首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Mycobacterium tuberculosis BCG was usually grown in glycerol-asparagine-casein hydrolysate medium. A soluble fraction was obtained from the cells with aq. 50% ethanol; unbound lipids were then removed and the cells were treated with dilute alkali to give, after acidification, an alkali-extractable fraction and an insoluble fraction. On occasion, lipopolysaccharides were obtained by extracting with phenol or dimethyl sulphoxide instead of alkali. The soluble fraction contained, particularly after long extraction, polysaccharide containing mainly glucose, in addition to trehalose and monosaccharides and their derivatives. The alkali-extractable fraction contained polysaccharides containing mannose, glucose, arabinose, galactose and 6-O-methylglucose. These could be resolved into three fractions of markedly different molecular size. It is argued that the high-molecular-weight materials originated from the outside of the cell envelope and the medium-molecular-weight materials from a middle layer of the envelope. 2. Exposure of the growing cells to isoniazid, usually at 1 or 10mug/ml for 6-12h, increased the total cell carbohydrate, mainly due to an increase in trehalose and in insoluble glucan. It also facilitated the extraction of polysaccharide into the medium and the soluble fraction. This produced about a 25% decrease in the amount of carbohydrate in the alkaline-extractable fraction, mainly due to a fall in glucose, arabinose and 6-O-methylglucose. The decrease was confined to polysaccharides of large and medium molecular weight. When intact lipopolysaccharides were extracted, their amount was also decreased by isoniazid. 3. Substitution of ammonium sulphate for asparagine and casein hydrolysate in the medium, so that glycerol was the sole carbon source, decreased the carbohydrate accumulation brought about by isoniazid but did not alter its effect on polysaccharide extraction. 4. Growth with (14)C-labelled substrates showed that glycerol provided two to four times as much of the cell carbon as did asparagine, when both were present. Under these conditions isoniazid inhibited the incorporation of carbon atoms from asparagine into the cells, but had little effect on the total incorporation from glycerol. These experiments also showed that the effect of isoniazid on alkali-extractable polysaccharides was due to their loss to the soluble fraction and external medium. 5. It is suggested that isoniazid inhibits a pathway (probably the synthesis of mycolic acid) involved in the formation of the cell envelope, and that this inhibition results in some re-channelling of intermediates into carbohydrate synthesis and in some loss of polysaccharides through damage to the envelope.  相似文献   

2.
1. Myxamoebae initially containing 5.59mg of glycogen/10(8) cells accumulate approx. 25% more cell-wall polysaccharide, 100% more mucopolysaccharide, 200% more glucose and 300% more trehalose during their development than do myxamoebae initially containing less than 0.3mg of glycogen/10(8) cells. 2. These observations restrict the number of possible control mechanisms operating to regulate carbohydrate metabolism during development. 3. Cells accumulating a large amount of trehalose (approx. 400mug/10(8) cells) have the same amount and pattern of changes in specific activity of trehalase and trehalose 6-phosphate synthase as do cells accumulating a smaller amount of trehalose (approx. 100mug/10(8) cells). 4. These two populations of cells do, however, differ markedly in the amount of UDP-glucose and glucose 6-phosphate that they contain. 5. It is concluded that this change in the intracellular pools of the metabolic precursors of trehalose accounts for the increased amount of trehalose synthesized by cells derived from myxamoebae containing an increased glycogen content.  相似文献   

3.
In Sauton's synthetic liquid medium, 10 mug of pyridoxal per ml completely protected Mycobacterium tuberculosis (H37R(a)) from the effects of a minimal inhibitory concentration of isoniazid (0.01 mug/ml). (14)C-labeled isoniazid was employed to study the nature of this protective effect. Uptake of the drug by cells in a Sauton environment containing 0.01 mug of (14)C-isoniazid per ml was inhibited 20 to 40% by 10 mug of pyridoxal per ml during the early hours of drug exposure. A stronger inhibition of uptake resulted when labeled isoniazid and pyridoxal were increased to 0.1 mug/ml and 50 to 100 mug/ml, respectively. Further studies revealed that certain Sauton nutrients are required to achieve this effect. When l-asparagine or salts (MgSO(4) and ferric ammonium citrate) or both were deleted from the menstruum, pyridoxal did not inhibit isoniazid incorporation by the tubercle bacilli. Pyridoxal also failed to inhibit uptake when (NH(4))(2)SO(4) was substituted for l-asparagine. Growth experiments in Sauton's medium modified to contain (NH(4))(2)SO(4) instead of l-asparagine were consistent with the latter finding. Pyridoxal did not prevent isoniazid growth inhibition in this medium. It is postulated that a large excess of pyridoxal in Sauton's medium protects tubercle bacilli from the effects of isoniazid through formation of an extracellular complex involving drug, vitamin, and certain medium constituents, thereby reducing the level of isoniazid available to the cells.  相似文献   

4.
(14)C-isoniazid (INH) was used to study the relationship between drug uptake or binding by Mycobacterium tuberculosis and growth inhibition of the organism, which is dependent upon the concentration of drug and the duration of exposure. When strain H37R(a), grown in modified Sauton's liquid medium, was treated with 0.1 mug of INH per ml for 2 to 6 hr, followed by 10 mug of nicotinic hydrazide (NH) per ml to block further INH uptake, growth was retarded but not completely inhibited upon continued incubation. NH itself did not retard growth. However, cells treated in a similar manner with INH alone grew normally when diluted 1:100 in fresh, drug-free media. Uptake data showed that bacilli exposed to 0.1 mug of INH per ml accumulated 5.5, 9.7, and 12 mmug/mg of dry cells at 2, 4, and 6 hr, respectively. Other experiments suggested that once isoniazid is bound, it is not rapidly lost when NH is added or when the cells are diluted in fresh media. In the presence of 1.0 mug of INH per ml, tubercle bacilli took up 10 to 37 mmug/mg of dry cells in 20 to 90 min. These cells were not markedly inhibited when diluted 1:40 in fresh NH-containing media and incubated for 6 days. Growth inhibition of tubercle bacilli by INH depends on the uptake of sufficient drug, but the evidence obtained in this study suggests that the absolute concentration of bound INH is not as important in the action of the drug as is the maintenance of a critical cellular concentration for a requisite period of time.  相似文献   

5.
A beta-phosphoglucomutase (beta-PGM) mutant of Lactococcus lactis subsp. lactis ATCC 19435 was constructed using a minimal integration vector and double-crossover recombination. The mutant and the wild-type strain were grown under controlled conditions with different sugars to elucidate the role of beta-PGM in carbohydrate catabolism and anabolism. The mutation did not significantly affect growth, product formation, or cell composition when glucose or lactose was used as the carbon source. With maltose or trehalose as the carbon source the wild-type strain had a maximum specific growth rate of 0.5 h(-1), while the deletion of beta-PGM resulted in a maximum specific growth rate of 0.05 h(-1) on maltose and no growth at all on trehalose. Growth of the mutant strain on maltose resulted in smaller amounts of lactate but more formate, acetate, and ethanol, and approximately 1/10 of the maltose was found as beta-glucose 1-phosphate in the medium. Furthermore, the beta-PGM mutant cells grown on maltose were considerably larger and accumulated polysaccharides which consisted of alpha-1,4-bound glucose units. When the cells were grown at a low dilution rate in a glucose and maltose mixture, the wild-type strain exhibited a higher carbohydrate content than when grown at higher growth rates, but still this content was lower than that in the beta-PGM mutant. In addition, significant differences in the initial metabolism of maltose and trehalose were found, and cell extracts did not digest free trehalose but only trehalose 6-phosphate, which yielded beta-glucose 1-phosphate and glucose 6-phosphate. This demonstrates the presence of a novel enzymatic pathway for trehalose different from that of maltose metabolism in L. lactis.  相似文献   

6.
When exponentially growing Saccharomyces cerevisiae was transferred from a normal high water activity growth medium (aw 0.997) to a medium containing 8% NaCl low water activity growth medium (aw 0.955), glycerol accumulation during the first eight hours of the adaptation was both retarded and greatly diminished in magnitude. Investigation of the underlying reasons for the slow onset of glycerol accumulation revealed that not only was overall glycerol production reduced by salt transfer, but also the rates of ethanol production and glucose consumption were reduced. Measurement of glycolytic intermediates revealed an accumulation of glucose-6-phosphate, fructose-6-phosphate, fructose 1,6 bisphosphate and phosphoenolpyruvate in S. cerevisiae 3 to 4 h after transfer to salt, suggesting that one or more glycolytic enzymes were inhibited. Potassium ions accumulated in S. cerevisiae after salt transfer and reached a maximum about 6 h after transfer, whereas the sodium ion content increased progressively during the adaptation period. The trehalose content also increased in adapting cells. It is suggested that inhibition of glycerol production during the initial period of adaptation could be due to either the inhibition of glycerol-3-phosphate dehydrogenase by increased cation content or the inhibitin of glycolysis, glycerol being produced glycolytically in S. cerevisiae. The increased accumulation of glycerol towards the end of the 8-h period suggests that the osmoregulatory response of S. cerevisiae involves complex sets of adjustments in which inhibition of glycerol-3-phosphate dehydrogenase must be relieved before glycerol functions as a major osmoregulator.  相似文献   

7.
Several factors may control trehalose and glycogen synthesis, like the glucose flux, the growth rate, the intracellular glucose-6-phosphate level and the glucose concentration in the medium. Here, the possible relation of these putative inducers to reserve carbohydrate accumulation was studied under well-defined growth conditions in nitrogen-limited continuous cultures. We showed that the amounts of accumulated trehalose and glycogen were regulated by the growth rate imposed on the culture, whereas other implicated inducers did not exhibit a correlation with reserve carbohydrate accumulation. Trehalose accumulation was induced at a dilution rate (D)相似文献   

8.
A β-phosphoglucomutase (β-PGM) mutant of Lactococcus lactis subsp. lactis ATCC 19435 was constructed using a minimal integration vector and double-crossover recombination. The mutant and the wild-type strain were grown under controlled conditions with different sugars to elucidate the role of β-PGM in carbohydrate catabolism and anabolism. The mutation did not significantly affect growth, product formation, or cell composition when glucose or lactose was used as the carbon source. With maltose or trehalose as the carbon source the wild-type strain had a maximum specific growth rate of 0.5 h−1, while the deletion of β-PGM resulted in a maximum specific growth rate of 0.05 h−1 on maltose and no growth at all on trehalose. Growth of the mutant strain on maltose resulted in smaller amounts of lactate but more formate, acetate, and ethanol, and approximately 1/10 of the maltose was found as β-glucose 1-phosphate in the medium. Furthermore, the β-PGM mutant cells grown on maltose were considerably larger and accumulated polysaccharides which consisted of α-1,4-bound glucose units. When the cells were grown at a low dilution rate in a glucose and maltose mixture, the wild-type strain exhibited a higher carbohydrate content than when grown at higher growth rates, but still this content was lower than that in the β-PGM mutant. In addition, significant differences in the initial metabolism of maltose and trehalose were found, and cell extracts did not digest free trehalose but only trehalose 6-phosphate, which yielded β-glucose 1-phosphate and glucose 6-phosphate. This demonstrates the presence of a novel enzymatic pathway for trehalose different from that of maltose metabolism in L. lactis.  相似文献   

9.
1. Methods are described for the extraction and assay of ATP, ADP, AMP, glucose 6-phosphate, l-glycerol 3-phosphate and citrate in rat epididymal adipose tissue incubated in vitro for 1hr. At this time of incubation rates of glucose uptake and outputs of glycerol, free fatty acids, lactate and pyruvate were shown to be constant. 2. In fat pads incubated in medium containing glucose (3mg./ml.) and albumin (20mg./ml.) the concentrations (in mmumoles/g. wet wt.) were: ATP, 70; ADP, 36; AMP, 9.0; glucose 6-phosphate, 3.0; l-glycerol 3-phosphate, 3.3; citrate, 8.1. 3. The volume of intracellular water calculated from ([(3)H]water space-[(14)C]sorbitol space), ([(14)C]urea space-inulin space) and (weight loss on drying-[(14)C]sorbitol space) was 1.4ml./100g. wet wt. of tissue. The intracellular volume was not changed by insulin, alloxan-diabetes or adrenaline. 4. When compared in terms of mumoles/ml. of intracellular water the concentration of ATP in adipose tissue was less than in heart and diaphragm muscles. The concentrations of ADP and AMP were greater both in absolute terms and relative to ATP. Insulin, alloxan-diabetes and adrenaline had no significant effects on the concentrations of the adenine nucleotides in adipose tissue. 5. The concentration of glucose 6-phosphate was increased by insulin and lowered by alloxan-diabetes and adrenaline. The concentration of l-glycerol 3-phosphate was increased by insulin, unchanged by alloxan-diabetes and lowered by adrenaline. The concentration of citrate was increased by adrenaline and alloxan-diabetes and unchanged by insulin. 6. The effect of glucose concentration in the medium on rates of glucose uptake in adipose tissue from normal rats and alloxan-diabetic rats was investigated. The K(u) of glucose uptake was 29-44mg./100ml. and the V(max.) was 0.77mg./g. wet wt. of tissue/hr. Insulin increased the V(max.) and alloxan-diabetes diminished it, but neither agent significantly altered the K(u). 7. The significance of these results in relation to control of metabolism of adipose tissue is discussed.  相似文献   

10.
In Vitro Effect of Rifampin on Mycobacteria   总被引:5,自引:2,他引:3       下载免费PDF全文
Rifampin inhibited 20 strains of Mycobacterium tuberculosis in concentrations of 0.005 to 0.02 mug/ml in 7H-9 broth with Tween 80 and killed all or nearly all of the inoculum in four to eight times greater concentrations. In the same medium without Tween 80, as well as on 7H-10 agar, about 16 to 64 times these amounts were required to produce the same effect. Rifampin was also active against M. kansasii and some of the nonchromogenic mycobacteria. The incidence of mycobacterial cells resistant to rifampin within the cultures studied was in the range of one to four per 10(8) to 10(9) colony-forming units with concentrations of 4 to 125 mug of rifampin per ml. Only one of the Battey cultures and that of M. fortuitum yielded cells resistant to rifampin at 125 mug/ml but not at 500 mug/ml. The same strains yielded more than double that number of organisms resistant to streptomycin and up to 100 times more organisms resistant to isoniazid. All three drugs stopped the growth or reduced the mycobacterial population in growing cultures after contact for 24 to 48 hr. Complete inhibition of growth was produced by rifampin at 1.0 mug/ml in an average of 6 days and by streptomycin at 5.0 mug/ml in 3 days. After an average contact of 10.7 days with rifampin, five of seven strains resumed growth and all strains began regrowth after exposure to streptomycin for 9.4 days. The marked susceptibility of M. tuberculosis and of atypical mycobacteria to rifampin in vitro and the relatively low incidence of resistant mutants suggests that this agent may have clinical usefulness in the treatment of tuberculosis and some other mycobacterioses.  相似文献   

11.
Glycolysis from [6-(3)H]glucose and gluconeogenesis from [U-(14)C]glycerol were examined in isolated hepatocytes from fasted rats. A 5 mm bolus of glycerol inhibited phosphorylation of 40 mm glucose by 50% and glycolysis by more than 60%, and caused cellular ATP depletion and glycerol 3-phosphate accumulation. Gluconeogenesis from 5 mm glycerol was unaffected by the presence of 40 mm glucose. When nonsaturating concentrations of glycerol (< 200 microm) were maintained in the medium by infusion of glycerol, cellular ATP concentrations remained normal. The rate of uptake of infused glycerol was unaffected by 40 mm glucose, but carbohydrate synthesis from glycerol was inhibited 25%, a corresponding amount of glycerol being diverted to glycolytic products, whereas 10 mm glucose had no inhibitory effect on conversion of infused glycerol into carbohydrate. Glycerol infusion depressed glycolysis from 10 mm and 40 mm glucose by 15 and 25%, respectively; however, the overall rates of glycolysis were unchanged because of a concomitant increase in glycolysis from the infused glycerol. These studies show that exposure of hepatocytes to glucose and low quasi-steady-state concentrations of glycerol result in the simultaneous occurrence, at substantial rates, of glycolysis from glucose and gluconeogenesis from the added glycerol. We interpret our results as demonstrating that, in hepatocytes from normal rats, segments of the pathways of glycolysis from glucose and gluconeogenesis from glycerol are compartmentalized and that this segregation prevents substantial cross-over of phosphorylated intermediates from one pathway to the other. The competition between glucose and glycerol implies that glycolysis and phosphorylation of glycerol take place in the same cells, and that the occurrence of simultaneous glycolysis and gluconeogenesis may indicate channelling within the cytoplasm of individual hepatocytes.  相似文献   

12.
The entomopathogenic fungus Beauveria bassiana was grown in 1% (wt/vol) gelatin-liquid media singly supplemented with a monosaccharide (glucose or fructose), a disaccharide (maltose or trehalose), a polyol (glycerol, mannitol, or sorbitol), or the amino sugar N-acetyl-d-glucosamine. The relative contributions of the carbohydrate, protein, and water contents in the fungal biomass were determined. Carbohydrates composed 18 to 42% of the mycelial dry weight, and this value was lowest in unsupplemented medium and highest in medium supplemented with glucose, glycerol, or trehalose. Biomass production was highest in liquid cultures supplemented with trehalose. When liquid cultures were grown in medium supplemented with 0 to 1% (wt/vol) glucose, trehalose, or N-acetyl-d-glucosamine, there was an increase in the biomass production and the contribution of carbohydrate to mycelial dry weight. Regardless of the glucose concentration in the culture, water content of the mycelia remained about 77.5% (wt/wt). Mycelial storage carbohydrates were determined by capillary gas chromatography. In gelatin-liquid medium supplemented with 1% (wt/vol) glucose, B. bassiana stored glycogen (12.0%, wt/dry wt) and the polyols mannitol (2.2%), erythritol (1.6%), glycerol (0.4%), and arabitol (0.1%). Without glucose, B. bassiana stored glycogen (5.4%), mannitol (0.8%), glycerol (0.6%), and erythritol (0.6%) but not arabitol. To our knowledge, this is the first report of carbohydrate storage in an entomopathogenic fungus, and the results are discussed in relation to other fungi and the potential implications to commercial formulation and insect-fungus interactions.  相似文献   

13.
Trehalose-6-phosphate synthase is the key enzyme for biosynthesis of trehalose, the major soluble carbohydrate in resting cells of yeast. This enzyme was purified from a strain of Saccharomyces cerevisiae lacking vacuolar proteases. It was found to be a multimeric protein of 630 kDa. Monoclonal antibodies were raised against its smallest subunit (56 kDa) and used for screening a yeast cDNA library. This yielded an immunopositive cDNA clone of 1.7 kb, containing an open reading frame of 1485 base pairs. Its sequence, called TPS1 (for trehalose-6-phosphate synthase), was represented by a single gene in the yeast genome and was found to be almost identical with the recently sequenced CIF1, a gene important for carbon catabolite inactivation, believed to be allelic with FDP1. A mutant obtained by disruption of TPS1 had a very low activity of trehalose-6-phosphate synthase, indicating that TPS1 is an important component of the enzyme. The mutant also showed a growth defect when transferred from glycerol to glucose, a phenotype similar to that of the cif1 and fdp1 mutants deficient in carbon catabolite inactivation. Thus, the smallest subunit of the biosynthetic enzyme trehalose-6-phosphate synthase appears to have, in addition, a central regulatory role in the carbohydrate metabolism of yeast.  相似文献   

14.
《Insect Biochemistry》1988,18(6):531-538
Studies were made on 13C and 31P NMR in larvae of two species of silkworm, Bombyx mori and Philosamia cynthia ricini, in vivo as well as in vitro to determine the pathways of glucose utilization, especially those to amino acids as components of silk fibroin. Results showed that the 13C of [1-13C]glucose administered orally into 5th instar larvae of both species was incorporated into glucose-1-phosphate, glucose-6-phosphate and trehalose. Serine, glutamate, glutamine, citrate, malate, trehalose and sorbitol-6-phosphate were detected in the hemolymphs of these larvae as metabolites of [1-13C]glucose. Two days after [1-13C]glucose administration, labeled alanine, glycine, serine, urea, glycogen, trehalose and glycerol were clearly detected in Bombyx larvae. Starvation caused rapid consumption of administered [1-13C]glucose with very little accumulation of 13C in glycogen or trehalose. In the in vivo31P NMR spectra of Bombyx larvae, ATP, arginine phosphate, sorbitol-6-phosphate, uridine diphosphoglucose, phosphoenolpyruvate and inorganic phosphate were detected with some sugar phosphates, such as glucose-1-phosphate and glucose-6-phosphate. During starvation, the intensity of the signal of inorganic phosphate increased and those of sugar phosphate other than sorbitol-6-phosphate decreased, but these changes were reversed by oral administration of glucose.  相似文献   

15.
In response to osmotic stress, proline is accumulated in many bacterial and plant cells. During various stresses, the yeast Saccharomyces cerevisiae induces glycerol or trehalose synthesis, but the fluctuations in gene expression and intracellular levels of proline in yeast are not yet well understood. We previously found that proline protects yeast cells from damage by freezing, oxidative, or ethanol stress. In this study, we examined the relationships between the gene expression profiles and intracellular contents of glycerol, trehalose, and proline under stress conditions. When yeast cells were exposed to 1 M sorbitol stress, the expression of GPD1 encoding glycerol-3-phosphate dehydrogenase is induced, leading to glycerol accumulation. In contrast, in the presence of 9% ethanol, the rapid induction of TPS2 encoding trehalose-6-phosphate phosphatase resulted in trehalose accumulation. We found that intracellular proline levels did not increase immediately after addition of sorbitol or ethanol. However, the expressions of genes involved in proline synthesis and degradation did not change during exposure to these stresses. It appears that the elevated proline levels are due primarily to an increase in proline uptake from a nutrient medium caused by the induction of PUT4. These results suggest that S. cerevisiae cells do not accumulate proline in response to sorbitol or ethanol stress different from other organisms.  相似文献   

16.
Heat-shock response is highly conserved in animals and microorganisms, and it results in the synthesis of heat-shock proteins. In yeast, heat-shock response has also been reported to induce trehalose accumulation. We explored the relationship between heat- (35 C) or cold-shock (1 and 10 C) and trehalose metabolism in the entomopathogenic nematode, Heterorhabditis bacteriophora. Because both heat- and cold-shocks may precede desiccation stress in natural soil environments, we hypothesized that nematodes may accumulate a general desiccation protectant, trehalose, under both situations. Indeed, both heat- and cold-shocks influenced trehalose accumulation and activities of enzymes of trehalose metabolism in H. bacteriophora. Trehalose increased by 5- and 6-fold in heat- and cold-shocked infective juveniles, respectively, within 3 hr of exposure, compared with the nematodes maintained at 25 C (culture temperature). The activity of trehalose-6-phosphate synthase (T6PS), an enzyme involved in the synthesis of trehalose, also significantly increased in both heat- and cold-shocked nematodes during the first 3 hr of exposure. Generally, the trehalose levels and activities of T6PS declined to their original levels within 3 hr when nematodes were transferred back to 25 C. In both heat- and cold-shocked nematodes, trehalase activity decreased significantly within the first 3 hr and generally returned to the original levels within 3 hr when these nematodes were transferred back to 25 C. The results demonstrate that the trehalose concentrations in H. bacteriophora are influenced by both heat- and cold-shocks and are regulated by the action of 2 trehalose-metabolizing enzymes, T6PS and trehalase. The accumulated trehalose may enhance survival of nematodes under both cold and warm conditions, but it may also provide simultaneous protection against desiccation that may result from subsequent evaporation or freezing. This is the first report of the relationship between trehalose metabolism and heat-shock for the Nematoda.  相似文献   

17.
In gluconeogenesis, fructose 6-phosphate is formed from fructose 1,6-bisphosphate, and if fructose 1,6-bisphosphate were reformed by the phosphofructokinase reaction there would be a "gluconeogenic futile cycle." We assessed the extent of this cycling in Escherichia coli growing on glycerol 3-phosphate, using a medium containing 32Pi. Fructose 1,6-bisphosphate coming from glycerol 3-phosphate should be unlabeled, but any coming from fructose 6-phosphate should contain label from the gamma-position of ATP. The amount of labeling of the 1-position of fructose 1,6-bisphosphate was only 2 to 10% of that of the gamma-position of ATP in a series of isogenic strains differing in phosphofructokinases (Pfk-1, Pfk-2, or Pfk-2). In control experiments with glucose 6-phosphate instead of glycerol 3-phosphate, the two positions were equally labeled. Thus, although the presence of Pfk-2 causes gluconeogenic impairment (Daldal et al., Eur. J. Biochem., 126:373-379, 1982), gluconeogenic futile cycling cannot be the reason.  相似文献   

18.
1. Anaerobic glycolysis in intact bloodstream Trypanosoma brucei brucei was studied. 2. Fructose, glucose and mammose were aerobically catabolized at rates of 3.4, 3.0 and 2.5 and anaerobically at rates of 0.38, 2.75 and 2.35 mumol hexose/hr/10(8) trypanosomes respectively. 3. Glycerol 3-phosphate and ADP accumulated approximately to the same level from anaerobic catabolism of the three hexoses. However, fructose catabolism stopped within 15-20 min but addition of glucose to these already immobilized trypanosomes temporarily caused a rapid characteristic drop in glycerol 3-phosphate level at a rate of 40 nmol/min/10(8) trypanosomes and correspondingly glucose 6-phosphate, glycerol and pyruvate levels were raised. 4. These observations are not consistent with the proposed requirements for the reverse glycerol kinase in anaerobic net ATP production. Instead, we propose a glycerol 3-phosphate:glucose transphosphorylase that catalyses the formation of glycerol and glucose 6-phosphate.  相似文献   

19.
The amounts of glycogen and trehalose have been measured in cells of a prototrophic diploid yeast strain subjected to a variety of nutrient limitations. Both glycogen and trehalose were accumulated in cells deprived specifically of nirogen, sulfur, or phosphorus, suggesting that reserve carbohydrate accumulation is a general response to nutrient limitation. The patterns of accumulation and utilization of glycogen and trehalose were not identical under these conditions, suggesting that the two carbohydrates may play distinct physiological roles. Glycogen and trehalose were also accumulated by cells undergoing carbon and energy limitation, both during diauxic growth in a relatively poor medium and during the approach to stationary phase in a rich medium. Growth in the rich medium was shown to be carbon or energy limited or both, although the interaction between carbon source limitation and oxygen limitation was complex. In both media, the pattern of glycogen accumulation and utilization was compatible with its serving as a source of energy both during respiratory adaptation and during a subsequent starvation. In contrast, the pattern of trehalose accumulation and utilization seemed compatible only with the latter role. In cultures that were depleting their supplies of exogenous glucose, the accumulation of glycogen began at glucose concentrations well above those sufficient to suppress glycogen accumulation in cultures growing with a constant concentration of exogenous glucose. The mechanism of this effect is not clear, but may involve a response to the rapid rate of change in the glucose concentration.  相似文献   

20.
A bacterium isolated from a petal of Casa Blanca Lily (ST26 strain) produced a marked amount of extracellular trehalose (-d-glucopyranosyl-[1,1]--d-glucopyranose) in culture medium containing glucose. 16S rDNA-based phylogeny showed that ST26 belongs to, or is related to, Cellulosimicrobium cellulans, a close relative of Cellulomonas spp. Various Cellulomonas strains obtained from culture collections also showed extracellular trehalose productivity, suggesting that trehalose production is a common property of this bacterial genus. ST26 accumulated trehalose in medium supplied with glucose but not with sucrose, glycerol or maltose. Effective extracellular trehalose production by ST26 was achieved by supplying 0.5–1% ammonium sulfate and 0.5–1% CaCO3. The addition of CaCO3 adjusted the pH of the culture to around 5.0. The optimized culture conditions yielded trehalose from glucose at a conversion rate of 61%. The addition of ammonium sulfate greatly reduced the dry cell weight of ST26 and intracellular content of trehalose, which suggests that the addition of ammonium sulfate makes ST26 cells leak trehalose into the medium. ST26 effectively propagated in minimal medium containing trehalose as a sole carbon source, which suggests that trehalose serves as a carbohydrate reserve of this organism.The nucleotide sequence of 16S rDNA of ST26 has been submitted to the DDBJ databank under accession number AB109293  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号