首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary 3-Chlorobenzoate grown cells of Pseudomonas sp. strain B13 or Alcaligenes sp. strain A7-2 converted 3-fluorobenzoate to 2-fluoro-cis,cis-muconate with 87% yield. The latter strain produced 1.6 g/l. The type II muconate cycloisomerases of neither strain exhibit acitivity for 2-fluoro-cis,cis-muconate. Succinate grown cells of Pseudomonas sp. strain B13 converted benzoate to cis,cis-muconate (91% yield; 7.4 g/l). Enzyme tests confirmed that no muconate cycloisomerising enzyme was induced within 24 h.  相似文献   

3.
1. An enzyme for the cycloisomerization of 2- and 3-chloro-cis,cis-muconic acid was isolated from 3-chlorobenzoate-grown cells of Pseudomonas sp. B13. It was named muconate cycloisomerase II, because it could it clearly be differentiated by its Km and Vmax. values from an ordinary muconate cycloisomerase, which functioned in benzoate catabolism and exhibited low activity with the chlorinated substrates. 2-Chloro-cis,cis-muconic acid was converted into trans- and 3-chloro-cis,cis--muconic acid into cis-4-carboxymethylenebut-2-en-4-olide together with dehalogenation. 2. An enzyme was isolated from chlorobenzoate-grown cells, which converted the 4-carboxymethylenebut-2-en-4-olides into maleoylacetic acid.  相似文献   

4.
5.
Several mutant strains of Pseudomonas putida, selected on the basis of their inability to grow at the expense of benzoate, have been shown to be unable to form inducibly both muconate lactonizing enzyme and muconolactone isomerase. A secondary mutant strain derived from one of these pleiotropically negative strains forms these two enzymes and, in addition, catechol oxygenase in the absence of inducer. This constitutive mutant strain was used as a donor in transductionally mediated two-point crosses to determine the order of point mutations within the structural genes for muconate lactonizing enzyme and muconolactone isomerase (the catB and catC genes, respectively). The gene order conformed precisely with the one that has been established by deletion mapping.  相似文献   

6.
Abstract m - and p -trifluoromethyl (TFM)-benzoates are completely degraded by aerobic bacteria that catabolize alkylbenzoates; biodegradation ceases after ring-fission with the accumulation of a trifluoromethyl muconate semialdehyde (2-hydroxy-6-oxo-7,7,7-trifluorohepta-2,4-dienoate, TFHOD) which is resistant to biochemical attack. A bacterium (Strain V-1), isolated from sea-water, grew aerobically on benzoate or m -toluate. Cells grown on benzoate or m -toluate oxidized both compounds at similar relative rates. Catabolism involved benzoate 1,2-dioxygenase (decarboxylating) and meta -cleavage to yield muconate semialdehydes. Cells grown on benzoate metabolized m -TFM-benzoate to TFHOD. The ring-fission products from m -toluate and TFHOD were degraded by sunlight, and equimolar fluoride was released from TFHOD. Sequential biochemical and photochemical treatment allowed the destruction of m -TFM-benzoate beyond the biochemically recalcitrant intermediate TFHOD.  相似文献   

7.
Evidence is presented for the existence in Pseudomonas putida of two NAD-linked dehydrogenases that function sequentially to oxidize benzyl alcohol. Induction of muconate lactonizing enzyme, a 3-oxoadipate pathway enzyme, indicated that P. putida oxidized benzyl alcohol to benzoate. Polyacrylamide gel electrophoresis with activity staining and enzymatic assays for an NAD-dependent dehydrogenase both showed that cells contained a single, constitutive alcohol dehydrogenase capable of oxidizing benzyl alcohol. This enzyme was shown to have the same specificity in extracts of glucose-grown as in benzy alcoholgrown cells. An NAD-aldehyde dehydrogenase oxidized benzaldehyde but was most active with normal alkyl aldehydes. This aldehyde dehydrogenase was shown to be induced, by enzymatic assays and by activity staining of polyacrylamide gel electropherograms, not only in cells grown on benzyl alcohol, but also in cells grown on ethanol. These experiments suggested that the aldehyde dehydrogenase was induced by the alcohol being oxidized rather than the substrate aldehyde.In sum, the evidence from enzyme assays and polyacrylamide gel electrophoresis of extracts indicates that Pseudomonas putida catabolizes benzyl alcohol slowly when it is the sole carbon and energy source, by the action of a constitutive, nonspecific, alcohol dehydrogenase and an alcohol-induced, nonspecific aldehyde dehydrogenase to yield benzoate, which is further metabolized via the 3-oxoadipate (beta-ketoadipate) pathway.In memory of R. Y. Stanier  相似文献   

8.
Benzyl alcohol, benzaldehyde, benzoate, and anthranilate are metabolized via catechol, cis,cis-muconate, and the beta-ketoadipate pathway in Acinetobacter calcoaceticus ADP1 (BD413). Mutant strain ISA25 with a deletion spanning catBCIJF and unable to metabolize muconate further will not grow in the presence of an aromatic precursor of muconate. Growth on fumarate as the sole carbon source with added benzyl alcohol or benzaldehyde selected spontaneous mutants of ISA25. After repair of the cat deletion by natural transformation with linearized plasmid pPAN4 (catBCIJF) 10 mutants were unable to grow on benzoate of cis,cis-muconate but could still grow on anthranilate. Transformation with wild-type chromosomal DNA demonstrated the presence of two unlinked mutations in each strain, one in the benABCD region, encoding the conversion of benzoate to catechol, and the other in a gene determining the ability to grow on exogenous cis,cis-muconate. The wild-type gene, named mucK, was cloned into pUC18, and its nucleotide sequence was determined. It encodes a 413-residue protein of M(r) = 45,252 which is a member of a superfamily of membrane transport proteins and which is within a subgroup involved in the uptake of organic acids. Five of the mutant alleles were cloned, and the mutations were determined by nucleotide sequencing. All the mutations were in the mucK coding region and consisted of three deletions, one duplication, and a substitution. Insertional inactivation of mucK resulted in the loss of the ability to utilize exogenous muconate. The location of mucK on the chromosome appeared to be unique for genes associated with the benzoate branch of the beta-ketoadipate pathway in being close to the pca-qui-pob gene cluster (for p-hydroxybenzoate utilization) and distant from the functionally related ben-cat cluster. Downstream of mucK and transcribed in the same direction is an open reading frame encoding a protein of 570 residues (M(r) = 63,002) which shows considerable homology with a mammalian electron transport protein; its insertional inactivation had no detectable phenotypic effect.  相似文献   

9.
Degradation of para-toluate by Rhodococcus opacus 1cp was investigated. Activities of the key enzymes of this process, catechol 1,2-dioxygenase and muconate cycloisomerase, are detected in this microorganism. Growth on p-toluate was accompanied by induction of two catechol 1,2-dioxygenases. The substrate specificity and physicochemical properties of one enzyme are identical to those of chlorocatechol 1,2-dioxygenase; induction of the latter enzyme was observed during R. opacus 1cp growth on 4-chlorophenol. The other enzyme isolated from the biomass grown on p-toluate exhibited lower rate of chlorinated substrate cleavage compared to the catechol substrate. However, this enzyme is not identical to the catechol 1,2-dioxygenase cloned in this strain within the benzoate catabolism operon. This supports the hypothesis on the existence of multiple forms of dioxygenases as adaptive reactions of microorganisms in response to environmental stress.  相似文献   

10.
Pseudomonas sp. WR912 was isolated by continuous enrichment in three steps with 3-chloro-, 4-chloro-, and finally 3,5-dichlorobenzoate as sole source of carbon and energy. The doubling times of the pure culture with these growth substrates were 2.6, 3.3, and 5.2 h, respectively. Stoichiometric amounts of chloride were eliminated during growth. Oxygen uptake rates with chlorinated benzoates revealed low stereospecificity of the initial benzoate 1,2-dioxygenation. Dihydrodi-hydroxybenzoate dehydrogenase, catechol 1,2-dixoygenase, and muconate cycloisomerase activities were found in cell-free extracts. The ortho cleavage activity for catechols appeared to involve induction of isoenzymes with different stereospecificity towards chlorocatechols. A catabolic pathway for chlorocatechols was proposed on the basis of similarity to chlorophenoxyacetate catabolism, and cometabolism of 3,5-dimethylbenzoate by chlorobenzoate-induced cells yielded 2,5-dihydro-2,4-dimethyl-5-oxo-furan-2-acetic acid.  相似文献   

11.
Pseudomonas sp. WR912 was isolated by continuous enrichment in three steps with 3-chloro-, 4-chloro-, and finally 3,5-dichlorobenzoate as sole source of carbon and energy. The doubling times of the pure culture with these growth substrates were 2.6, 3.3, and 5.2 h, respectively. Stoichiometric amounts of chloride were eliminated during growth. Oxygen uptake rates with chlorinated benzoates revealed low stereospecificity of the initial benzoate 1,2-dioxygenation. Dihydrodi-hydroxybenzoate dehydrogenase, catechol 1,2-dixoygenase, and muconate cycloisomerase activities were found in cell-free extracts. The ortho cleavage activity for catechols appeared to involve induction of isoenzymes with different stereospecificity towards chlorocatechols. A catabolic pathway for chlorocatechols was proposed on the basis of similarity to chlorophenoxyacetate catabolism, and cometabolism of 3,5-dimethylbenzoate by chlorobenzoate-induced cells yielded 2,5-dihydro-2,4-dimethyl-5-oxo-furan-2-acetic acid.  相似文献   

12.
Muconate cycloisomerase (EC 5.5.1.1) and chloromuconate cycloisomerase (EC 5.5.1.7) were purified from extracts of Rhodococcus erythropolis 1CP cells grown with benzoate or 4-chlorophenol, respectively. Both enzymes discriminated between the two possible directions of 2-chloro-cis, cis-muconate cycloisomerization and converted this substrate to 5-chloromuconolactone as the only product. In contrast to chloromuconate cycloisomerases of gram-negative bacteria, the corresponding R. erythropolis enzyme is unable to catalyze elimination of chloride from (+)-5-chloromuconolactone. Moreover, in being unable to convert (+)-2-chloromuconolactone, the two cycloisomerases of R. erythropolis 1CP differ significantly from the known muconate and chloromuconate cycloisomerases of gram-negative strains. The catalytic properties indicate that efficient cycloisomerization of 3-chloro- and 2,4-dichloro-cis,cis-muconate might have evolved independently among gram-positive and gram-negative bacteria.  相似文献   

13.
The conversion of 2-chloro-cis,cis-muconate by muconate cycloisomerase from Pseudomonas putida PRS2000 yielded two products which by nuclear magnetic resonance spectroscopy were identified as 2-chloro- and 5-chloromuconolactone. High-pressure liquid chromatography analyses showed the same compounds to be formed also by muconate cycloisomerases from Acinetobacter calcoaceticus ADP1 and Pseudomonas sp. strain B13. During 2-chloro-cis,cis-muconate turnover by the enzyme from P. putida, 2-chloromuconolactone initially was the major product. After prolonged incubation, however, 5-chloromuconolactone dominated in the resulting equilibrium. In contrast to previous assumptions, both chloromuconolactones were found to be stable at physiological pH. Since the chloromuconate cycloisomerases of Pseudomonas sp. strain B13 and Alcaligenes eutrophus JMP134 have been shown previously to produce the trans-dienelactone (trans-4-carboxymethylene-but-2-en-4-olide) from 2-chloro-cis,cis-muconate, they must have evolved the capability to cleave the carbon-chlorine bond during their divergence from normal muconate cycloisomerases.  相似文献   

14.
Pseudomonas sp. strain MT1 is capable of degrading 4- and 5-chlorosalicylates via 4-chlorocatechol, 3-chloromuconate, and maleylacetate by a novel pathway. 3-Chloromuconate is transformed by muconate cycloisomerase of MT1 into protoanemonin, a dominant reaction product, as previously shown for other muconate cycloisomerases. However, kinetic data indicate that the muconate cycloisomerase of MT1 is specialized for 3-chloromuconate conversion and is not able to form cis-dienelactone. Protoanemonin is obviously a dead-end product of the pathway. A trans-dienelactone hydrolase (trans-DLH) was induced during growth on chlorosalicylates. Even though the purified enzyme did not act on either 3-chloromuconate or protoanemonin, the presence of muconate cylcoisomerase and trans-DLH together resulted in considerably lower protoanemonin concentrations but larger amounts of maleylacetate formed from 3-chloromuconate than the presence of muconate cycloisomerase alone resulted in. As trans-DLH also acts on 4-fluoromuconolactone, forming maleylacetate, we suggest that this enzyme acts on 4-chloromuconolactone as an intermediate in the muconate cycloisomerase-catalyzed transformation of 3-chloromuconate, thus preventing protoanemonin formation and favoring maleylacetate formation. The maleylacetate formed in this way is reduced by maleylacetate reductase. Chlorosalicylate degradation in MT1 thus occurs by a new pathway consisting of a patchwork of reactions catalyzed by enzymes from the 3-oxoadipate pathway (catechol 1,2-dioxygenase, muconate cycloisomerase) and the chlorocatechol pathway (maleylacetate reductase) and a trans-DLH.  相似文献   

15.
A soluble benzoate-coenzyme A (CoA) ligase was purified from the phototrophic bacterium Rhodopseudomonas palustris. Synthesis of the enzyme was induced when cells were grown anaerobically in light with benzoate as the sole carbon source. Purification by chromatography successively on hydroxylapatite, phenyl-Sepharose, and hydroxylapatite yielded an electrophoretically homogeneous enzyme preparation with a specific activity of 25 mumol/min per mg of protein and a molecular weight of 60,000. The purified enzyme was insensitive to oxygen and catalyzed the Mg2+ ATP-dependent formation of acyl-CoA from carboxylate and free reduced CoA, with high specificity for benzoate and 2-fluorobenzoate. Apparent Km values of 0.6 to 2 microM for benzoate, 2 to 3 microM for ATP, and 90 to 120 microM for reduced CoA were determined. The reaction product, benzoyl-CoA, was an effective inhibitor of the ligase reaction. The kinetic properties of the enzyme match the kinetics of substrate uptake by whole cells and confirm a role for benzoate-CoA ligase in maintaining entry of benzoate into cells as well as in catalyzing the first step in the anaerobic degradation of benzoate by R. palustris.  相似文献   

16.
Crystal structure of muconate lactonizing enzyme at 3 A resolution   总被引:7,自引:0,他引:7  
The crystal structure of muconate lactonizing enzyme has been solved at 3 A resolution, and an unambiguous alpha-carbon backbone chain trace made. The enzyme contains three domains; the central domain is a parallel-stranded alpha-beta barrel, which has previously been reported in six other enzymes, including triose phosphate isomerase and pyruvate kinase. One novel feature of this enzyme is that its alpha-beta barrel has only seven parallel alpha-helices around the central core of eight parallel beta-strands; all other known alpha-beta barrels contain eight such helices. The N-terminal (alpha + beta) and C-terminal domains cover the cleft where the eighth helix would be. The active site of muconate lactonizing enzyme has been found by locating the manganese ion that is essential for catalytic activity, and by binding and locating an inhibitor, alpha-ketoglutarate. The active site lies in a cleft between the N-terminal and barrel domains; when the active sites of muconate lactonizing enzyme and triose phosphate isomerase are superimposed, barrel-strand 1 of triose phosphate isomerase is aligned with barrel-strand 3 of muconate lactonizing enzyme. This implies that structurally homologous active-site residues in the two enzymes are carried on different parts of the primary sequence; the ancestral gene would had to have been transposed during its evolution to the modern proteins, which seems unlikely. Therefore, these two enzymes may be related by convergent, rather than divergent, evolution.  相似文献   

17.
The first step of anaerobic benzoate degradation is the formation of benzoyl-coenzyme A by benzoate-coenzyme A ligase. This enzyme, purified from Rhodopseudomonas palustris, is maximally active with 5 microM benzoate. To study the molecular basis for this reaction, the benzoate-coenzyme A ligase gene (badA) was cloned and sequenced. The deduced amino acid sequence of badA showed substantial similarity to other coenzyme A ligases, with the highest degree of similarity being that to 4-hydroxybenzoate-coenzyme A ligase (50% amino acid identity) from R. palustris. A badA mutant that was constructed had barely detectable levels of ligase activity when cell extracts were assayed at 10 microM benzoate. Despite this, the mutant grew at wild-type rates on benzoate under laboratory culture conditions (3 mM benzoate), and mutant cell extracts had high levels of ligase activity when assayed at a high concentration of benzoate (1 mM). This suggested that R. palustris expresses, in addition to BadA, a benzoate-activating enzyme(s) with a relatively low affinity for benzoate. A possible role of 4-hydroxybenzoate-coenzyme A ligase (encoded by hbaA) in this capacity was investigated by constructing a badA hbaA double mutant. Although the double mutant grew more slowly on benzoate than badA cells, growth rates were still significant, suggesting the involvement of a third enzyme in benzoate activation. Competition experiments involving the addition of a small amount of cyclohexanecarboxylate to ligase assay mixtures implicated cyclohexanecarboxylate-coenzyme A ligase as being this third enzyme. These results show that wild-type R. palustris cells synthesize at least three enzymes that can catalyze the initial step in anaerobic benzoate degradation during growth on benzoate. This observation supports previous suggestions that benzoyl-coenzyme A formation plays a central role in anaerobic aromatic compound biodegradation.  相似文献   

18.
Enzymatic conversion of 4-fluorocatechol in the simultaneous presence of partially purified preparations of catechol 1,2-dioxygenase from Pseudomonas cepacia and muconate cycloisomerase from Alcaligenes eutrophus 335 yielded a product that was unambiguously identified as (+)-4-fluoromuconolactone [(+)-4-carboxymethyl-4-fluoro-but-2-en-4-olide]. This compound was shown to be the only major product formed from 3-fluoro-cis,cis-muconate by the action of muconate cycloisomerases from A. eutrophus 335, A. eutrophus JMP134, and P. cepacia as well as by the action of dichloromuconate cycloisomerase from A. eutrophus JMP134. This finding implies that dichloromuconate cycloisomerase, like the muconate cycloisomerases, catalyzes primarily a cycloisomerization reaction, which only in the case of chloro- and bromo-substituted substrates is connected to a dehalogenation. 4-Fluoromuconolactone at pH 7 decomposes by spontaneous reactions mainly to maleylacetate, which then decarboxylates to give cis-acetylacrylate. Although significant amounts of an unidentified compound are also formed from the fluorolactone, HF elimination to the two isomeric dienelactones (4-carboxymethylenebut-2-en-4-olides) is negligible. However, all spontaneous reactions proceed so slowly that an enzymatic conversion of 4-fluoromuconolactone must be assumed. Participation of dienelactone hydrolases in this reaction is indicated by their induction during growth of various strains with 4-fluorobenzoate. However, experiments with cell extracts of P. putida A3.12 suggest that at least one other hydrolytic enzyme is able to contribute to 4-fluoromuconolactone conversion. In light of these observations, earlier proposals for a 4-fluorobenzoate degradative pathway are discussed.  相似文献   

19.
Alcaligenes eutrophus CH34 used benzoate as a sole source of carbon and energy, degrading it through the 3-oxoadipate pathway. All the enzymes required for this degradation were shown to be encoded by chromosomal genes. Catechol 1,2-dioxygenase activity was induced by benzoate, catechol, 4-chlorocatechol, and muconate. The enzyme is most likely a homodimer, with an apparent molecular weight of 76,000 ± 500. According to several criteria, its properties are intermediate between those of catechol 1,2-dioxygenases (CatA) and chlorocatechol 1,2-dioxygenases (ClcA). The determined K m for catechol is the lowest among known catechol and chlorocatechol dioxygenases. Similar K m values were found for para-substituted catechols, although the catalytic constants were much lower. The catechol 1,2-dioxygenase from strain CH34 is unique in its property to transform tetrachlorocatechol; however, excess substrate led to a marked reversible inhibition. Some meta- and multi-substituted catechols behaved similarly. The determined K m (or K i) values for para- or meta-substituted catechols suggest that the presence of an electron-withdrawing substituent at one of these positions results in a higher affinity of the enzyme for the ligand. Results of studies of recognition by the enzyme of various nonmetabolised aromatic compounds are also discussed. Received: 20 November 1996 / Accepted: 11 April 1996  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号