首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
For a diversity of species, differences in sexual and parental roles, along with differences in body morphology, often result in males and females having different diets, distinct predators and even different patterns of habitat use. As a consequence, the two sexes often face different environmental challenges and selection may favour the evolution of sex differences in cognition. We tested this prediction in the guppy (Poecilia reticulata). Under perceived hazard, individual guppies join the larger available social group, a behaviour that is thought to minimise predation risk. In this species, females are more frequently exposed to predation and more averse to predation risk; we therefore expected greater accuracy in shoal size discrimination in females. We compared the accuracy of male and female guppies in discriminating shoals of 4 and 6 conspecifics, which represents the upper limit of discrimination for this species. Overall, we found no sex differences in the accuracy of discriminating the two shoals. However, while females showed this ability at the beginning of the test, males began to select the larger group only after several minutes. In three control experiments, we found indications that this sex difference cannot be accounted for by differences in motivation or antipredator strategies between the two sexes, suggesting female guppies are more efficient at rapidly estimating shoal size.  相似文献   

2.
Active whisking in mice and rats is one of the fastest behaviours known in mammals and is used to guide complex behaviours such as exploration and navigation. During object contact, whisker movements are actively controlled and undergo robust changes in timing, speed and position. This study quantifies whisker movements in 6‐ to 7‐month old male and female 5xFAD mice, and their C57/SJL F1 wild‐type (WT) controls. As well as genotype, we examined sex differences and the effects of retinal degeneration (rd). Mice were filmed using a high‐speed video camera at 500 frames per second (fps), under infrared light while behaving freely in three tasks: object exploration, sequential object exploration and tunnel running. Measures of whisker position, amplitude, speed and asymmetry were extracted and analysed for each task. The 5xFAD mice had significantly altered whisker angular positions, amplitude and asymmetry during object contacts and female 5xFAD mice with rd had lower mean angular positions during object contact. There were no significant effects of genotype on sequential object exploration or on tunnel running but differences due to sex and rd were found in both tasks, with female mice making larger and faster whisker movements overall, and mice with rd making larger and faster whisker movements during object contact. There were sex differences in whisker movements during sequential object exploration and females with rd had higher whisker retraction speeds in tunnel running. These data show that measuring whisker movements can quantify genotype and sex differences and the effects of rd during exploratory behaviour in these mice.  相似文献   

3.
Mating causes many changes in physiology, behavior, and gene expression in a wide range of organisms. These changes are predicted to be sex specific, influenced by the divergent reproductive roles of the sexes. In female insects, mating is associated with an increase in egg production which requires high levels of nutritional input with direct consequences for the physiological needs of individual females. Consequently, females alter their nutritional acquisition in line with the physiological demands imposed by mating. Although much is known about the female mating‐induced nutritional response, far less is known about changes in males. In addition, it is unknown whether variation between genotypes translates into variation in dietary behavioral responses. Here we examine mating‐induced shifts in male and female dietary preferences across genotypes of Drosophila melanogaster. We find sex‐ and genotype‐specific effects on both the quantity and quality of the chosen diet. These results contribute to our understanding of sex‐specific metabolism and reveal genotypic variation that influences responses to physiological demands.  相似文献   

4.
5.
Despite ongoing advances in sexual selection theory, the evolution of mating decisions remains enigmatic. Cognitive processes often require simultaneous processing of multiple sources of information from environmental and social cues. However, little experimental data exist on how cognitive ability affects such fitness‐associated aspects of behaviour. Using advanced tracking techniques, we studied mating behaviours of guppies artificially selected for divergence in relative brain size, with known differences in cognitive ability, when predation threat and sex ratio was varied. In females, we found a general increase in copulation behaviour in when the sex ratio was female biased, but only large‐brained females responded with greater willingness to copulate under a low predation threat. In males, we found that small‐brained individuals courted more intensively and displayed more aggressive behaviours than large‐brained individuals. However, there were no differences in female response to males with different brain size. These results provide further evidence of a role for female brain size in optimal decision‐making in a mating context. In addition, our results indicate that brain size may affect mating display skill in male guppies. We suggest that it is important to consider the association between brain size, cognitive ability and sexual behaviour when studying how morphological and behavioural traits evolve in wild populations.  相似文献   

6.
7.
8.
Cyclical parthenogenesis presents an interesting challenge for the study of sex allocation, as individuals’ allocation decisions involve both the choice between sexual and asexual reproduction, and the choice between sons and daughters. Male production is therefore expected to depend on ecological and evolutionary drivers of overall investment in sex, and those influencing male reproductive value during sexual periods. We manipulated experimental populations, and made repeated observations of natural populations over their growing season, to disentangle effects of population density and the timing of sex from effects of adult sex ratio on sex allocation in cyclically parthenogenetic Daphnia magna. Male production increased with population density, the major ecological driver of sexual reproduction; however, this response was dampened when the population sex ratio was more male‐biased. Thus, in line with sex ratio theory, we show that D. magna adjust offspring sex allocation in response to the current population sex ratio.  相似文献   

9.
The interest of the scientific community in biological soil crusts has grown exponentially over the last decades. One of the scientific research interests is the study of the effect of these crusts on plant establishment. Findings in this topic have been controversial, and some differences were attributed to crust types. Biological soil crusts dominated by lichens are common components of Stipa tenacissima steppes in arid and semi‐arid environments of the southern Mediterranean. In the current study, we conducted growth chamber experiments to investigate the differential effects of two lichen species with continuous crustose thalli (Diploschistes diacapsis) and with squamulose semicontinuous thalli (Fulgensia bracteata) on seed germination, root penetration, shoot emergence and seed viability of the tussock grass species S. tenacissima. Our results showed that under laboratory conditions, two distinct lichen species had significantly different effects on the establishment of S. tenacissima. Our findings clearly demonstrated that D. diacapsis significantly decreased germination, root penetration and shoot emergence of S. tenacissima compared to F. bracteata. This can be related to differences in morphological and physiological characteristics between crustose and squamulose lichens. Overall, we suggest that D. diacapsis and crustose lichens generally can act as natural barrier to the establishment of S. tenacissima.  相似文献   

10.
Successful reproduction depends on interactions between numerous proteins beyond those involved directly in gamete fusion. Although such reproductive proteins evolve in response to sexual selection pressures, how networks of interacting proteins arise and evolve as reproductive phenotypes change remains an open question. Here, we investigated the molecular evolution of the ‘sex peptide network’ of Drosophila melanogaster, a functionally well‐characterized reproductive protein network. In this species, the peptide hormone sex peptide (SP) and its interacting proteins cause major changes in female physiology and behaviour after mating. In contrast, females of more distantly related Drosophila species do not respond to SP. In spite of these phenotypic differences, we detected orthologs of all network proteins across 22 diverse Drosophila species and found evidence that most orthologs likely function in reproduction throughout the genus. Within SP‐responsive species, we detected the recurrent, adaptive evolution of several network proteins, consistent with sexual selection acting to continually refine network function. We also found some evidence for adaptive evolution of several proteins along two specific phylogenetic lineages that correspond with increased expression of the SP receptor in female reproductive tracts or increased sperm length, respectively. Finally, we used gene expression profiling to examine the likely degree of functional conservation of the paralogs of an SP network protein that arose via gene duplication. Our results suggest a dynamic history for the SP network in which network members arose before the onset of robust SP‐mediated responses and then were shaped by both purifying and positive selection.  相似文献   

11.
Sex ratio biases are often inconsistent, both among and within species and populations. While some of these inconsistencies may be due to experimental design, much of the variation remains inexplicable. Recent research suggests that an exclusive focus on mothers may account for some of the inconsistency, with an increasing number of studies showing variation in sperm sex ratios and seminal fluids. Using fluorescent in‐situ hybridization, we show a significant population‐level Y‐chromosome bias in the spermatozoa of wild tammar wallabies, but with significant intraindividual variation between males. We also show a population‐level birth sex ratio trend in the same direction toward male offspring, but a weaning sex ratio that is significantly female‐biased, indicating that males are disproportionately lost during lactation. We hypothesize that sexual conflict between parents may cause mothers to adjust offspring sex ratios after birth, through abandonment of male pouch young and reactivation of diapaused embryos. Further research is required in a captive, controlled setting to understand what is driving and mechanistically controlling sperm sex ratio and offspring sex ratio biases and to understand the sexually antagonistic relationship between mothers and fathers over offspring sex. These results extend beyond sex allocation, as they question studies of population processes that assume equal input of sex chromosomes from fathers, and will also assist with future reproduction studies for management and conservation of marsupials.  相似文献   

12.
13.

Questions

What are the syntaxonomic and synchorological patterns of the xerothermic chasmophytic vegetation in the central part of the Mediterranean Basin? What are the diagnostic species of the high‐rank syntaxa of Asplenietalia glandulosi, Onosmetalia frutescentis and Centaureo dalmaticae‐Campanuletalia pyramidalis?

Location

Mediterranean coastal and subcoastal areas of southern France, Italy, Malta, Slovenia, Croatia, Bosnia and Herzegovina, Montenegro, Albania and of mainland Greece.

Methods

The data set of 1,261 published relevés was analysed using hierarchical clustering (Flexible Beta method), involving a series of data transformations. Indicator species analysis was used to select the best dendrogram solution and identify diagnostic taxa of the main clusters. The dendrogram was interpreted from a syntaxonomic point of view, using nomenclatural type relevés as a basis. The NMDS ordination was performed in order to visualize the floristic relationships among associations and high‐rank syntaxa. MRPP was used to test for differences among alliances.

Results

The classification revealed four main clusters of relevés representing the chasmophytic vegetation of southern France, Sardinia and the northwestern part of Italy (Asplenienalia glandulosi/Asplenietalia glandulosi), the southwestern part of Italy and Malta (Tinguarrenalia siculae/Asplenietalia glandulosi), the Adriatic Basin area (Centaureo dalmaticae‐Campanuletalia pyramidalis) and the southern Balkans (Onosmetalia frutescentis). The NMDS ordination confirmed the overall pattern, while MRPP showed significant differences among the alliances of the above‐mentioned orders and suborders. The lists of diagnostic taxa of the high‐rank syntaxa were revised according to a supra‐national perspective.

Conclusions

The new syntaxonomic scheme provides a comprehensive overview of the chasmophytic vegetation of the central part of the Mediterranean Basin. This scheme mostly matches the recently published EuroVegChecklist, but also exhibits important novelties concerning the syntaxonomic position of some alliances (Dianthion rupicolae, Centaureion pentadactyli, Arenarion bertolonii and Caro‐Aurinion), and the floristic and chorological relationships among high‐rank syntaxa, with new revised sets of diagnostic taxa. This revision might be useful for further small‐scale phytosociological studies.
  相似文献   

14.
Sex identification provides important information for ecological and evolutionary studies, as well as benefiting snake conservation management. Traditional methods such as cloacal probing or cloacal popping are counterproductive for sex identification concerning very small species, resulting in difficulties in the management of their breeding programs. In this study, the nucleotide sequences of gametologous genes (CTNNB1 and WAC genes) were used for the development of molecular sexing markers in caenophidian snakes. Two candidate markers were developed with the two primer sets, and successfully amplified by a single band on the agarose gel in male (ZZ) and two bands, differing in fragment sizes, in female (ZW) of 16 caenophidian snakes for CTNNB1 and 12 caenophidian snakes for WAC. Another candidate marker was developed with the primer set to amplify the specific sequence for CTNNB1W homolog, and the PCR products were successfully obtained in a female‐specific 250‐bp DNA bands. The three candidate PCR sexing markers provide a simple sex identification method based on the amplification of gametologous genes, and they can be used to facilitate effective caenophidian snake conservation and management programs.  相似文献   

15.
It has been suggested that architectural plasticity in shoot size and number allows plants to manage environmental risks. Simpler structures require shorter development times and fewer resources, which secure minimal fitness even under risky and unfavourable conditions. Here we tested the hypothesis that the magnitude of such architectural plasticity depends on the species' developmental strategy. Specifically, species with late reproduction were expected to express the highest levels of architectural plasticity in response to environmental cues predicting high probability of abrupt deterioration in growth conditions. This hypothesis was tested by comparing Mediterranean and semi‐arid populations of three species, which differed in growth strategy: Trifolium purpureum, a determinate and late flowerer, and Emex spinosa and Hippocrepis unisiliquosa that flower indeterminately throughout the season. All plants were exposed to varying levels of water availability and competition, but only T. purpureum displayed plastic architectural responsiveness to the experimental manipulations. In contrast, the early and extended step‐by‐step flowering of both E. spinosa and H. unisiliquosa reflected a relatively deterministic bet‐hedging reproductive schedule, whereby minimum fitness is secured even under adverse conditions. These two opposing strategies gave contrasting results, with E. spinosa and H. unisiliquosa displaying reduced efficiency under favourable conditions under which T. purpureum had the highest reproductive efficiency. The evolutionary interplay between deterministic risk‐averse and plastic risk‐prone growth strategies might reflect contrasts in the probability and severity of environmental risks, and the costs of missed opportunities.  相似文献   

16.
Several New World atheriniforms have been recognized as temperature‐dependent sex determined (TSD) and yet possess a genotypic sex determinant (amhy) which is primarily functional at mid‐range temperatures. In contrast, little is known about the sex determination in Old World atheriniforms, even though such knowledge is crucial to understand the evolution of sex determination mechanisms in fishes and to model the effects of global warming and climate change on their populations. This study examined the effects of water temperature on sex determination of an Old World atheriniform, the cobaltcap silverside Hypoatherina tsurugae, in which we recently described an amhy homologue. We first assessed the occurrence of phenotypic/genotypic sex mismatches in wild specimens from Tokyo Bay for three years (2014–2016) and used otolith analysis to estimate their birth dates and approximate thermal history during the presumptive period of sex determination. Phenotypic sex ratios became progressively biased towards males (47.3%–78.2%) during the period and were associated with year‐to‐year increases in the frequency of XX‐males (7.3%–52.0%) and decreases in XY/YY‐females (14.5%–0%). The breeding season had similar length but was delayed by about 1 month per year between 2014 and 2016, causing larvae to experience higher temperatures during the period of sex determination from year to year. Larval rearing experiments confirmed increased likelihood of feminization and masculinization at low and high temperatures, respectively. The results suggest that cobaltcap silverside has TSD, or more specifically the coexistence of genotypic and environmental sex determinants, and that it affects sex ratios in wild populations.  相似文献   

17.
Male fitness is dependent on sexual traits that influence mate acquisition (precopulatory sexual selection) and paternity (post‐copulatory sexual selection), and although many studies have documented the form of selection in one or the other of these arenas, fewer have done it for both. Nonetheless, it appears that the dominant form of sexual selection is directional, although theoretically, populations should converge on peaks in the fitness surface, where selection is stabilizing. Many factors, however, can prevent populations from reaching adaptive peaks. Genetic constraints can be important if they prevent the development of highest fitness phenotypes, as can the direction of selection if it reverses across episodes of selection. In this study, we examine the evidence that these processes influence the evolution of the multivariate sex comb morphology of male Drosophila simulans. To do this, we conduct a quantitative genetic study together with a multivariate selection analysis to infer how the genetic architecture and selection interact. We find abundant genetic variance and covariance in elements of the sex comb. However, there was little evidence for directional selection in either arena. Significant nonlinear selection was detected prior to copulation when males were mated to nonvirgin females, and post‐copulation during sperm offence (again with males mated to nonvirgins). Thus, contrary to our predictions, the evolution of the D. simulans sex comb is limited neither by genetic constraints nor by antagonistic selection between pre‐ and post‐copulatory arenas, but nonlinear selection on the multivariate phenotype may prevent sex combs from evolving to reach some fitness maximizing optima.  相似文献   

18.
Ceratitis capitata (Wiedemann), the Mediterranean fruit fly, is one of the key pest species affecting deciduous fruit orchards along the Mediterranean coasts. Because of global warming, C. capitata is gradually spreading north and is becoming a major pest of apples. Determining the susceptibility of the main apple varieties grown in the region will serve as a cornerstone to the management of this pest. In this study, we show the results of a field and laboratory no‐choice test conducted to determine the Medfly preferences on different apple cultivars. The seven main varieties of apples (Gala, Red Delicious, Golden Delicious, Granny Smith, Kanzi, Morgen Dallago and Fuji) were tested. The results demonstrate that C. capitata lays eggs on all apple cultivars in both field and laboratory conditions. The Granny Smith, Red Delicious and Morgen Dallago varieties showed the lowest susceptibility in laboratory conditions, (0.75, 1.55, 2 oviposition punctures/fruit, respectively), with significant differences in oviposition compared to the Golden Delicious, Kanzi and Fuji (3.27, 3.31, 3.1 oviposition punctures/fruit, respectively) varieties, which were shown to be the most susceptible to Medfly attack in laboratory conditions. On the other hand, only slight and not statistically significant differences emerged from the field trials. In relation to the physico‐chemical characteristics, the apple cultivars showing the lowest susceptibility (Granny Smith, Red Delicious and Morgen Dallago) had harder peels and pulps and lower sugar contents than the most susceptible cultivars (Golden Delicious, Fuji and Kanzi). These results were also confirmed through evaluation of larval development on different varieties. In fact, Granny Smith, Red Delicious and Morgen Dallago were the three varieties that did not allow adequate larval and adult development and reduced the possibility of the emergence of a new generation.  相似文献   

19.
Sex allocation theory predicts that parents bias the offspring sex ratio strategically. In avian species, the offspring sex ratio can be biased at multiple growth stages, although the mechanisms are not well known. It is crucial to reveal a cause and timing of biased offspring sex ratio. We investigated (i) offspring sex ratio at multiple growth stages, from laying to fledging; and (ii) the stage at which offspring sex ratio became biased; and (iii) the cause of biased offspring sex ratio in Eurasian tree sparrows Passer montanus. Sex determination of 218 offspring, including hatchlings and unhatched eggs from 41 clutches, suggested that the offspring sex ratio was not biased at the egg‐laying stage but was significantly female‐biased after the laying stage due to higher mortality of male embryos. Half of the unhatched eggs showed no sign of embryo development (37/74, 50.00%), and most undeveloped eggs were male (36/37, 97.30%). Additional experiments using an incubator suggested that the cause of embryo developmental failure was a lack of developmental ability within the egg, rather than a failure of incubation. This study highlights the importance of clarifying offspring sex ratio at multiple stages and suggests that offspring sex ratio is adjusted after fertilization.  相似文献   

20.
Sex reversal at high temperatures during embryonic development (e.g., ZZ females) provides the opportunity for new genotypic crosses (e.g., ZZ male × ZZ female). This raises the alarming possibility that climatic warming could lead to the loss of an entire chromosome—one member of the sex chromosome pair (the Y or W)—and the transition of populations to environmental sex determination (ESD). Here we examine the evolutionary dynamics of sex‐determining systems exposed to climatic warming using theoretical models. We found that the loss of sex chromosomes is not an inevitable consequence of sex reversal. A large frequency of ZZ sex reversal (50% reversal from male to female) typically divides the outcome between loss of the ZW genotype and the stable persistence of ZZ males, ZW females and ZZ females. The amount of warming associated with sex chromosome loss depended on several features of wild populations—environmental fluctuation, immigration, heritable variation in temperature sensitivity and differential fecundity of sex‐reversed individuals. Chromosome loss was partially or completely buffered when sex‐reversed individuals suffered a reproductive fitness cost, when immigration occurred or when heritable variation for temperature sensitivity existed. Thus, under certain circumstances, sex chromosomes may persist cryptically in systems where the environment is the predominant influence on sex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号