共查询到20条相似文献,搜索用时 0 毫秒
1.
We have investigated the agonists that activate transfected extracellular signal-regulated kinase 8 (ERK8) in cells, and have found that the most potent activators are hydrogen peroxide, DNA alkylating and cross-linking agents and the poly (ADP-ribose) polymerase inhibitor KU-0058948. The feature shared by all these agents is that they lead to the accumulation of single strand breaks in DNA, suggesting a role for ERK8 in the response to, or repair of, DNA single strand breaks. The DNA alkylating agent MMS also induced the disappearance of endogenous ERK8 by a proteasome-dependent mechanism. 相似文献
2.
Correlation between caspase-3 activation and three different markers of DNA damage in neonatal cerebral hypoxia-ischemia 总被引:25,自引:0,他引:25
Caspase-3 has been identified as a key protease that, by targeting a limited number of proteins, can disrupt essential homeostatic processes and initiate an orderly disassembly of cells, including degradation of genomic DNA. We demonstrate the usefulness of an antibody specific for activated caspase-3 in a model of neonatal rat hypoxia-ischemia (Hl) and correlate the spatial and temporal activation of caspase-3 with three different markers of DNA damage and with the loss of a neuronal marker [microtubule-associated protein 2 (MAP 2)]. An oligonucleotide hairpin probe (HPP) with one base overhang in the 3' end displayed a close colocalization with caspase-3 activation at 3 h post-Hl, whereas terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) appeared later (24 h post-Hl). A monoclonal antibody against single-stranded DNA appeared to stain an entirely different population of cells, not positive for active caspase-3, HPP, or TUNEL at this time point. After 24 h of reperfusion, however, when cellular injury is extensive, all markers stained a large number of cells with a high degree of colocalization, and all markers delineated regions with loss of MAP 2. We conclude that the HPP shows the best correlation with pathological caspase-3 activation in this model. 相似文献
3.
《Bioorganic & medicinal chemistry》2019,27(12):2487-2498
A small library of spirooxindole-pyrrolidine hybrids have been synthesized for the first time in an ionic liquid, [bmim]Br in good to excellent yields employing a new class of non-stabilized azomethine ylides derived from isatin and tyrosine, a combination that has been rarely employed for the in situ generation of azomethine ylides using [3+2] cycloaddition strategy. Following the synthesis and characterization of the spirooxindole-pyrrolidine heterocyclic hybrids, they were tested for their anticancer activity as against the changes in the concentrations and time periods with different in vitro cell cultures containing cancer and non-cancer cells, where the results revealed for a potential therapeutic activity. Further analysis for the mechanism of cell death by the cancer cells indicated for the caspase-dependent apoptotic pathway, specifically mediated by caspase-3. Based on these results, it can be demonstrated that the synthesized spirooxindole-pyrrolidine hybrids may serve as one of the better therapeutic agents used for the treatment of malignant tumors. 相似文献
4.
Prolonged activation of ERK1,2 induces FADD-independent caspase 8 activation and cell death 总被引:2,自引:0,他引:2
Cagnol S Van Obberghen-Schilling E Chambard JC 《Apoptosis : an international journal on programmed cell death》2006,11(3):337-346
Prolonged ERK/MAPK activation has been implicated in neuronal cell death in vitro and in vivo. We found that HEK293 cells, recently reported to express neuronal markers, are exquisitely sensitive to long term ERK stimulation.
Activation of an inducible form of Raf-1 (Raf-1:ER) in HEK293 cells induced massive apoptosis characterized by DNA degradation,
loss of plasma membrane integrity and PARP cleavage. Cell death required MEK activity and protein synthesis and occurred via
the death receptor pathway independently of the mitochondrial pathway. Accordingly, prolonged ERK stimulation activated caspase
8 and strongly potentiated Fas signaling. The death receptor adaptator FADD was found to be rapidly induced upon ERK activation.
However using RNA interference and ectopic expression, we demonstrated that neither FADD nor Fas were necessary for caspase
8 activation and cell death. These findings reveal that prolonged ERK/MAPK stimulation results in caspase 8 activation and
cell death.
This work was supported by grant from Association pour la Recherche sur le Cancer (CNRS6543/ARC). S. Cagnol is supported by
a fellowship from the Ligue Nationale contre le Cancer. 相似文献
5.
6.
Jørgensen K Skrede M Cruciani V Mikalsen SO Slipicevic A Flørenes VA 《Biochemical and biophysical research communications》2005,329(1):266-274
The phorbol ester, phorbol-12-myristate-13-acetate (PMA), an activator of PKCs, is known to stimulate the in vitro growth of monolayer cultures of normal human melanocytes whereas it inhibits the growth of most malignant melanoma cell lines. We examined the effect of PMA on proliferation and survival of melanoma cells grown as multicellular aggregates in suspension (spheroids), and aimed to elucidate downstream targets of PKC signaling. In contrast to monolayer cultures, PMA increased cell proliferation as well as protected melanoma cells from suspension-mediated apoptosis (anoikis). Supporting the importance of PKC in anchorage-independent growth, treatment of anoikis-resistant melanoma cell lines with antisense oligonucleotides against PKC-alpha, or the PKC inhibitor G?6976, strongly induced anoikis. PMA induced activation of ERK1/2, but this effect was not prevented by the MEK inhibitors PD98059 or by U0126. Whereas PD98059 treatment alone led to marked activation of the pro-apoptotic Bim and Bad proteins and significantly increased anoikis, these effects were clearly reversed by PMA. In conclusion, our results indicate that the protective effect of PMA on anchorage-independent survival of melanoma cells at least partly is mediated by MEK-independent activation of ERK1/2 and inactivation of downstream pro-apoptotic effector proteins. 相似文献
7.
8.
《Journal of enzyme inhibition and medicinal chemistry》2013,28(6):1324-1330
Caspase inhibitors are usually administered intracranially. There’s very limited evidence showing that they can be used intraperitoneally, and still have a beneficial effect. We tested the hypothesis that, during focal cerebral ischemia, caspase inhibitors when used in combination with an anesthetic agent results in a significantly reduction in the neuronal damage. Male Sprague Dawley rats were randomly divided into six different groups: control, Isoflurane, Propofol, Isoflurane and Caspase-3 inhibitor intraperitoneally (IP), propofol and Caspase-3 inhibitor IP and only caspase-3 inhibitor, during post-ischemia. Neurological evaluation and histochemical analysis was assessed post-ischemia. The treatment proposed, resulted in a significant decrease in the cerebral infarction volume. Combination of treatments, and caspase-3 inhibitor alone significantly decreased the number of TUNEL and cleaved caspase-3 positive cells in the boundary area of cortical infarction. IP administration appears to reach cerebral targets similarly to intracerebral model. This combination reduces the neurological damage caused by focal cerebral ischemia. 相似文献
9.
Cellular or chemical activators for most transient receptor potential channels of the vanilloid subfamily (TRPV) have been identified in recent years. A remarkable exception to this is TRPV2, for which cellular events leading to channel activation are still a matter of debate. Diverse stimuli such as extreme heat or phosphatidylinositol-3 kinase (PI3-kinase) regulated membrane insertion have been shown to promote TRPV2 channel activity. However, some of these results have proved difficult to reproduce and may underlie different gating mechanisms depending on the cell type in which TRPV2 channels are expressed. Here, we show that expression of recombinant TRPV2 can induce cytotoxicity that is directly related to channel activity since it can be prevented by introducing a charge substitution in the pore-forming domain of the channel, or by reducing extracellular calcium. In stably transfected cells, TRPV2 expression results in an outwardly rectifying current that can be recorded at all potentials, and in an increase of resting intracellular calcium concentration that can be partly prevented by serum starvation. Using cytotoxicity as a read-out of channel activity and direct measurements of cell surface expression of TRPV2, we show that inhibition of the PI3-kinase decreases TRPV2 channel activity but does not affect the trafficking of the channel to the plasma membrane. It is concluded that PI3-kinase induces or modulates the activity of recombinant TRPV2 channels; in contrast to the previously proposed mechanism, activation of TRPV2 channels by PI3-kinase is not due to channel translocation to the plasma membrane. 相似文献
10.
Robert F. Anderson Chanchala Amarasinghe Louisa J. Fisher Wai B. Mak John E. Packer 《Free radical research》2013,47(1):91-103
This paper provides evidence that dietary flavonoids can repair a range of oxidative radical damages on DNA, and thus give protection against radical-induced strand breaks and base alterations. We have irradiated dilute aqueous solutions of plasmid DNA in the absence and presence of flavonoids (F) in a “constant ·OH radical scavenging environment”, k of 1.5 × 107 s-1 by decreasing the concentration of TRIS buffer in relation to the concentration of added flavonoids. We have shown that the flavonoids can reduce the incidence of single-strand breaks in double-stranded DNA as well as residual base damage (assayed as additional single-strand breaks upon post-irradiation incubation with endonucleases) with dose modification factors of up to 2.0 ± 0.2 at [F] < 100 μM by a mechanism other than through direct scavenging of ·OH radicals. Pulse radiolysis measurements support the mechanism of electron transfer or H· atom transfer from the flavonoids to free radical sites on DNA which result in the fast chemical repair of some of the oxidative damage on DNA resulting from ·OH radical attack. These in vitro assays point to a possible additional role for antioxidants in reducing DNA damage. 相似文献
11.
目的:探讨姜黄素对大鼠脑缺氧缺血损伤时脑组织MDA变化、caspase-3表达及细胞凋亡的影响。方法:健康SD雄性大鼠48只,随机分为假手术对照组(SH组)、脑缺氧缺血组(HI组)、姜黄素组(CU组)、溶剂对照组(SC组);生化方法检测脑组织丙二醛(MDA)含量;免疫组织化学测定大脑皮质caspase-3的表达;电镜观察大脑皮质形态学结构变化。结果:姜黄素可使脑组织MDA含量明显减低,并且抑制caspase-3蛋白的表达;神经元细胞凋亡减轻。结论:细胞凋亡参与了大脑缺氧缺血损伤的发生,姜黄素可能通过减低MDA含量、下调caspase-3的表达抑制细胞凋亡,从而减轻脑缺氧缺血性损伤。 相似文献
12.
Sun X Wu Y Chen B Zhang Z Zhou W Tong Y Yuan J Xia K Gronemeyer H Flavell RA Song W 《The Journal of biological chemistry》2011,286(11):9049-9062
Individuals with Down syndrome (DS) will inevitably develop Alzheimer disease (AD) neuropathology sometime after middle age, which may be attributable to genes triplicated in individuals with DS. The characteristics of AD neuropathology include neuritic plaques, neurofibrillary tangles, and neuronal loss in various brain regions. The mechanism underlying neurodegeneration in AD and DS remains elusive. Regulator of calcineurin 1 (RCAN1) has been implicated in the pathogenesis of DS. Our data show that RCAN1 expression is elevated in the cortex of DS and AD patients. RCAN1 expression can be activated by the stress hormone dexamethasone. A functional glucocorticoid response element was identified in the RCAN1 isoform 1 (RCAN1-1) promoter region, which is able to mediate the up-regulation of RCAN1 expression. Here we show that overexpression of RCAN1-1 in primary neurons activates caspase-9 and caspase-3 and subsequently induces neuronal apoptosis. Furthermore, we found that the neurotoxicity of RCAN1-1 is inhibited by knock-out of caspase-3 in caspase-3(-/-) neurons. Our study provides a novel mechanism by which RCAN1 functions as a mediator of stress- and Aβ-induced neuronal death, and overexpression of RCAN1 due to an extra copy of the RCAN1 gene on chromosome 21 contributes to AD pathogenesis in DS. 相似文献
13.
14.
15.
Takai Y Matikainen T Jurisicova A Kim MR Trbovich AM Fujita E Nakagawa T Lemmers B Flavell RA Hakem R Momoi T Yuan J Tilly JL Perez GI 《Apoptosis : an international journal on programmed cell death》2007,12(4):791-800
Previously, we analyzed mice lacking either caspase-2 or caspase-3 and documented a role for caspase-2 in developmental and
chemotherapy-induced apoptosis of oocytes. Those data also revealed dispensability of caspase-3, although we found this caspase
critical for ovarian granulosa cell death. Because of the mutual interdependence of germ cells and granulosa cells, herein
we generated caspase-2 and -3 double-mutant (DKO) mice to evaluate how these two caspases functionally relate to each other
in orchestrating oocyte apoptosis. No difference was observed in the rate of spontaneous oocyte apoptosis between DKO and
wildtype (WT) females. In contrast, the oocytes from DKO females were more susceptible to apoptosis induced by DNA damaging
agents, compared with oocytes from WT females. This increased sensitivity to death of DKO oocytes appears to be a specific
response to DNA damage, and it was associated with a compensatory upregulation of caspase-12. Interestingly, DKO oocytes were
more resistant to apoptosis induced by methotrexate (MTX) than WT oocytes. These results revealed that in female germ cells,
insults that directly interfere with their metabolic status (e.g. MTX) require caspase-2 and caspase-3 as obligatory executioners
of the ensuing cell death cascade. However, when DNA damage is involved, and in the absence of caspase-2 and -3, caspase-12
becomes upregulated and mediates apoptosis in oocytes.
Takai and Matikainen contributed equally to this work. 相似文献
16.
Yushan Zhu Lixia Zhao Lei Liu Ping Gao Weili Tian Xiaohui Wang Haijing Jin Haidong Xu Quan Chen 《蛋白质与细胞》2010,1(5):468
Autophagy and apoptosis are both highly regulated biological processes that play essential roles in tissue homeostasis, development and diseases. Autophagy is also described as a mechanism of death pathways, however, the precise mechanism of how autophagy links to cell death remains to be fully understood. Beclin 1 is a dual regulator for both autophagy and apoptosis. In this study we found that Beclin 1 was a substrate of caspase-3 with two cleavage sites at positions 124 and 149, respectively. Furthermore, the autophagosome formation occurred, followed by the appearance of morphological hallmarks of apoptosis after staurosporine treatment. The cleavage products of Beclin 1 reduced autophagy and promoted apoptosis in HeLa cells and the cells in which Beclin 1 was stably knocked down by specific shRNA. In addition, the cleavage of Beclin 1 resulted in abrogating the interaction between Bcl-2 with Beclin 1, which could be blocked by z-VAD-fmk. Thus, our results suggest that the cleavage of Beclin 1 by caspase-3 may contribute to inactivate autophagy leading towards augmented apoptosis. 相似文献
17.
Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions 总被引:10,自引:0,他引:10 下载免费PDF全文
Kang SJ Wang S Hara H Peterson EP Namura S Amin-Hanjani S Huang Z Srinivasan A Tomaselli KJ Thornberry NA Moskowitz MA Yuan J 《The Journal of cell biology》2000,149(3):613-622
Caspase-11, a member of the murine caspase family, has been shown to be an upstream activator of caspase-1 in regulating cytokine maturation. We demonstrate here that in addition to its defect in cytokine maturation, caspase-11-deficient mice have a reduced number of apoptotic cells and a defect in caspase-3 activation after middle cerebral artery occlusion (MCAO), a mouse model of stroke. Recombinant procaspase-11 can autoprocess itself in vitro. Purified active recombinant caspase-11 cleaves and activates procaspase-3 very efficiently. Using a positional scanning combinatorial library method, we found that the optimal cleavage site of caspase-11 was (I/L/V/P)EHD, similar to that of upstream caspases such as caspase-8 and -9. Our results suggest that caspase-11 is a critical initiator caspase responsible for the activation of caspase-3, as well as caspase-1 under certain pathological conditions. 相似文献
18.
Tao Wang Chun-Ju Wang Shuang Tian Hai-Bo Song 《Journal of cellular biochemistry》2019,120(11):18782-18792
It is previously suggested that insulin-like growth factor binding proteins (IGFBPs) potentially share an association with disc degeneration (DD) that causes back pain. This study aimed at exploring the functional relevance of IGFBP5 in DD by establishing a rat model of DD. The nucleus pulposus (NP) cells were transduced with IGFBP5-shRNA or IGFBP5 overexpression to determine the cellular processes (proliferation, apoptosis, as well as colony formation). The protein levels of apoptosis-related proteins were evaluated. Furthermore, NP cells were treated with the extracellular signal-regulated kinases/mitogen-activated protein kinase (ERK/MAPK) pathway inhibitor (PD98059) followed by measurement of ERK protein level and ERK phosphorylation content. The NP cells showed suppressed proliferation and colony formation ability, yet promoted apoptosis after transfection with IGFBP5-shRNA. It was found that silencing of IGFBP5 could lead to the ERK/MAPK axis activation, as indicated by an elevated ERK protein level and ERK phosphorylation content. However, overexpression of IGFBP5 could reverse all the reaction induced by silenced IGFBP5. These key findings demonstrate that overexpressed IGFBP5 inactivates the ERK/MAPK axis to stimulate the proliferation and inhibit apoptosis of NP cells in a rat model of DD. 相似文献
19.
ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53 总被引:22,自引:0,他引:22
Tang D Wu D Hirao A Lahti JM Liu L Mazza B Kidd VJ Mak TW Ingram AJ 《The Journal of biological chemistry》2002,277(15):12710-12717
In response to DNA damage, ataxia-telangiectasia mutant and ataxia-telangiectasia and Rad-3 activate p53, resulting in either cell cycle arrest or apoptosis. We report here that DNA damage stimuli, including etoposide (ETOP), adriamycin (ADR), ionizing irradiation (IR), and ultraviolet irradiation (UV) activate ERK1/2 (ERK) mitogen-activated protein kinase in primary (MEF and IMR90), immortalized (NIH3T3) and transformed (MCF-7) cells. ERK activation in response to ETOP was abolished in ATM-/- fibroblasts (GM05823) and was independent of p53. The MEK1 inhibitor PD98059 prevented ERK activation but not p53 stabilization. Maximal ERK activation in response to DNA damage was not attenuated in MEF(p53-/-). However, ERK activation contributes to either cell cycle arrest or apoptosis in response to low or high intensity DNA insults, respectively. Inhibition of ERK activation by PD98059 or U0126 attenuated p21(CIP1) induction, resulting in partial release of the G(2)/M cell cycle arrest induced by ETOP. Furthermore, PD98059 or U0126 also strongly attenuated apoptosis induced by high dose ETOP, ADR, or UV. Conversely, enforced activation of ERK by overexpression of MEK-1/Q56P sensitized cells to DNA damage-induced apoptosis. Taken together, these results indicate that DNA damage activates parallel ERK and p53 pathways in an ATM-dependent manner. These pathways might function cooperatively in cell cycle arrest and apoptosis. 相似文献
20.
An efficient, accurate, and timely DNA damage response (DDR) is crucial for the maintenance of genome integrity. Here, we report that ten‐eleven translocation dioxygenase (TET) 3‐mediated conversion of 5‐methylcytosine (5mC) to 5‐hydroxymethylcytosine (5hmC) in response to ATR‐dependent DDR regulates DNA repair. ATR‐dependent DDR leads to dynamic changes in 5hmC levels and TET3 enzymatic activity. We show that TET3 is an ATR kinase target that oxidizes DNA during ATR‐dependent DNA damage repair. Modulation of TET3 expression and activity affects DNA damage signaling and DNA repair and consequently cell death. Our results provide novel insight into ATR‐mediated DDR, in which TET3‐mediated DNA demethylation is crucial for efficient DNA repair and maintenance of genome stability. 相似文献