components (CA II and CA V). Optimization of these derivatives from the SAR point of view, might lead to the development of effective novel types of anticancer agents.  相似文献   

13.
The tumor-associated transmembrane carbonic anhydrase (CA, EC 4.2.1.1) isozymes IX (CA IX) and XII (CA XII) are involved in acidification of hypoxic tumors, a process correlated with poor prognosis and clinical outcome of patients harboring such tumors. This process may be reversed by inhibiting these enzymes with potent sulfonamide/sulfamate inhibitors. A series of such aromatic/heterocyclic sulfonamides incorporating 2,3,5,6-tetrafluorobenzoyl-, 2,3,5,6-tetrafluoro- phenylsulfonyl- and pentafluorophenylureido moieties has been investigated for its interaction with the catalytic domain of the human isozymes hCA IX and hCA XII. Some of these compounds showed excellent inhibitory properties against both isozymes IX and XII, with several subnanomolar inhibitors detected for the first time. These sulfonamides may constitute valuable candidates for the development of novel antitumor therapies based on the inhibition of such tumor-associated CA isozymes.  相似文献   

14.
The tumor-associated transmembrane carbonic anhydrase (CA, EC 4.2.1.1) isozymes IX (CA IX) and XII (CA XII) are involved in acidification of hypoxic tumors, a process correlated with poor prognosis and clinical outcome of patients harboring such tumors. This process may be reversed by inhibiting these enzymes with potent sulfonamide/sulfamate inhibitors. A series of such aromatic/heterocyclic sulfonamides incorporating 2,3,5,6-tetrafluorobenzoyl-, 2,3,5,6-tetrafluorophenylsulfonyl- and pentafluorophenylureido moieties has been investigated for its interaction with the catalytic domain of the human isozymes hCA IX and hCA XII. Some of these compounds showed excellent inhibitory properties against both isozymes IX and XII, with several subnanomolar inhibitors detected for the first time. These sulfonamides may constitute valuable candidates for the development of novel antitumor therapies based on the inhibition of such tumor-associated CA isozymes.  相似文献   

15.
A library of boron-containing carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, including sulfonamides, sulfamides, and sulfamates is reported. The new compounds have been synthesized by derivatization reactions of 4-carboxy-/amino-/hydroxy-phenylboronic acid pinacol esters with amino/isothiocyanato-substituted aromatic/heteroaromatic sulfonamides or by sulfamoylation reactions with sulfamoyl chloride. The new derivatives have been assayed for the inhibition of three physiologically relevant CA isozymes, the cytosolic CA I and II, and the transmembrane, tumor-associated isozyme CA IX. Effective inhibitors were detected both among sulfonamides, sulfamates, and sulfamides. Against the human isozyme hCA I the new compounds showed inhibition constants in the range of 34-94nM, against hCA II in the range of 3.1-48nM, and against hCA IX in the range of 7.3-89nM, respectively. As hypoxic tumors highly overexpress CA IX, the design of boron-containing inhibitors with high affinity for the tumor-associated CA isozymes may lead to important advances in boron neutron capture therapy (BNCT) applications targeting such tumors, which are non-responsive to both classical chemo- and radiotherapy.  相似文献   

16.
The tumor-associated transmembrane carbonic anhydrase (CA, EC 4.2.1.1) isozyme IX (CA IX) is overexpressed in hypoxic tumors and appears to be involved in acidification of the tumor microenvironment, a process correlated with cancer progression and bad prognosis. The acidification may be reduced by inhibiting the enzyme with potent sulfonamide/sulfamate CA inhibitors. A series of such aromatic sulfonamides incorporating thioureido-sulfanilyl moieties has been prepared and investigated for its interaction with the catalytic domain of the human isozyme hCA IX. The key intermediates in the synthesis were obtained by reacting sulfanilamide, homosulfanilamide, or 4-aminoethylbenzenesulfonamide with 4-acetamido-benzenesulfonyl chloride followed by deacetylation and reaction with thiophosgene. The obtained isothiocyanato sulfonamides were reacted with aliphatic or aromatic primary amines or hydrazines, leading to the corresponding thioureas. Some of these compounds showed excellent inhibitory properties against isozymes I, II, and IX, with several inhibitors also presenting selectivity for the inhibition of CA IX over that of the ubiquitous isozyme CA II. Such sulfonamides may constitute interesting candidates for the development of novel antitumor therapies based on the inhibition of the CA isozymes overexpressed in hypoxic tumors. Due to the highest expression of CA IX in clear renal cell carcinoma and its chemo/radioresistance, our efforts are first of all directed to generate effective therapeutic strategies for the cure of this malignancy.  相似文献   

17.
The inhibition of the tumor-associated transmembrane carbonic anhydrase IX (CA IX) isozyme possessing an extracellular active site has been investigated with a series of positively-charged, pyridinium derivatives of sulfanilamide, homosulfanilamide and 4-aminoethylbenzenesulfonamide. Inhibition data for the physiologically relevant isozymes I and II (cytosolic forms) and IV (membrane-bound) were also provided for comparison. A very interesting inhibition profile against CA IX with these sulfonamides has been observed. Several nanomolar (K(i)'s in the range of 6-54 nM) CA IX inhibitors have also been detected. Because CA IX is a highly active isozyme predominantly expressed in tumor tissues with bad prognosis of disease progression, this finding is very promising for the potential design of CA IX-specific inhibitors with applications as anti-tumor agents. This is the first report of inhibitors that may selectively target CA IX, due to their membrane-impermeability and high affinity for this clinically relevant isozyme.  相似文献   

18.
A new series of aromatic benzenesulfonamides incorporating 1,3,5-triazine moieties in their molecules is reported. This series was obtained by reaction of cyanuric chloride with sulfanilamide, homosulfanilamide or 4-aminoethylbenzenesulfonamide. The prepared dichlorotriazinyl-benzenesulfonamides were subsequently derivatized by reacting them with various nucleophiles, such as ammonia, hydrazine, primary and secondary amines, amino acid derivatives or phenol. The library of sulfonamides incorporating triazinyl moieties was tested for the inhibition of three physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isozymes, the cytosolic hCA I and II, and the transmembrane, tumour-associated hCA IX. The new compounds inhibited hCA I with inhibition constants in the range of 31-8500 nM, hCA II with inhibition constants in the range of 14-765 nM and hCA IX with inhibition constants in the range of 1.0-640 nM. Structure-activity relationship was straightforward and rather simple in this class of CA inhibitors, with the compounds incorporating compact moieties at the triazine ring (such as amino, hydrazino, ethylamino, dimethylamino or amino acyl) being the most active ones, and the derivatives incorporating such bulky moieties (n-propyl, n-butyl, diethylaminoethyl, piperazinylethyl, pyridoxal amine or phenoxy) being less effective hCA I, II and IX inhibitors. Some of the new derivatives also showed selectivity for inhibition of hCA IX over hCA II (selectivity ratios of 23.33-32.00), thus constituting excellent leads for the development of novel approaches for the management of hypoxic tumours.  相似文献   

19.
Abstract

Reaction of twenty aromatic/heterocyclic sulfonamides containing a free amino, imino, hydra-zino or hydroxyl group, with tosyl isocyanate or 3,4-dichlorophenyl isocyanate afforded two series of derivatives containing arylsulfonylureido or diarylureido moieties in their molecule respectively. The new derivatives were assayed as inhibitors of three carbonic anhydrase (CA) isozymes, CA I, II (cytosolic forms) and IV (membrane-bound form). Potent inhibition was observed against all three isozymes but especially against CA I, which is generally 10-75 times less susceptible to inhibition by the classical sulfonamides in clinical use as compared to the other major red cell isozyme, CA II, or the membrane-bound one, CA IV. The derivatives obtained from tosyl isocyanate were generally more potent than the corresponding ones obtained from 3,4-dichlorophenyl isocyanate. This is the first reported example of selective inhibition of CA I and might lead to more selective drugs/diagnostic agents from this class of pharmacologically relevant compounds.  相似文献   

20.
An inhibition study of the human cytosolic isozymes I, and II, the mitochondrial isoform VA, and the tumor-associated, transmembrane isozyme IX of carbonic anhydrase (CA, EC 4.2.1.1) with a library of aromatic/heteroaromatic/polycyclic difluoromethanesulfonamides is reported. Most of the inhibitors were derivatives of benzenedifluoromethanesulfonamide incorporating substituted-phenyl moieties, or were methylsulfonamide and difluoromethyl-sulfonamide derivatives of the sulfamates COUMATE and EMATE, respectively. Except for the methylsulfonamide-COUMATE derivative which behaved as a potent CA II inhibitor (K(I) of 32nM), these sulfonamides were moderate inhibitors of all isozymes, with inhibition constants in the range of 96-5200nM against hCA I, of 80-670nM against hCA II, and of 195-9280nM against hCA IX, respectively. Remarkably, some derivatives, such as 3-bromophenyl-difluoromethanesulfonamide, showed a trend to selectively inhibit the mitochondrial isoform CA VA, showing selectivity ratios for inhibiting CA VA over CA II of 3.53; over CA I of 6.84 and over CA IX of 9.34, respectively, although it is a moderate inhibitor (K(I) of 160nM). Some of these derivatives may be considered as leads for the design of isozyme selective CA inhibitors targeting the mitochondrial isozyme CA VA, with potential use as anti-obesity agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号