首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The small G protein Ras has been implicated in hypertrophy of cardiac myocytes. We therefore examined the activation (GTP loading) of Ras by the following hypertrophic agonists: phorbol 12-myristate 13-acetate (PMA), endothelin-1 (ET-1), and phenylephrine (PE). All three increased Ras.GTP loading by 10-15-fold (maximal in 1-2 min), as did bradykinin. Other G protein-coupled receptor agonists (e.g. angiotensin II, carbachol, isoproterenol) were less effective. Activation of Ras by PMA, ET-1, or PE was reduced by inhibition of protein kinase C (PKC), and that induced by ET-1 or PE was partly sensitive to pertussis toxin. 8-(4-Chlorophenylthio)-cAMP (CPT-cAMP) did not inhibit Ras.GTP loading by PMA, ET-1, or PE. The association of Ras with c-Raf protein was increased by PMA, ET-1, or PE, and this was inhibited by CPT-cAMP. However, only PMA and ET-1 increased Ras-associated mitogen-activated protein kinase kinase 1-activating activity, and this was decreased by PKC inhibition, pertussis toxin, and CPT-cAMP. PMA caused the rapid appearance of phosphorylated (activated) extracellular signal-regulated kinase in the nucleus, which was inhibited by a microinjected neutralizing anti-Ras antibody. We conclude that PKC- and Gi-dependent mechanisms mediate the activation of Ras in myocytes and that Ras activation is required for stimulation of extracellular signal-regulated kinase by PMA.  相似文献   

2.
Endothelin-1 (ET-1), platelet-derived growth factor (PDGF), and epidermal growth factor (EGF) stimulated thymidine incorporation with different efficiency (PDGF >> EGF = ET-1) in rat myometrial cells. They also stimulated ERK activation, which culminated at 5 min and then declined to reach a plateau (at 45 min: EGF > 90%, PDGF = 50%, and ET-1 < 10% of maximum). Inhibition and downregulation of PKC demonstrated that ERK activation at 5 min involved PKC and - for ET-1 and PKC plus another PKC isoform for PDGF. By contrast, the EGF response did not involve PKC. Stimulation of Ras was more important with EGF than with PDGF, with ET-1 being the weakest activator. The simultaneous incubation of the cells with EGF and ET-1 potentiated the ERK activation at 5 min and mimicked the plateau phase obtained with PDGF. Under these conditions thymidine incorporation was comparable to that induced by PDGF. Taken together, our results indicated that the kinetic profile of ERK activation and its impact on cell proliferation can be modulated by the differential involvement of PKC isoforms and the amplitude of Ras activation. uterine smooth muscle; phospholipase C; ETA receptor; thymidine incorporation; Ras  相似文献   

3.
Hyaluronan (HA) is a large nonsulfated glycosaminoglycan and an important regulator of angiogenesis, in particular, the growth and migration of vascular endothelial cells. We have identified some of the key intermediates responsible for induction of mitogenesis and wound recovery. Treatment of bovine aortic endothelial cells with oligosaccharides of hyaluronan (o-HA) resulted in rapid tyrosine phosphorylation and plasma membrane translocation of phospholipase Cgamma1 (PLCgamma1). Cytoplasmic loading with inhibitory antibodies to PLCgamma1, Gbeta, and Galpha(i/o/t/z) inhibited activation of extracellular-regulated kinase 1/2 (ERK1/2). Treatment with the Galpha(i/o) inhibitor, pertussis toxin, reduced o-HA-induced PLCgamma1 tyrosine phosphorylation, protein kinase C (PKC) alpha and beta1/2 membrane translocation, ERK1/2 activation, mitogenesis, and wound recovery, suggesting a mechanism for o-HA-induced angiogenesis through G-proteins, PLCgamma1, and PKC. In particular, we demonstrated a possible role for PKCalpha in mitogenesis and PKCbeta1/2 in wound recovery. Using antisense oligonucleotides and the Ras farnesylation inhibitor FTI-277, we showed that o-HA-induced bovine aortic endothelial cell proliferation, wound recovery, and ERK1/2 activation were also partially dependent on Ras activation, and that o-HA-stimulated tyrosine phosphorylation of the adapter protein Shc, as well as its association with Sos1. Binding of Src to Shc was required for its activation and for Ras-dependent activation of ERK1/2, cell proliferation, and wound recovery. Neither Src nor Ras activation was inhibited by pertussis toxin, suggesting that their activation was independent of heterotrimeric G-proteins. However, the specific Src kinase inhibitor PP2 inhibited Gbeta subunit co-precipitation with PLCgamma1, suggesting a possible role for Src in activation of PLCgamma1 and interaction between two distinct o-HA-induced signaling pathways.  相似文献   

4.
Recently it has been described that dopamine (DA), via dopaminergic type 2 receptors (D(2)R), activates the mitogen-activated protein kinase extracellular signal-regulated kinase (MAPK/ERK) proteins in alveolar epithelial cells (AEC), which results in the upregulation of Na(+)-K(+)-ATPase. In the present report, we used AEC to investigate the signaling pathway that links DA with ERK activation. Incubation of AEC with DA resulted in rapid and transient stimulation of ERK activity, which was mediated by Ras proteins and the serine/threonine kinase Raf-1. Pretreatment of AEC with Src homology 3 binding peptide, which blocks the interaction between Grb2 and Sos, did not prevent DA activation of ERK. Diacylglycerol (DAG)-dependent protein kinase C (PKC) isoenzymes, involved in the DA-mediated activation of ERK proteins as pretreatment with either bisindolylmaleimide or Ro-31-8220, prevented the phosphorylation of Elk-1, and quinpirole, a D(2)R activator, stimulates the translocation of PKCepsilon. Together, the data suggest that DA activated MAPK/ERK via Ras, Raf-1 kinase, and DAG-dependent PKC isoenzymes, but, importantly and contrary to the classical model, this pathway did not involve the Grb2-Sos complex formation.  相似文献   

5.
The peptide, endothelin-1 (ET-1) regulates proliferative responses in numerous cell types. Recently, a dual ET receptor antagonist was shown to prevent the increase in airway smooth muscle cell (SMC) proliferation that accompanies airway smooth muscle remodeling in a rat model of experimental asthma. Thus, we used [(3)H]-thymidine incorporation assays and western immunoblotting to identify signaling pathways that regulate proliferative responses in cultured rat tracheal SMC. Our data indicate that ET-1 activation of the ET A receptor subtype induced [(3)H]-thymidine incorporation and activation of ERK 1/2 in primary rat tracheal SMC. ET-1-induced [(3)H]-thymidine incorporation and activation of ERK 1/2 were inhibited by pretreatment of SMC with pertussis toxin or down regulation of phorbol ester responsive isoforms of PKC. While ET- 1-induced ERK 1/2 activation was unaffected following inhibition of Rho kinase, ET-1-induced [(3)H]-thymidine incorporation was abrogated. ET-1 also potentiated [(3)H]-thymidine incorporation as well as cell proliferation of SMC stimulated with PDGF-BB and this response did not appear to be regulated by ERK1/ 2. These data demonstrate that ET-1 induces activation of multiple G proteins that regulate rat tracheal SMC proliferative responses, likely through signaling pathways downstream of ERK1/2 and Rho kinase.  相似文献   

6.
Gonadotropin releasing hormone (GnRH) contributes to the maintenance of gonadotrope function by increasing extracellular signal-regulated kinase (ERK) activity subsequent to binding to its cognate G-protein-coupled receptor. As the GnRH receptor exclusively interacts with G(q/11) proteins and as receptor expression is regulated in a beta-arrestin-independent fashion, it represents a good model to systematically dissect underlying signaling pathways. In alphaT3-1 gonadotropes endogenously expressing the GnRH receptor, GnRH challenge resulted in a rapid increase in ERK activity which was attenuated by the epidermal growth factor receptor (EGFR)-specific tyrosine kinase inhibitor AG1478. In COS-7 cells transiently expressing the human GnRH receptor, agonist-induced ERK activation was independent of free Gbetagamma subunits but could be mimicked by short-term phorbol ester treatment. Most notably, G(q/11)-induced ERK activation was sensitive to N17-Ras and to expression of the C-terminal Src kinase but also to other dominant negative mutants of signaling components localized upstream of Ras, like Shc and the EGFR. GnRH as well as phorbol esters led to Ras activation in COS-7 and alphaT3-1 cells, which was dependent on Src and EGFR tyrosine kinases, indicating that both tyrosine kinases act downstream of protein kinase C (PKC) and upstream of Ras. However, Src did not contribute to Shc tyrosine phosphorylation. GnRH or phorbol ester challenge resulted in PKC-dependent EGFR autophosphorylation. Furthermore, a 5-min phorbol ester treatment was sufficient to trigger tyrosine phosphorylation of the platelet-derived growth factor-beta receptor in L cells. Thus, in several cell systems PKC is able to stimulate Ras via activation of receptor tyrosine kinases.  相似文献   

7.
We have previously reported that angiotensin II (ANG II) stimulated Src tyrosine kinase via a pertussis toxin-sensitive type 2 receptor, which, in turn, activates MAPK, resulting in an increase in nitric oxide synthase (NOS) expression in pulmonary artery endothelial cells (PAECs). The present study was designed to investigate the pathway by which ANG II activates Src leading to an increase in ERK1/ERK2 phosphorylation and an increase in NOS protein in PAECs. Transfection of PAECs with Gi3 dominant negative (DN) cDNA blocked the ANG II-dependent activation of Src, ERK1/ERK2 phosphorylation, and increase in NOS expression. ANG II stimulated an increase in tyrosine phosphorylation of sequence homology of collagen (Shc; 15 min) that was prevented when PAECs were pretreated with 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo-[3,4-D]pyrimidine (PP2), a Src inhibitor. ANG II induced a Src-dependent association between Shc and growth factor receptor-bound protein 2 (Grb2) and between Grb2 and son of sevenless (Sos), both of which were maximal at 15 min. The ANG II-dependent increase in Ras GTP binding was prevented when PAECs were pretreated with the AT2 antagonist PD-123319 or with PP2 or were transfected with Src DN cDNA. ANG II-dependent activation of MAPK and the increase in endothelial NOS (eNOS) were prevented when PAECs were transfected with Ras DN cDNA or treated with FTI-277, a farnesyl transferase inhibitor. ANG II induction of Raf-1 phosphorylation was prevented when PAECs were pretreated with PD-123319 and PP2. Raf kinase inhibitor 1 prevented the ANG II-dependent increase in eNOS expression. Collectively, these data suggest that Gi3, Shc, Grb2, Ras, and Raf-1 link Src to activation of MAPK and to the AT2-dependent increase in eNOS expression in PAECs. Src; mitogen-activated protein kinase  相似文献   

8.
In this study, we investigated the signaling pathway involved in cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) release by phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, in human pulmonary epithelial cells (A549). PMA-induced COX-2 expression was attenuated by PKC inhibitors (Go 6976 and Ro 31-8220), a Ras inhibitor (manumycin A), a Raf-1 inhibitor (GW 5074), a MEK inhibitor (PD 098059), and an NF-kappaB inhibitor (PDTC), but not by a tyrosine kinase inhibitor (genistein) or a p38 MAPK inhibitor (SB 203580). PMA also caused the activation of Ras, Raf-1, and ERK1/2. PMA-induced activation of Ras and Raf-1 was inhibited by Ro 31-8220 and manumycin A. PMA-mediated activation of ERK1/2 was inhibited by Ro 31-8220, manumycin A, GW 5074, and PD 098059. Stimulation of cells with PMA caused IkappaBalpha phosphorylation, IkappaBalpha degradation, and the formation of a NF-kappaB-specific DNA-protein complex. The PMA-mediated increase in kappaB-luciferase activity was inhibited by Ro 31-8220, manumycin A, GW5074, PD 098059, and PDTC. Taken together, these results indicate that PMA might activate PKC to elicit activation of the Ras/Raf-1/ERK1/2 pathway, which in turn initiates NF-kappaB activation, and finally induces COX-2 expression and PGE2 release in A549 cells.  相似文献   

9.
Cholecystokinin (CCK) and related peptides are potent growth factors in the gastrointestinal tract and may be important for human cancer. CCK exerts its growth modulatory effects through G(q)-coupled receptors (CCK(A) and CCK(B)) and activation of extracellular signal-regulated protein kinase 1/2 (ERK1/2). In the present study, we investigated the different mechanisms participating in CCK-induced activation of ERK1/2 in pancreatic AR42J cells expressing both CCK(A) and CCK(B). CCK activated ERK1/2 and Raf-1 to a similar extent as epidermal growth factor (EGF). Inhibition of EGF receptor (EGFR) tyrosine kinase or expression of dominant-negative Ras reduced CCK-induced ERK1/2 activation, indicating participation of the EGFR and Ras in CCK-induced ERK1/2 activation. However, compared with EGF, CCK caused only small increases in tyrosine phosphorylation of the EGFR and Shc, Shc-Grb2 complex formation, and Ras activation. Signal amplification between Ras and Raf in a CCK-induced ERK cascade appears to be mediated by activation of protein kinase Cepsilon (PKCepsilon), because 1) down-modulation of phorbol ester-sensitive PKCs inhibited CCK-induced activation of Ras, Raf, and ERK1/2 without influencing Shc-Grb2 complex formation; 2) PKCepsilon, but not PKCalpha or PKCdelta, was detectable in Raf-1 immunoprecipitates, although CCK activated all three PKC isoenzymes. In addition, the present study provides evidence that the Src family tyrosine kinase Yes is activated by CCK and mediates CCK-induced tyrosine phosphorylation of Shc. Furthermore, we show that CCK-induced activation of the EGFR and Yes is achieved through the CCK(B) receptor. Together, our data show that different signals emanating from the CCK receptors mediate ERK1/2 activation; activation of Yes and the EGFR mediate Shc-Grb2 recruitment, and activation of PKC, most likely PKCepsilon, augments CCK-stimulated ERK1/2 activation at the Ras/Raf level.  相似文献   

10.
Activation of beta-adrenoreceptors induces cardiomyocyte hypertrophy. In the present study, we examined isoproterenol-evoked intracellular signal transduction pathways leading to activation of extracellular signal-regulated kinases (ERKs) and cardiomyocyte hypertrophy. Inhibitors for cAMP and protein kinase A (PKA) abolished isoproterenol-evoked ERK activation, suggesting that Gs protein is involved in the activation. Inhibition of Gi protein by pertussis toxin, however, also suppressed isoproterenol-induced ERK activation. Overexpression of the Gbetagamma subunit binding domain of the beta-adrenoreceptor kinase 1 and of COOH-terminal Src kinase, which inhibit functions of Gbetagamma and the Src family tyrosine kinases, respectively, also inhibited isoproterenol-induced ERK activation. Overexpression of dominant-negative mutants of Ras and Raf-1 kinase and of the beta-adrenoreceptor mutant that lacks phosphorylation sites by PKA abolished isoproterenol-stimulated ERK activation. The isoproterenol-induced increase in protein synthesis was also suppressed by inhibitors for PKA, Gi, tyrosine kinases, or Ras. These results suggest that isoproterenol induces ERK activation and cardiomyocyte hypertrophy through two different G proteins, Gs and Gi. cAMP-dependent PKA activation through Gs may phosphorylate the beta-adrenoreceptor, leading to coupling of the receptor from Gs to Gi. Activation of Gi activates ERKs through Gbetagamma, Src family tyrosine kinases, Ras, and Raf-1 kinase.  相似文献   

11.
The human sst(4) receptor, recombinantly expressed in Chinese hamster ovary cells, mediates proliferative activity of the peptide hormone somatostatin. This effect was shown to involve activation of pertussis toxin-sensitive G proteins and was inhibited by overexpression of the betagamma-sequestrant, transducin. Somatostatin-induced proliferation was abolished by the MEK1 inhibitor, PD 98059, whereas the Src inhibitor, PP1, had no effect. A marked increase was observed in the phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1 and ERK2) 10 min after sst(4) receptor activation, which was blocked by pertussis toxin, decreased by PP1 and the betagamma-sequestrant, but unaffected by PD 98059. In contrast, the somatostatin-induced phosphorylation of ERK obtained at 4 h, although sensitive to both pertussis toxin and transducin, was unaffected by PP1 but ablated by PD 98059. Protein kinase C inhibition also abolished this somatostatin-induced sustained phosphorylation of ERK, together with the associated increase in cell proliferation. Expression of dominant negative Ras (N17) failed to significantly reduce the proliferative effect mediated by the sst(4) receptor but markedly attenuated the acute phase of the somatostatin-induced phosphorylation of ERK obtained at 10 min. In contrast, the phosphorylation induced at 4 h was unaffected. We conclude that ERK activation by G(i/o)-coupled sst(4) receptors involves a Src and Ras-dependent acute phase, but the proliferative response is dependent upon the prolonged ERK-induced activity, mediated by protein kinase C.  相似文献   

12.
Regulation of homocysteine-induced MMP-9 by ERK1/2 pathway   总被引:6,自引:0,他引:6  
Homocysteine (Hcy) induces matrix metalloproteinase (MMP)-9 in microvascular endothelial cells (MVECs). We hypothesized that the ERK1/2 signaling pathway is involved in Hcy-mediated MMP-9 expression. In cultured MVECs, Hcy induced activation of ERK, which was blocked by PD-98059 and U0126 (MEK inhibitors). Pretreatment with BAPTA-AM, staurosporine (PKC inhibitor), or Gö6976 (specific inhibitor for Ca2+-dependent PKC) abrogated ERK phosphorylation, suggesting the role of Ca2+ and Ca2+-dependent PKC in Hcy-induced ERK activation. ERK phosphorylation was suppressed by pertussis toxin (PTX), suggesting the involvement of G protein-coupled receptors (GPCRs) in initiating signal transduction by Hcy and leading to ERK activation. Pretreatment of MVECs with genistein, BAPTA-AM, or thapsigargin abrogated Hcy-induced ERK activation, suggesting the involvement of the PTK pathway in Hcy-induced ERK activation, which was mediated by intracellular Ca2+ pool depletion. ERK activation was attenuated by preincubation with N-acetylcysteine (NAC) and SOD, suggesting the role of oxidation in Hcy-induced ERK activation. Pretreatment with an ERK1/2 blocker (PD-98059), staurosporine, folate, or NAC modulated Hcy-induced MMP-9 activation as measured using zymography. Our results provide evidence that Hcy triggers the PTX-sensitive ERK1/2 signaling pathway, which is involved in the regulation of MMP-9 in MVECs. calcium signaling; protein kinase C; Src; G protein-coupled receptor; nonreceptor tyrosine kinase; protein Gi; protein Gq; protein tyrosine kinase 2; microvascular endothelial cell; cardiovascular remodeling  相似文献   

13.
Yoon MS  Koo JB  Hwang JH  Lee KS  Han JS 《FEBS letters》2005,579(25):5635-5642
We investigated the mechanism of 8-Br-cAMP-mediated phospholipase D (PLD) activation using a primary cell culture system of human endometrial stromal cells (ES cells). PLD activity was increased by the treatment of ES cells with 8-Br-cAMP, maximally at 5 min. To determine whether the effects of 8-Br-cAMP on PLD occurred as a consequence of PKC activation, ES cells were preincubated for 15 min with RO320432 (1 microM) and GF109203X (1 microM), the PKC inhibitors, or they were pretreated for 24h with phorbol myristate acetate (100 nM) to downregulate PKC. However, these treatments had no effects on PLD activation induced by 8-Br-cAMP. Furthermore, 8-Br-cAMP had no effects on the subcellular distribution of PKC alpha and PKC betaI, confirming no involvement of PKC. 8-Br-cAMP activated ERK1/2, maximally at 5 min, and PD98059 (MEK inhibitor: 50 microM) and transfection of ES cells with dominant negative (DN)-MEK completely inhibited 8-Br-cAMP-induced PLD activation, suggesting that ERK1/2 mediates the PLD activation. To investigate the involvement of protein kinase A (PKA), Src, and Ras in 8-Br-cAMP-induced PLD activation, we used PKA inhibitor, H89 and Rp-cAMPs, and transfections of DN-Src and DN-Ras. H-89 and Rp-cAMPs completely blocked 8-Br-cAMP-mediated PLD and ERK activation, implying the involvement of PKA in this PLD activation. In addition, transfection of ES cells with DN-Src, or DN-Ras partially inhibited 8-Br-cAMP-induced ERK1/2 and consequently PLD activation, whereas cotransfection of DN-Src and DN-Ras completely inhibited ERK1/2 and PLD activation, suggesting that Src and Ras independently regulate ERK/PLD activation. Taken together, these results demonstrate a novel pathway in ES cells that 8-Br-cAMP activate PLD through PKA and ERK1/2 and this ERK/PLD activation by 8-Br-cAMP is mediated by Src and Ras, separately.  相似文献   

14.
Mitogen-activated protein kinase (MAPK) cascades underlie long-term mitogenic, morphogenic, and secretory activities of purinergic receptors. In HEK-293 cells, N-ethylcarboxamidoadenosine (NECA) activates endogenous A2BARs that signal through Gs and Gq/11. UTP activates P2Y2 receptors and signals only through Gq/11. The MAPK isoforms, extracellular-signal regulated kinase 1/2 (ERK), are activated by NECA and UTP. H-89 blocks ERK activation by forskolin, but weakly affects the response to NECA or UTP. ERK activation by NECA or UTP is unaffected by a tyrosine kinase inhibitor (genistein), attenuated by a phospholipase C inhibitor (U73122), and is abolished by a MEK inhibitor (PD098059) or dominant negative Ras. Inhibition of protein kinase C (PKC) by GF 109203X failed to block ERK activation by NECA or UTP, however, another PKC inhibitor, Ro 31-8220, which unlike GF 109203X, can block the zeta-isoform, and prevents UTP- but not NECA-induced ERK activation. In the presence of forskolin, Ro 31-8220 loses its ability to block UTP-stimulated ERK activation. PKA has opposing effects on B-Raf and c-Raf-1, both of which are found in HEK-293 cells. The data are explained by a model in which ERK activity is modulated by differential effects of PKC zeta and PKA on Raf isoforms.  相似文献   

15.
Protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) have been implicated in the effects of regulatory peptides on proliferation. We studied how ERK was activated by PKC following regulatory peptide or phorbol ester stimulation and we also investigated the effect of ERK activation on proliferation in Panc-1 cells. Panc-1 cells transfected with CCK1 receptors were treated with cholecystokinin (CCK), neurotensin (NT), or phorbol 12-myristate 13-acetate (PMA). DNA synthesis was studied by measuring tritiated thymidine incorporation. PKC isoforms were selectively inhibited with G?6983 and 200 nM Ro-32-0432, their translocation was detected by confocal microscopy and by subcellular fractionation followed by immunoblotting. ERK cascade activation was detected with phosphoERK immunoblotting and inhibited with 20 microM PD98059. PMA and CCK inhibited, NT stimulated DNA synthesis. These effects were inhibited by Ro-32-0432 but not by G?6983 suggesting the involvement of PKCepsilon in proliferation control. Confocal microscopy and subcellular fractionation demonstrated that PMA, CCK, and NT caused cytosol to membrane translocation of PKCepsilon and ERK activation that was inhibited by Ro-32-0432 but not by G?6983. ERK activation was prolonged following PMA and CCK, but transient after NT treatment. PMA, CCK, and NT all activated cyclinD1, while p21CIP1 expression was increased by only PMA and CCK, but not by NT; each of these effects is inhibited by PD98059. In conclusion, our results provide evidence for PKCepsilon-mediated differential ERK activation and growth regulation in Panc-1C cells. Identification of the mechanisms by which these key signaling pathways are modulated could provide a basis for the development of novel therapeutic interventions to treat pancreatic cancer.  相似文献   

16.
Kim IS  Ryang YS  Kim YS  Jang SW  Sung HJ  Lee YH  Kim J  Na DS  Ko J 《Life sciences》2003,73(4):447-459
Recently cloned leukotactin-1 (Lkn-1) that belongs to CC chemokine family has not been characterized. To understand the intracellular events following Lkn-1 binding to CCR1, we investigated the activities of signaling molecules in response to Lkn-1 in human osteogenic sarcoma cells expressing CCR1. Lkn-1-stimulated cells showed elevated phosphorylation of extracellular signal-related kinases (ERK1/2) with a distinct time course. ERK activation was peaked in 30 min and 12 h showing biphasic activation of ERK. Pertussis toxin, an inhibitor of G(i)/G(o) protein, and phospholipase C (PLC) inhibitor blocked Lkn-1-induced activation of ERK. Protein kinase C delta (PKC delta) specific inhibitor rottlerin inhibited ERK activation in Lkn-1-stimulated cells. The activities of PLC and PKC delta were also enhanced by Lkn-1 stimulation. Dominant negative Ras inhibited activation of ERK. Immediate early response genes such as c-fos and c-myc were induced by Lkn-1 stimulation. Lkn-1 affected the cell cycle progression by cyclin D(3) induction. These results suggest that Lkn-1 activates the ERK pathway by transducing the signal through G(i)/G(o) protein, PLC, PKC delta and Ras, and it may play a role for cell proliferation, differentiation, and regulation of gene expression for other cellular processes.  相似文献   

17.
18.
Primary cultures of rat cortical astrocytes express phospholipase D (PLD) isoforms 1 and 2 as determined by RT-PCR and Western blot. Basal PLD activity was strongly (10-fold) increased by 4beta-phorbol-12beta,13alpha-dibutyrate (PDB) (EC(50): 56 nM), an effect which was inhibited by Ro 31-8220 (0.1-1 microM), an inhibitor of protein kinase C (PKC), and by brefeldin A (10-100 microg/ml), an inhibitor of ADP-ribosylating factor (ARF) activation. Pretreatment of the cultures with Clostridium difficile toxin B-10463 (0.1-1 ng/ml), which inactivates small G proteins of the Rho family, led to a breakdown of the astroglial cytoskeleton; concomitantly, PLD activation by PDB was reduced by up to 50%. In contrast, inactivation of proteins of the Ras family by Clostridium sordellii lethal toxin 1522 did not affect PLD activation. In parallel experiments, serum-induced PLD activation was sensitive to brefeldin A, but not to Ro 31-8220 and not to clostridial toxins. We conclude that, in astrocytes, the PLD isoform which is activated by phorbol ester requires PKC, ARF and Rho proteins for full activity and probably represents PLD1.  相似文献   

19.
Vasopressin-mediated mitogenic signaling in intestinal epithelial cells   总被引:3,自引:0,他引:3  
The role of G protein-coupled receptorsand their ligands in intestinal epithelial cell signaling andproliferation is poorly understood. Here, we demonstrate that argininevasopressin (AVP) induces multiple intracellular signal transductionpathways in rat intestinal epithelial IEC-18 cells via aV1A receptor. Addition of AVP to these cells induces arapid and transient increase in cytosolic Ca2+concentration and promotes protein kinase D (PKD) activation through aprotein kinase C (PKC)-dependent pathway, as revealed by in vitrokinase assays and immunoblotting with an antibody that recognizesautophosphorylated PKD at Ser916. AVP also stimulates thetyrosine phosphorylation of the nonreceptor tyrosine kinaseproline-rich tyrosine kinase 2 (Pyk2) and promotes Src family kinasephosphorylation at Tyr418, indicative of Src activation.AVP induces extracellular signal-related kinase (ERK)-1(p44mapk) and ERK-2 (p42mapk) activation, aresponse prevented by treatment with mitogen-activated protein kinasekinase (MEK) inhibitors (PD-98059 and U-0126), specific PKC inhibitors(GF-I and Ro-31-8220), depletion of Ca2+ (EGTA andthapsigargin), selective epidermal growth factor receptor (EGFR)tyrosine kinase inhibitors (tyrphostin AG-1478, compound 56), or theselective Src family kinase inhibitor PP-2. Furthermore, AVP acts as apotent growth factor for IEC-18 cells, inducing DNA synthesis and cellproliferation through ERK-, Ca2+-, PKC-, EGFR tyrosinekinase-, and Src-dependent pathways.

  相似文献   

20.
The inhibition of phorbol ester activation of phospholipase D1 (PLD1) by protein kinase C (PKC) inhibitors has been considered proof of phosphorylation-dependent activation of PLD1 by PKCalpha. We studied the effect of the PKC inhibitors Ro-31-8220 and bisindolylmaleimide I on PLD1 activation and found that they inhibited the activation by interfering with PKCalpha binding to PLD1. Further studies showed that only unphosphorylated PKCalpha could bind to and activate PLD1 and that both inhibitors induced phosphorylation of PKCalpha. The phosphorylation status of either PLD1 or PKCalpha per se did not affect PLD1 activation in vitro. Immunofluorescence studies showed that PLD1 remained in the perinuclear region after phorbol ester treatment, whereas PKCalpha translocated from cytosol to both plasma membrane and perinuclear regions. Both Ro-31-8220 and bisindolylmaleimide I blocked the translocation of PKCalpha to the perinuclear region but not to the plasma membrane. Studies with okadaic acid suggested that phosphorylation regulated the relocation of PKCalpha from the plasma membrane to the perinuclear region. It is proposed that localization and interaction of PKCalpha with PLD1 in the perinuclear region is required for PLD1 activation and that PKC inhibitors inhibit this through phosphorylation of PKCalpha, which blocks its translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号