首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 153 毫秒
1.
Abstract

The phosphorylation of thymidine-5′-monophosphate (dTMP) by chick embryo liver thymidylate kinase (Km (dTMP) =1.2 μM) was inhibited by the 5′-monophosphate derivatives of 5-bromo-2′-deoxyuridine (5-Br-dUMP), 5-iodo-2′-deoxyuridine (5-I-dUMP), 2′,3′-dideoxythymidine (ddTMP), 3′-azido-3′-deoxythymidine (AZT-MP) and the methylene phosphonate analogue of AZT-MP with IC50 values of 8, 24, 14, 5 and 6 μM respectively. 5-Fluoro-2′-deoxyuridine (5-F-dUMP) and dUMP were poor inhibitors (IC50 values > 300 μM). 5-Br-dUMP and 5-I-dUMP were found to be significant substrates of thymidylate kinase with phosphorylation efficiencies (Vmax/Km) of 26 and 6% of that of dTMP, respectively. In contrast, AZT-MP and ddTMP were poor substrates, being phosphorylated 800-fold less efficiently than dTMP. Thymidylate kinase was also significantly inhibited by thymidine and AZT. Our data give a better insight into the topology of the dTMP binding site of this enzyme and show that the 3′-hydroxyl group of dTMP plays a critical role in catalysis.  相似文献   

2.
Plasmodium falciparum thymidylate kinase (PfTMPK) shows a broad range of substrate tolerance when compared to the corresponding human enzyme. Besides 2′-deoxythymidine monophosphate (dTMP), PfTMPK can phosphorylate 3′-azido-2′,3′-dideoxythymidine monophosphate (AZTMP) very efficiently. In contrast, human thymidylate kinase (hTMPK) is 200 times less active towards AZTMP. We were interested to see if we could use PfTMPK to activate 3′-azido-2′,3′-deoxythymidine (AZT) derivatives as a strategy to treat malaria. P. falciparum lacks a pyrimidine nucleoside kinase which usually activates nucleoside and nucleoside analogues to the corresponding monophosphates. Therefore, several prodrug analogues of AZT and related nucleoside monophosphates were prepared and analysed for antiparasitic activity. The prodrugs showed an increase in activity over the parent nucleoside analogues, which showed no inhibition of parasite growth at the concentration tested. The evidence here reported provides a strategy that could be exploited for further anti-malarial design.  相似文献   

3.
Polyamines (putrescine, spermidine and spermine) cause a marked increase in the activity of the loach Misgurnus fossilis DNA polymerase α on activated (gapped) DNA. The stimulatory effect increases in the order: putrescine, spermidine, spermine. Kinetic analysis shows that spermine does not change the affinity of the polymerase for dTTP, but it decreases the enzyme affinity for DNA. The apparent Km of the polymerase for activated DNA progressively increases from 14 to 1200 μM (nucleotide), if the concentration of spermine rises up to 2 mM, while Vmax reaches a maximum at 0.5 mM spermine and then drops at higher polyamine concentrations. Native calf thymus DNA and especially single-stranded DNA from phage M13 appear to be inhibitors of α-polymerase activity on gapped DNA. Dixon plots suggest simple competitive inhibition of the polymerase activity by single- or double-stranded DNA and absence of cooperativity in the interaction of the polymerase with DNA. Hill-plot analysis is compatible with the interpretation that there is only one DNA binding site on each DNA polymerase α molecule. Spermine, even at low concentrations, decreases sharply the affinity of the enzyme for double-stranded DNA, while the enzyme affinity for single-stranded DNA changes insignificantly. Another result of spermine action is the destabilization of the polymerase-DNA complex. The ratio of the ‘static affinity’ of the enzyme to its ‘kinetic affinity’ decreases 2.2-fold in the presence of 0.5 mM spermine. As a result, the sensitivity of DNA synthesis to 3′-deoxy-3′-aminothymidine 5′-triphosphate and to 1-β-d-arabinofuranosylcytidine 5′-triphosphate decreases in the presence of the polyamine. Both spermine effects, the decrease in the ‘nonproductive binding’ of the polymerase to double-stranded regions in DNA and the destabilization of the polymerase-DNA complex, presumably account for the increase in the activity of the loach α-polymerase on activated DNA.  相似文献   

4.

Since the discovery of 3′-azido-3′-deoxythymidine (AZT) and 2′,3′-didehydro-2′,3′-dideoxythymidine (d4T) as potent and selective inhibitors of the replication of human immunodeficiency virus (HIV), there has been a growing interest for the synthesis of 2′,3′-didehydro-2′,3′-dideoxynucleosides with electron withdrawing groups on the sugar moiety. Here we described an efficient method for the synthesis of such nucleoside analogs bearing structural features of both AZT and d4T. The key intermediate, 3-azido-1,2-bis-O-acetyl-5-O-benzoyl-3-deoxy-D-ribofuranose, 5 was synthesized from commercially available D-xylose in five steps, from which a series of pyrimidine and purine nucleosides were synthesized in high yields. The resultant protected nucleosides were converted to target nucleosides using appropriate chemical modifications. The final nucleosides were evaluated as potential anti-HIV agents.  相似文献   

5.
Abstract

Starting from 2′,3′,5′-tri-O-acetyl-2-iodoadenosine, 9-(β-D-arabinofuranosyl)-2-(p-n-butylanilino)adenine and its 2′(S)-azido counterparts were synthesized in seven steps. These exhibited only moderate growth-inhibitory effects against mouse leukemic P388 cells (IC50 = 13–24 μM), although 5′-triphosphate derivatives showed strong and selective inhibitory action on calf thymus DNA polymerase α, but not on β- and ?-polymerases from eukaryotes.

  相似文献   

6.
The mechanism of the inhibitory action of 1-β-D -arabinofuranosyl-E-5-(2-bromovinyl) uracil triphosphate (BV-araUTP) on DNA synthesis by Escherichia coli DNA polymerase I Klenow fragment was studied. Acting as a chain terminator, BV-araUTP inhibited DNA synthesis by Klenow fragment more effectively than 2′, 3′-dideoxythymidine triphosphate (ddTTP). However, the incorporation sites of BV-araU monophosphate were restricted at consecutive dTMP sequence whereas ddTMP was incorporated at every dTMP site.  相似文献   

7.
Abstract

5′-Phosphonates of natural 2′-deoxynucleosides and ribonucleosides were synthesized by condensation of 3′-O-acylated 2′-deoxynucleosides or 2′,3′-substituted (2′,3′-O-isopropylidene, 2′,3′-O-methoxymethylene or 2′,3′-O-ethoxymethylene) ribonucleosides. As condensing agents, either N,N′-dicyclohexylcarbodiimide or 2,4,6-triisopropylbenzenesulphonyl chloride were used. Nucleoside 5′-ethoxycarbonylphosphonates were converted into corresponding nucleoside 5′-aminocarbonylphosphonates by action of ammonia in methanol or aqueous ammonia. 5′-Hydrogenphosphonothioates of thymidine and 3′-deoxythymidine were obtained by reaction of phosphinic acid in the presence of pivaloyl chloride with 3′-O-acetylthymidine or 3′-deoxythymidine, respectively, followed by addition of powedered sulfur. 5′-O-methylenephosphonates of thymidine and 2′-deoxyadenosine were prepared by intramolecular reaction of corresponding 3′-O-iodomethylphosphonates under basic conditions. All compounds were tested for inhibition of several viruses, including HSV-2 and CMV, but showed no activity. A few compounds insignificantly inhibited HIV-1 reproduction. Thymidine 5′-hydrogenphosphonate neutralized anti-HIV action of 3′-azido-3′-deoxythymidine (AZT) and it indirectly showed that even some nucleoside 5′-phosphonates could be partly hydrolyzed in cell culture to corresponding nucleosides.

5′-Phosphonates of modified 2′-deoxynucleosides in which one group in a phosphate residue is substituted for hydrogen, alkyl or other groups, have shown to be potent biologically  相似文献   

8.
DNA synthesis in the adenovirus DNA replication complex, containing host DNA polymerases-α and -γ, was inhibited completely by aphidicolin and by 2′,3′-dideoxythymidine triphosphate (ddTTP). Double reciprocal plots of DNA polymerase activity in the replication complex against each dNTP gave a straight line although the complex contained two species of DNA polymerase. Inhibition by aphidicolin of DNA polymerase activity was competitive with dTTP but that of purified DNA polymerase-α isolated from adenovirus infected KB cells was competitive with dCTP. The above results suggest that DNA polymerases-α and -γ are integrated in the replication complex to behave as a single enzyme.  相似文献   

9.
DNA polymerases involved in bleomycin-induced unscheduled DNA synthesis in some permeable human cells and rodent cells were studied by using selective inhibitors (aphidicolin, 2′,3′-dideoxythymidine-5′-triphosphate and N-ethylmaleimide) for DNA polymerases. The results suggest that both DNA polymerases α and β are involved in bleomycin-induced unscheduled DNA synthesis in permeable HeLa-S3 cells and probably in some other permeable human cells (HEp-2, KB and WI-38 VA-13 cells). Bleomycin-induced unscheduled DNA synthesis in some permeable rodent cells (SR-C3HHe, Balbc 3T3, 3Y1 and XC cells) is mostly attributed to DNA polymerase β.  相似文献   

10.
11.
A series of hitherto unknown 3′-α-[1,2,3]-substituted triazolo-2′,3′-dideoxypyrimidine nucleoside analogues of the anti-HIV 3′-azido-3′-deoxythymidine (AZT) were synthesized through catalyzed alkyne-azide 1,3-dipolar cycloaddition (Huisgen reaction). Those 3′-[1,2,3]-triazolo analogues bearing an azido alkyl chain were evaluated for their anti-HIV activity against HIV-1 in primary human lymphocytes as well as for their cytotoxicity in different cells. None of them inhibit HIV replication (EC50 > 20 μM); two of them were converted to their triphosphate form to evaluate their HIV-RT inhibition.  相似文献   

12.
DNA biosynthesis by a system containing giant nuclei isolated from rat trophoblast cells at Day 13 of pregnancy has been studied. A method for the isolation of giant nuclei in good yield has been described. These nuclei were capable of incorporating [3H]dTTP into DNA for 2 hr and the incorporation was proportional to the amount of DNA template (nuclei). The system was highly dependent on the four deoxyribonucleoside triphosphates, ATP, and Mg2+ and was stimulated by monovalent ions such as K+. The optimum pH was 8.6. The product of the reaction was insensitive to RNase, sensitive to DNase, and banded at 1.710 g/ml in neutral CsCl together with bulk rat trophoblast DNA. Pulse-chase and density labeling experiments utilizing bromodeoxyuridine have indicated that replicative, discontinuous synthesis was taking place at sites previously active in vivo. DNA polymerases α, β, and γ were shown to be present in the nuclei. Experiments utilizing selective inhibitors of polymerases have demonstrated that DNA replication by trophoblast nuclei in vitro was insensitive to the specific α-polymerase inhibitor, aphidicolin, but almost completely inhibited by 2′, 3′-dideoxythymidine 5′-triphosphate as well as by N-ethylmaleimide suggesting that DNA replication observed in these trophoblast nuclei in vitro may be carried out by DNA polymerase γ.  相似文献   

13.
14.
15.
16.
Abstract

3′-O-Propargylthymidinc, which may be viewed as a stnictural analogue of the potent antiretroviral agent 3′-azido-3′-deoxythymidine (AZT), was synthesized from 5′-O-(4,4′-dimethoxytritylthymidine by reaction with propargyl bromide followed by gentle acidolysis. The 3′-O-propargyl derivative was tested for antiretroviral activity in SC-1 mouse fibroblasts infected with Rauscher murine leukemia virus (MuLV). No inhibition of MuLV proliferation was observed at concentrations of 3′-O-propargylthymidine from 0.001 to 100 μM. whereas the IC50 against the host cells was 30 μM. By comparison, AZT had an IC50 for MuLV growth of 0.01 μM and an IC50 for cell growth of >100 μM. Thus, replacement of the 3′-N-N≡N group in AZT by a 3′-OCH2C≡CH group increased cytotoxicity but decreased antiretroviral activity relative to AZT.  相似文献   

17.
18.
19.
Abstract

Nucleoside analogues with modified sugar moieties have been examined for their substrate/inhibitor specificities towards highly purified deoxycytidine kinase (dCK) and thymidine kinases (tetrameric high-affinity form of TK1, and TK2) from human leukemic spleen. In particular, the analogues included the mono-and di-O′-methyl derivatives of dC, dU and dA, syntheses of which are described. In general, purine nucleosides with modified sugar rings were feebler substrates than the corresponding cytosine analogues. Sugar-modified analogues of dU were also relatively poor substrates of TK1 and TK2, but were reasonably good inhibitors, with generally lower Ki values vs TK2 than TK1. An excellent discriminator between TK1 and TK2 was 3′-hexanoylamino-2′,3′-dideoxythymidine, with a Ki of ~600 μM for TK1 and ~0.1 μM for TK2. 3′-OMe-dC was a superior inhibitor of dCK to its 5′-O-methyl congener, consistent with possible participation of the oxygen of the (3′)-OH or (3′)-OMe as proton acceptor in hydrogen bonding with the enzyme. Surprisingly α-dT was a good substrate of both TK1 and TK2, with Ki values of 120 and 30 μM for TK1 and TK2, respectively; and a 3′-branched α-L-deoxycytidine analogue proved to be as good a substrate as its α-D-counterpart. Several 5 ′-substituted analogues of dC were  相似文献   

20.
Abstract

Treatment of 3′-fluoro-3′-deoxythymidine (FLT), 3′-azido-3′-deoxythymidine (AZT) and 2′,3′-dideoxyadenosine (ddA) with tris(1,1,1,3,3,3-hexafluoro-2-propyl)phosphite or phosphorous acid and N,N'-dicyclohexylcarbodiimide produced the corresponding nucleoside 5′-hydrogenphosphonates. Reaction of FLT, AZT and 3′-deoxythymidine (ddT) with fluorophosphoric acid and 2,4,6-triisopropylbenzenesulfonyl chloride lead to the corresponding nucleoside 5′-phosphorofluoridates also on a multi-gram scale. All the compounds were isolated in high pure state by chromatographic technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号